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Cake-cutting problems

Input:
> A set of resources

> A set of agents, with possibly different
preferences

Goal: Divide the resources among the
agents in a fair manner

Empirically: since ancient times

www.shutterstock.com - 114352723

Mathematical formulations: Initiated by
[Steinhaus, Banach, Knaster ~ 48]



Some early references

* Ancient Egypt:

» Land division around Nile (i.e., of the most fertile land)

* Ancient Greece:
» Sponsorships of theatrical performances
* Undertaken by most wealthy citizens

* Mechanism used was giving incentives so that wealthier citizens
could not avoid becoming sponsors

* First references of the cut-and-choose protocol

» Theogony (Hesiod, 8t century B.C.): run between Prometheus and
Zeus

> Bible: run between Abraham and Lot



Available implementations
* http://www.spliddit.org

» Jonathan Goldman, Ariel Procaccia

» Algorithms for various classes of problems (rent division, division of
goods, etc)

* http://www.nyu.edu/projects/adjustedwinner/
» Steven Brams, Alan Taylor

» Implementation of the “adjusted winner” algorithm for 2 players
* https://www.math.hmc.edu/~su/fairdivision/calc/

> Francis Su

» Implementation of algorithms for allocating goods with any number of
players



Modeling Fair Division Problems

Preferences:
 Modeled by a valuation function for each agent

* v,(S) =value of agent i for obtaining a subset S

Type of resources:

1. Continuous models
» Infinitely divisible resources (usually just the interval [0, 1])
» Valuation functions: defined on subsets of [0, 1]

2. Discrete models
» Set of indivisible goods

» Valuation functions: defined on subsets of the goods



The discrete setting

For this talk:

 Resources = a set of indivisible goods M ={1, 2, ..., m}

 Setofagents:N={1, 2, ..., n}

* An allocation of M is a partitionS=(S,, S,, ..., S,), S; € M
» U;S;=MandS;NS =7




Valuation functions

All valuations we consider satisfy:
* v(d)=0 (normalization)

* v{(S)<v(T), foranySC T (monotonicity)

Special cases of interest:
» Additive: v(S U T) = v«(S) + v/(T), for any disjoint sets S, T
» Assumed in the majority of the literature
» Suffices to specify \ for any good j: vi(S) = %, c 5 v;, forany S CM
» Additive with identical rankings on the value of the goods
» ldentical agents: Same valuation function for everyone
» Submodular: v.(S U {j})-v/(S)>v(T U {j}) - v(T), forany SCT, and j&T
» Subadditive: v(S U T) <v(S) +v(T), foranyS, TC M



Valuation functions

Subadditive
Submodular
Additive




The discrete setting

Example with additive valuations




Part 1: A hierarchy of some
solution concepts in fair division
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Solution Concepts

1. Proportionality

An allocation (S, S,,..., S,)) is proportional, if for every agent J,
v{S;) 2 1/n - v{(M)

Historically, the first concept studied in the literature

[Steinhaus, Banach, Knaster 48]
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Solution Concepts

2. Envy-freeness

An allocation (S,, S,,..., S,) is envy-free, if v/(S;) 2 v{(S;) for any pair
of playersiandj

* Suggested as a math puzzle in [Gamow, Stern '58]

* More formally discussed in [Foley ‘67, Varian "74]

A stronger concept than proportionality (as long as valuations
are subadditive):

Envy-freeness = n - v(S,) 2 v(M) = Proportionality
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The discrete setting

In our example:

A proportional and envy-free allocation
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The discrete setting

In our example:

A proportional but not envy-free allocation
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Solution Concepts

3. Competitive Equilibrium from Equal Incomes (CEEI)

Suppose each agent is given the same (virtual) budget to buy
goods.

A CEEI consists of
* AnallocationS=(S,,S,, ..., S,)
* A pricing on the goods p = (py, pP,, ---» P,y)

such that v,(S;) is maximized subject to the budget constraint

An allocation S =(S,, S,,..., S,) is called a CEEl allocation if it
admits a pricing p = (py,...,P,,), such that (S, p) is a CEEI
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Solution Concepts

* A well established notion in economics [Foley ‘67, Varian "74]

 Combining fairness and efficiency

* Quote from[Arnsperger '94]: “To many economists, CEEl is
the description of perfect justice”

Claim: A CEEl allocation is

* envy-free (due to equal budgets)

* Pareto-efficient in the continuous setting

* Pareto-efficient in the discrete setting when valuations are strict
(no 2 bundles have the same value)
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Containment Relations in the space of
allocations

Proportionality
Envy-
freeness
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Some issues

All 3 definitions are “too strong” for indivisible goods

No guarantee of existence

More appropriate for the continuous setting (existence is
always guaranteed)

Need to explore relaxed versions of fairness
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Solution Concepts

4. Envy-freeness up to 1 good (EF1)

An allocation (S,, S,,..., S,,) satisfies EF1, if for any pair of agents j,
j, there exists a good a € S; such that v(S)) 2 v/(S; \ {a})

* j.e., for any player who may envy agent j, there exists an item
to remove from S; and eliminate envy
 Defined by [Budish "11]
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Solution Concepts

5. Envy-freeness up to any good (EFX)

An allocation (S,, S,,..., S,,) satisfies EFX, if for any playersiand}j,
and any good a €S; we have v(S)) 2 v/(S;\ {a})

* Removing any item from each player’s bundle eliminates envy
from other players

* Defined by [Caragiannis et al. "16]

Fact: Envy-freeness = EFX = EF1
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Solution Concepts

6. Maximin Share Allocations (MMS)

A thought experiment:

Suppose we run the cut-and-choose protocol for n agents.

Say agent i is given the chance to suggest a partition of the
goods into n bundles

The rest of the agents then choose a bundle and i chooses last

Worst case for i: he is left with his least desirable bundle
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Solution Concepts

e Given n agents and S € M, the n-maximin share of i w.r.t. M is

i = pi(n, M) = max min v;(5;
pi = pa(n, M) Sell, (M) S,€S i(5)

- max is over all possible partitions of M

- min is over all bundles of a partitionS=(S,, S,,..., S,)

Introduced by [Budish "11]
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Solution Concepts

An allocation (S, S,,..., S,)) is @ maximin share (MMS) allocation if
for every agent i, v{(S)) =

Fact: Proportionality = MMS
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Maximin shares
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MMS vs EF1 (and vs EFX)

How do MMS allocations compare to EF1 and EFX?
> There exist EFX allocations that are not MMS allocations

» There exist MMS allocations that do not satisfy EF1 (hence
not EFX either)
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MMS vs EF1 (and vs EFX)

K, =30
W, =40
U, =30

A MMS allocation that does not satisfy EF1
Charlie envies Franklin even after removing any
item from Franklin’s bundle
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Relations between fairness criteria

For subadditive valuation functions
» Upper part holds for general monotone valuations

EFX = EF1
=~

CEEl = EF

XN
Proportionality = MMS
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Relations between fairness criteria

Pictorially:

MMS

Proportionality @ ;’nvy
reeness
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Part 2: Existence and Computation
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Envy-freeness and Proportionality

Mostly bad news:

= No guarantee of existence for either proportionality or envy-freeness

= NP-hard to decide existence even for n=2 (equivalent to makespan
for 2 identical processors)

= NP-hard to compute decent approximations

= E.g. For approximating the minimum envy allocation [Lipton,
Markakis, Mossel, Saberi '04]

= Still open to understand if there exist subclasses that admit good
approximations

= On the positive side: Existence with high prob. on random instances,
when n = O(m/logm) [Dickerson et al. '14]
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Part 2a:
EF1 and EFX
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EF1

Existence of EF1 allocations?

Theorem: For monotone valuation functions, EF1 allocations
always exist and can be computed in polynomial time



EF1 for Additive Valuations

Existence established through an algorithm

Algorithm 1 - Greedy Round-Robin

* Fix an ordering of the agents
* While there exist unallocated items
* Letibe the next agent in the round-robin order
* Askjto pick his most desirable item among the unallocated ones

Algorithm 1 works for additive valuations
Proof: Throughout the algorithm, each player may have
an advantage only by 1 item w.r.t. other players = EF1
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EF1 for General Valuations

For non-additive valuations, more insightful to look at a
graph-theoretic representation

Let S be an allocation (not necessarily of the whole set M)

The envy-graph of S:
* Nodes = agents

* Directed edge (i, j) if i envies junder S

How does this help?
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EF1 for General Valuations

* Aniterative algorithm till we reach a complete allocation

Suppose we have built a partial allocation that is EF1

If there exists a node with in-degree 0: give to this agent one of the
currently unallocated goods

If this is not the case:
» The graph has cycles

» Start removing them by exchanging bundles, as dictated by each
cycle

» Until we have a node with in-degree 0
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EF1 for General Valuations

Algorithm 2 — The Cycle Elimination Algorithm
* Fix an ordering of the goods, say, 1, 2, ..., m
* Atiterationi:
* Find a node j with in-degree 0 (by possibly eliminating cycles from the
envy-graph)
* Give goodito agent |

Proof of correctness:
 Removing cycles terminates fast
 Number of edges decreases after each cycle is gone
* At every step, we create envy only for the last item
* The allocation remains EF1 throughout the algorithm
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EFX

Existence of EFX allocations?
- forn=2
» YES (for general valuations)
- forn>3
» Great open problem!

» Guaranteed to exist only for agents with identical
valuations



A detour: the leximin solution

[Rawls "71]

The leximin solution is the allocation that
» Maximizes the minimum value attained by an agent

» If there are multiple such allocations, pick the one maximizing
the 2" minimum value

» Then maximize the 3" minimum value

> And soon...

* This induces a total ordering over allocations
* Leximin is a global maximum under this ordering
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Existence results for EFX allocations

[Plaut, Roughgarden "18]: a slightly different version

A leximin++ allocation

» Maximizes the minimum value attained by an agent

» Maximizes the bundle size of the agent with the minimum value
» Then maximizes the 2" minimum value
>

Followed by maximizing the bundle size of the 2" minimum
value

> And so on...

Theorem: For general but identical agents, the leximin++
solution is EFX
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Algorithmic results

[Plaut, Roughgarden "18]:
Separation between general and additive valuations

Theorem:
1. exponential lower bound on query complexity

* Even for 2 agents with identical submodular valuations

2. Polynomial time algorithm for 2 agents and arbitrary additive
valuations

3. Polynomial time algorithm for any n, and additive valuations

with identical rankings
 All agents have the same ordering on the value of the goods
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Algorithmic results

Algorithm for additive valuations with identical rankings:

Run the cycle elimination algorithm, by ordering the goods in
decreasing order of value

» At every step of the algorithm we allocate the next item to an agent no-
one envies

» Envy we create is only for the item at the current iteration

A\

But this has lower value than all the previous goods

» Hence the allocation remains EFX throughout the algorithm
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Algorithmic results

Algorithm for 2 agents and arbitrary additive valuations

Variation of cut and choose
» Agent 1 runs the previous algorithm with 2 copies of herself

» Agent 2 picks her favorite out of the 2 bundles created
» Agent 1 picks the left over bundle



Part 2b:
MMS allocations
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MMS allocations

Existence?
- forn=2
» YES (via a discrete version of cut-and-choose)
- forn=>3
» NO [Procaccia, Wang '14]
» Known counterexamples build on sophisticated constructions
— How often do they exist forn>3?

» Actually extremely often

» Extensive simulations [Bouveret, Lemaitre "14] with randomly
generated data did not reveal negative examples
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Computation

Approximate MMS allocations

Q: What is the best a for which we can compute an allocation
(S, S,,---, S,)) satisfying v.(S,) = a i, for every i?

We will again start with additive valuations
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Approximation Algorithms for Additive
Valuations

For n=2
* NP-hard to even compute the quantity p, for agent i

» Existence proof of MMS allocations yields an exponential
algorithm
1. Let player 1 compute a partition that guarantees p, to him
» i.e., a partition that is as balanced as possible

2. Player 2 picks the best out of the 2 bundles

 Convert Step 1 to poly-time by losing €, e.g. using the PTAS of
[Woeginger '97]

Corollary: For n=2, we can compute in poly-time a (1-€)-MMS
allocation
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Approximation Algorithms for Additive
Valuations
Forn=>3

e Start with an additive approximation
e Recall the greedy round-robin algorithm (Algorithm 1)

Theorem:
Greedy Round-Robin produces an allocation (S,, S,,..., S,,) such

that
Vi(S) 2 = V. Wherev . =maxyv;
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Approximation algorithms for additive

valuations
When does Greedy Round-Robin perform badly?

* Inthe presence of goods with very high value
 BUT: each such good can satisfy some agent

* Suggested algorithm: Get rid of the most valuable goods before running
Greedy Round-Robin

Algorithm 3:

* LetS:=M,anda;:=v(S)/n

*  While di, j, such thatv; > a;/2,
e allocatejtoi

* n:=n-1,S:=5\{j}, recompute the a/s
* Run Greedy Round-Robin on remaining instance
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A Y:-approximation for Additive
Valuations

All we need is to ensure a monotonicity property

Lemma:

If we assign a good j to some agent, then for any other agent j = j:
pdn-1, M\{j}) 2 {n, M)

Theorem:

Algorithm 2 produces an allocation (S, S,,..., S,) such that for
every agent /:
vi(S;) 2 1/2 pn, M) =1/2
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Beyond 1/2...

Algorithm 2 is tight

What if we change the definition of “valuable” by considering
v; 2 2a;/3 instead of a; /2 ?

Not clear how to adjust Greedy Round-Robin for phase 2

Beating 1/2 needs different approaches



Beyond 1/2...

2/3-approximation guarantees:

[Procaccia, Wang "14]

» 2/3-ratio, exponential dependence on n

[Amanatidis, Markakis, Nikzad, Saberi ’15]
» (2/3-¢g)-ratio for any €>0, poly-time for any n and m

[Barman, Murty '17]
» 2/3-ratio, poly-time for any n and m
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2/3-approximation algorithms

Recursive algorithms of
[Procaccia, Wang "14], [Amanatidis, Markakis, Nikzad, Saberi "15]

Based on:

* Exploiting certain monotonicity properties of u (-, -
» To be able to move to reduced instances

* Results from job scheduling

» To be able to compute approximate MMS partitions from the
perspective of each agent

* Matching arguments (perfect matchings + finding counterexamples to
Hall’s theorem when no perfect matchings exist)

» To be able to decide which agents to satisfy within each iteration
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2/3-approximation algorithms

Recursive algorithms of
[Procaccia, Wang "14], [Amanatidis, Markakis, Nikzad, Saberi "15]

High level description:

* Each iteration takes care of > 1 person, until no-one left
* During each iteration,
Let {1, 2, ..., k} = still active agents

1. Ask one of the agents, say agent 1, to produce a MMS partition with
k bundles according to his valuation function

2. Find a subset of agents such that:
a) they can be satisfied by some of these bundles
b) the remaining goods have “enough” value for the remaining agents

53



2/3-approximation algorithms

The algorithm of [Barman, Murty '17]

Lemma 1: It suffices to establish the approximation ratio for
additive valuations with identical rankings

Lemma 2: For additive valuations with identical rankings, the
cycle elimination algorithm (after ordering the goods in
decreasing order of value) achieves a 2/3-approximation
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The case of n = 3 agents

* Anintriguing case...
* For n=2, MMS allocations always exist
 The problems start at n=3!

* Still unclear if there exists a PTAS

Progress achieved so far:

Algorithms

[Procaccia, Wang '14]
[Amanatidis, Markakis, Nikzad, Saberi ’15]

[Gourves, Monnot ’17]

3/4
7/8
8/9
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Non-additive valuations

* None of the algorithms go through with non-additive
valuations

* No positive results known for arbitrary valuations

Theorem [Barman, Murty "17]: For agents with submodular
valuations, there exists a polynomial time 1/10-approximation
algorithm
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And some more recent progress
[Ghodsi, Hajiaghayi, Seddighin, Seddighin, Yami '17]:

Positive results for various classes of valuation functions:
* Additive: Polynomial time %-approximation

* Submodular: Polynomial time 1/3-approximation

» Subadditive: Existence of O(logm)-approximation
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Part 3: Related open problems and
other research directions
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Other fairness notions

Can we think of alternative relaxations to envy-freeness and/or
proportionality?

[Caragiannis et al. '16]:

e Pairwise MMS allocations

» Consider an allocationS=(S,, S,, ..., S,,), and a pair of players, i, j
» Let B:=all partitions of S; U S, into two sets (B,, B,)
» Fairness requirement for every pairi, j:
v;i (S;) > le(l}gzﬁ(Bg) min{v;(B1),v;(B2)}
* A stronger criterion than EFX
e Related but incomparable to MMS allocations
* Existence of ¢p-approximation (golden ratio)

» Open problem whether pairwise MMS allocations always exist
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Other fairness notions

Can we think of alternative relaxations to envy-freeness and/or
proportionality?
Fairness in the presence of a social graph

[Chevaleyre, Endriss, Maudet '17, Abebe, Kleinberg, Parkes ’17, Bei, Qiao,
Zhang '17]

e Evaluate fairness with regard to your neighbors

» Most definitions easy to adapt

» E.g., graph envy-freeness: suffices to not envy your neighbors
[Caragiannis et al. "18]:

* More extensions, without completely ignoring the goods allocated to
non-neighbors
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Mechanism design aspects

So far we assumed agents are not strategic
Can we design truthful mechanisms?

[Amanatidis, Birmpas, Christodoulou, Markakis "17]:
» Mechanism design without money

» Tight results for 2 players through a characterization of truthful
mechanisms

» Best truthful approximation for MMS: O(1/m)

» Truthful mechanisms for EF1: only if m <4

Characterization results for 23 players?
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The continuous setting

Cake: M =[O0, 1]
Set of agents: N =1{1, 2, ..., n}
Valuation functions:
» Given by a non-atomic probability measure v.on [0, 1], for each i

Access to the valuation functions:
» Value queries: ask an agent for her value of a given piece

» Cut queries: ask an agent to produce a piece of a given value
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Envy-free allocations
in the continuous setting

* Envy-free (and hence proportional) allocations always exist

Computation?

" n=2:cut-and-choose (2 queries)

= n=3: [Selfridge, Conway circa 60s] (less than 15 queries)
* n=4:[Aziz, Mckenzie "16a] (close to 600 queries)

" General n:

= [Brams, Taylor 'S5]: Finite procedure but with no upper
bound on number of queries

= [Aziz, Mackenzie "16b]: First bounded algorithm but with
exceptionally high complexity

T
n

nn

. n
Hqueries< M
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Envy-free allocations
in the continuous setting

Lower bounds

= Contiguous pieces: there can be no finite protocol that
produces envy-free allocation

= Non-contiguous pieces: Q(n?) [Procaccia '09]
= Separating envy-freeness from proportionality

= Can we do shorten the gap between the upper and lower
bound?
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Summarizing...

A rich area with several challenging ways to go

 Conceptual
— Define or investigate further new notions

* Algorithmic
— Best approximation for MMS allocations?
— EFX for arbitrary additive valuations?
— Algorithms for the continuous setting?

* Game-theoretic
— Mechanism design aspects?
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