nextupprevious
Next:8.4.2 Optimal Solution for TSP using Branch and BoundUp:8.4 Traveling Salesman ProblemPrevious:8.4 Traveling Salesman Problem

8.4.1 A Greedy Algorithm for TSP

Example:

Consider the six city problem shown in Figure 8.14. The sorted set of edges is

{$ \Big($(d, e), 3$ \Big)$,$ \Big($(b, c), 5$ \Big)$,$ \Big($(a, b), 5$ \Big)$,$ \Big($(e, f ), 5$ \Big)$,$ \Big($(a, c), 7.08$ \Big)$,$ \Big($(d, f ),$ \sqrt{58}$$ \Big)$,

$ \Big($(b, e),$ \sqrt{22}$$ \Big)$,$ \Big($(b, d ),$ \sqrt{137}$$ \Big)$,$ \Big($(c, d ), 14$ \Big)$,...$ \Big($(a, f ), 18$ \Big)$

See Figures 8.15 and 8.16.

Figure 8.15: An intermediate stage in the construction of a TSP tour
\begin{figure}\centerline{\psfig{figure=figures/Ftsp2.ps}}\end{figure}

 

Select (d, e)

 
Select (a, b)  
Select (b, c)  
Select (e, f)  
Reject (a, c) since it forms a cycle with (a, b) and (b, c)
Reject (d, f) since it forms a cycle with (d, e) and (e, f)
Reject (b, e) since that would make the degree of b equal to 3
Reject (b, d) for an identical reason
Select (c, d)  
.  
.  
.  
Select (a, f)  
   
$ \Downarrow$
 

This yields a total cost = 50, which is about 4% from the optimal cost.

 

Figure 8.16: A TSP tour for the six-city problem
\begin{figure}\centerline{\psfig{figure=figures/Ftsp3.ps}}\end{figure}

 
 


nextupprevious
Next:8.4.2 Optimal Solution for TSP using Branch and BoundUp:8.4 Traveling Salesman ProblemPrevious:8.4 Traveling Salesman Problem
eEL,CSA_Dept,IISc,Bangalore