nextupprevious
Next:9.8.2 Result 2: Lower Bound on Average Case ComplexityUp:9.8 Lower Bound on Complexity for Sorting MethodsPrevious:9.8 Lower Bound on Complexity for Sorting Methods

9.8.1 Result 1: Lower Bound on Worst Case Complexity

In any decision tree, it is clear that the longest path will have a length of at least log n!

Since

n! $\displaystyle \sim$ $\displaystyle \left(\vphantom{\frac{n}{e}}\right.$$\displaystyle {\frac{n}{e}}$$\displaystyle \left.\vphantom{\frac{n}{e}}\right)^{n}_{}$
     
log n! $\displaystyle \sim$ nlog n  

More Precisely,

n! $\displaystyle \geq$ $\displaystyle \left(\vphantom{\frac{n}{2}}\right.$$\displaystyle {\frac{n}{2}}$$\displaystyle \left.\vphantom{\frac{n}{2}}\right)^{\frac{n}{2}}_{}$
     
or log(n!) $\displaystyle \geq$ $\displaystyle {\frac{n}{2}}$log$\displaystyle {\frac{n}{2}}$
     
  = $\displaystyle {\frac{n}{2}}$logn$\displaystyle {\frac{n}{2}}$  

Thus any sorting algorithm that only uses comparisons has a worst case complexity

                                                                                                                                     $\displaystyle \Omega$(nlog n)


nextupprevious
Next:9.8.2 Result 2: Lower Bound on Average Case ComplexityUp:9.8 Lower Bound on Complexity for Sorting MethodsPrevious:9.8 Lower Bound on Complexity for Sorting Methods
eEL,CSA_Dept,IISc,Bangalore