Fairness with Indivisible Goods: Solution Concepts and Algorithms

Vangelis Markakis

Athens University of Economics and Business (AUEB) Dept. of Informatics

Cake-cutting problems

Input:

- A set of resources
- A set of agents, with possibly different preferences
- Goal: Divide the resources among the agents in a fair manner

Empirically: since ancient times

Mathematical formulations: Initiated by [Steinhaus, Banach, Knaster '48]

www.shutterstock.com · 114352723

Some early references

- Ancient Egypt:
 - Land division around Nile (i.e., of the most fertile land)
- Ancient Greece:
 - Sponsorships of theatrical performances
 - Undertaken by most wealthy citizens
 - Mechanism used was giving incentives so that wealthier citizens could not avoid becoming sponsors
- First references of the cut-and-choose protocol
 - Theogony (Hesiod, 8th century B.C.): run between Prometheus and Zeus
 - Bible: run between Abraham and Lot

Available implementations

- http://www.spliddit.org
 - Jonathan Goldman, Ariel Procaccia
 - Algorithms for various classes of problems (rent division, division of goods, etc)
- http://www.nyu.edu/projects/adjustedwinner/
 - Steven Brams, Alan Taylor
 - Implementation of the "adjusted winner" algorithm for 2 players
- https://www.math.hmc.edu/~su/fairdivision/calc/
 - Francis Su
 - Implementation of algorithms for allocating goods with any number of players

Modeling Fair Division Problems

Preferences:

- Modeled by a valuation function for each agent
- v_i(S) = value of agent i for obtaining a subset S

Type of resources:

- 1. Continuous models
 - Infinitely divisible resources (usually just the interval [0, 1])
 - Valuation functions: defined on subsets of [0, 1]

2. Discrete models

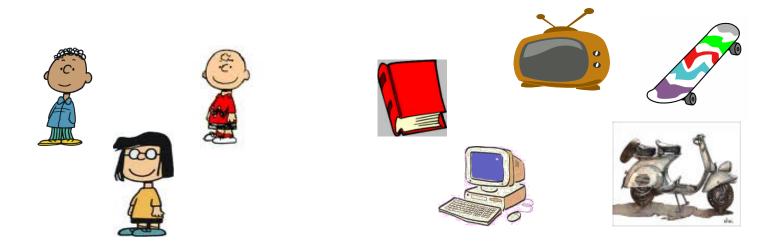
- Set of indivisible goods
- Valuation functions: defined on subsets of the goods

The discrete setting

For this talk:

- Resources = a set of indivisible goods M = {1, 2, ..., m}
- Set of agents: N = {1, 2, ..., n}
- An allocation of M is a partition $S = (S_1, S_2, ..., S_n), S_i \subseteq M$

 $\succ \bigcup_i S_i = M \text{ and } S_i \cap S_j = \emptyset$



Valuation functions

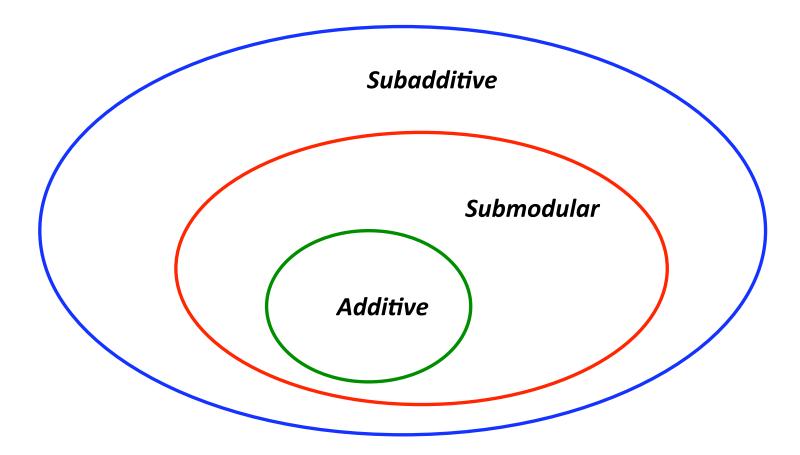
All valuations we consider satisfy:

- $v_i(\emptyset) = 0$ (normalization)
- $v_i(S) \le v_i(T)$, for any $S \subseteq T$ (monotonicity)

Special cases of interest:

- Additive: $v_i(S \cup T) = v_i(S) + v_i(T)$, for any disjoint sets S, T
 - Assumed in the majority of the literature
 - Suffices to specify v_{ij} for any good j: $v_i(S) = \sum_{j \in S} v_{ij}$, for any $S \subseteq M$
- Additive with identical rankings on the value of the goods
- Identical agents: Same valuation function for everyone
- Submodular: $v_i(S \cup \{j\}) v_i(S) \ge v_i(T \cup \{j\}) v_i(T)$, for any $S \subseteq T$, and $j \notin T$
- Subadditive: $v_i(S \cup T) \le v_i(S) + v_i(T)$, for any S, T \subseteq M

Valuation functions



The discrete setting

Example with additive valuations

Charlie	35	5	25	0	35
Franklin	30	40	35	5	40
Marcie	30	20	40	30	0

Part 1: A hierarchy of some solution concepts in fair division

1. Proportionality

An allocation $(S_1, S_2, ..., S_n)$ is proportional, if for every agent *i*, $v_i(S_i) \ge 1/n \cdot v_i(M)$

Historically, the first concept studied in the literature [Steinhaus, Banach, Knaster '48]

2. Envy-freeness

An allocation $(S_1, S_2, ..., S_n)$ is envy-free, if $v_i(S_i) \ge v_i(S_j)$ for any pair of players *i* and *j*

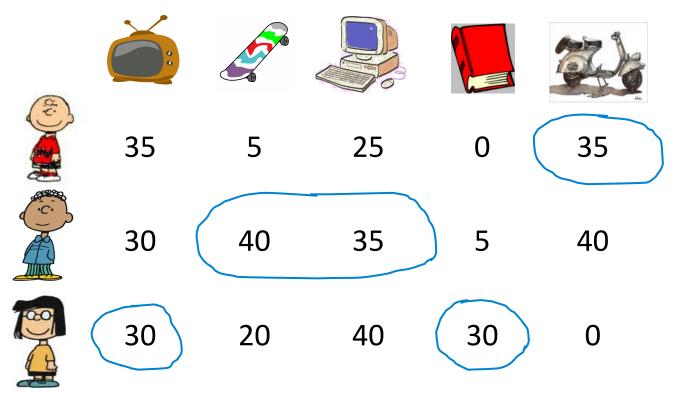
- Suggested as a math puzzle in [Gamow, Stern '58]
- More formally discussed in [Foley '67, Varian '74]

A stronger concept than proportionality (as long as valuations are subadditive):

Envy-freeness \Rightarrow n · v_i(S_i) \ge v_i(M) \Rightarrow Proportionality

The discrete setting

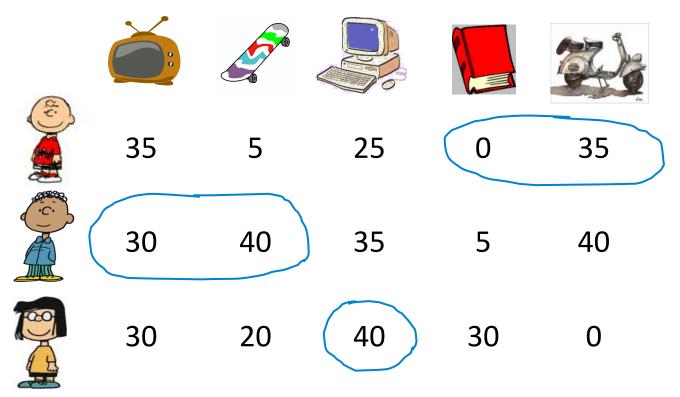
In our example:



A proportional and envy-free allocation

The discrete setting

In our example:



A proportional but not envy-free allocation

3. Competitive Equilibrium from Equal Incomes (CEEI)

Suppose each agent is given the same (virtual) budget to buy goods.

A CEEI consists of

- An allocation S = (S₁, S₂, ..., S_n)
- A pricing on the goods $p = (p_1, p_2, ..., p_m)$

such that $v_i(S_i)$ is maximized subject to the budget constraint

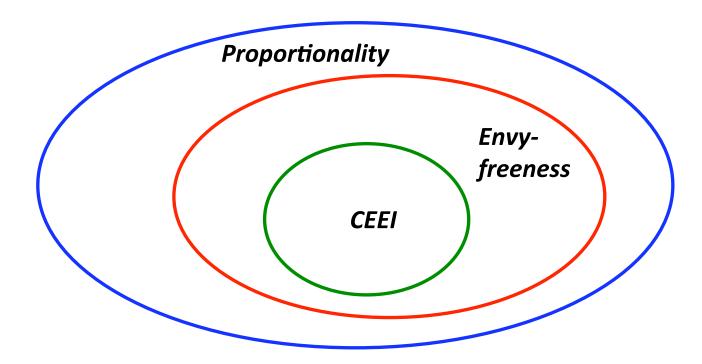
An allocation $S = (S_1, S_2, ..., S_n)$ is called a CEEI allocation if it admits a pricing $p = (p_1, ..., p_m)$, such that (S, p) is a CEEI

- A well established notion in economics [Foley '67, Varian '74]
- Combining fairness and efficiency
- Quote from[Arnsperger '94]: "To many economists, CEEI is the description of perfect justice"

Claim: A CEEI allocation is

- envy-free (due to equal budgets)
- Pareto-efficient in the continuous setting
- Pareto-efficient in the discrete setting when valuations are strict (no 2 bundles have the same value)

Containment Relations in the space of allocations



Some issues

- All 3 definitions are "too strong" for indivisible goods
- No guarantee of existence
- More appropriate for the continuous setting (existence is always guaranteed)
- Need to explore relaxed versions of fairness

4. Envy-freeness up to 1 good (EF1)

An allocation $(S_1, S_2, ..., S_n)$ satisfies EF1, if for any pair of agents *i*, *j*, there exists a good $a \in S_{j_i}$ such that $v_i(S_i) \ge v_i(S_j \setminus \{a\})$

- i.e., for any player who may envy agent j, there exists an item to remove from S_i and eliminate envy
- Defined by [Budish '11]

5. Envy-freeness up to any good (EFX)

An allocation $(S_1, S_2, ..., S_n)$ satisfies EFX, if for any players *i* and *j*, and any good $a \in S_{j_i}$ we have $v_i(S_i) \ge v_i(S_j \setminus \{a\})$

- Removing any item from each player's bundle eliminates envy from other players
- Defined by [Caragiannis et al. '16]

Fact: Envy-freeness \Rightarrow EFX \Rightarrow EF1

6. Maximin Share Allocations (MMS)

A thought experiment:

- Suppose we run the cut-and-choose protocol for n agents.
- Say agent *i* is given the chance to suggest a partition of the goods into n bundles
- The rest of the agents then choose a bundle and *i* chooses last
- Worst case for *i*: he is left with his least desirable bundle

• Given n agents and S ⊆ M, the n-maximin share of *i* w.r.t. M is

$$\mu_i := \mu_i(n, M) = \max_{S \in \Pi_n(M)} \min_{S_j \in S} v_i(S_j)$$

- max is over all possible partitions of M
- min is over all bundles of a partition $S = (S_1, S_2, ..., S_n)$

Introduced by [Budish '11]

An allocation $(S_1, S_2, ..., S_n)$ is a maximin share (MMS) allocation if for every agent $i, v_i(S_i) \ge \mu_i$

Fact: Proportionality \Rightarrow MMS

Maximin shares

35	5	25	0	35	μ ₁ = 30
30	40	35	5	40	μ ₂ = 40
30	20	40	30	0	μ ₃ = 30

MMS vs EF1 (and vs EFX)

How do MMS allocations compare to EF1 and EFX?

- > There exist EFX allocations that are not MMS allocations
- There exist MMS allocations that do not satisfy EF1 (hence not EFX either)

MMS vs EF1 (and vs EFX)

				de la	
35	5	25	0	35	μ ₁ = 30
30	40	35	5	40	μ ₂ = 40
30	20	40	30) 0	μ ₃ = 30

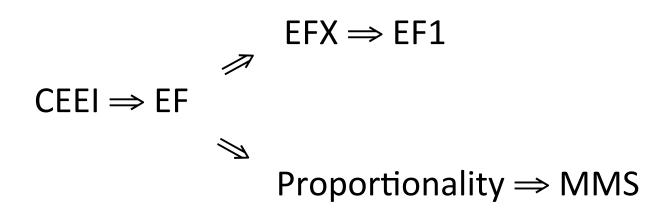
A MMS allocation that does not satisfy EF1

• Charlie envies Franklin even after removing any item from Franklin's bundle

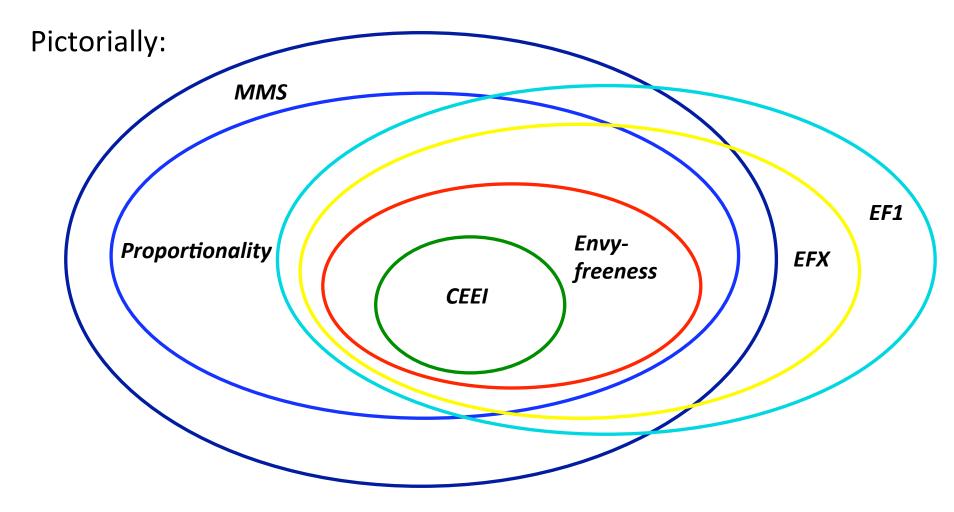
Relations between fairness criteria

For subadditive valuation functions

Upper part holds for general monotone valuations



Relations between fairness criteria



Part 2: Existence and Computation

Envy-freeness and Proportionality

Mostly bad news:

- No guarantee of existence for either proportionality or envy-freeness
- NP-hard to decide existence even for n=2 (equivalent to makespan for 2 identical processors)
- NP-hard to compute decent approximations
 - E.g. For approximating the minimum envy allocation [Lipton, Markakis, Mossel, Saberi '04]
- Still open to understand if there exist subclasses that admit good approximations
- On the positive side: Existence with high prob. on random instances, when n = O(m/logm) [Dickerson et al. '14]

Part 2a: EF1 and EFX

EF1

Existence of EF1 allocations?

Theorem: For monotone valuation functions, EF1 allocations always exist and can be computed in polynomial time

EF1 for Additive Valuations

Existence established through an algorithm

Algorithm 1 - Greedy Round-Robin

- Fix an ordering of the agents
- While there exist unallocated items
 - Let *i* be the next agent in the round-robin order
 - Ask *i* to pick his most desirable item among the unallocated ones

Algorithm 1 works for additive valuations

Proof: Throughout the algorithm, each player may have an advantage only by 1 item w.r.t. other players \Rightarrow EF1

EF1 for General Valuations

- For non-additive valuations, more insightful to look at a graph-theoretic representation
- Let S be an allocation (not necessarily of the whole set M)
- The envy-graph of S:
 - Nodes = agents
 - Directed edge (i, j) if i envies j under S
- How does this help?

EF1 for General Valuations

- An iterative algorithm till we reach a complete allocation
 - Suppose we have built a partial allocation that is EF1
 - If there exists a node with in-degree 0: give to this agent one of the currently unallocated goods
 - If this is not the case:
 - The graph has cycles
 - Start removing them by exchanging bundles, as dictated by each cycle
 - Until we have a node with in-degree 0

EF1 for General Valuations

Algorithm 2 – The Cycle Elimination Algorithm

- Fix an ordering of the goods, say, 1, 2, ..., m
- At iteration i:
 - Find a node j with in-degree 0 (by possibly eliminating cycles from the envy-graph)
 - Give good i to agent j

Proof of correctness:

- Removing cycles terminates fast
 - Number of edges decreases after each cycle is gone
- At every step, we create envy only for the last item
- The allocation remains EF1 throughout the algorithm

EFX

Existence of EFX allocations?

- for n = 2
 - > YES (for general valuations)
- for $n \ge 3$
 - Great open problem!
 - Guaranteed to exist only for agents with identical valuations

A detour: the leximin solution

[Rawls '71]

The leximin solution is the allocation that

- Maximizes the minimum value attained by an agent
- If there are multiple such allocations, pick the one maximizing the 2nd minimum value
- > Then maximize the 3rd minimum value
- And so on...
- This induces a total ordering over allocations
- Leximin is a global maximum under this ordering

Existence results for EFX allocations

[Plaut, Roughgarden '18]: a slightly different version A leximin++ allocation

- > Maximizes the minimum value attained by an agent
- > Maximizes the bundle size of the agent with the minimum value
- > Then maximizes the 2nd minimum value
- Followed by maximizing the bundle size of the 2nd minimum value
- And so on...

Theorem: For general but identical agents, the leximin++ solution is EFX

Algorithmic results

- [Plaut, Roughgarden '18]:
- Separation between general and additive valuations Theorem:
- 1. exponential lower bound on query complexity
 - Even for 2 agents with identical submodular valuations
- 2. Polynomial time algorithm for 2 agents and arbitrary additive valuations
- 3. Polynomial time algorithm for any n, and additive valuations with identical rankings
 - All agents have the same ordering on the value of the goods

Algorithmic results

Algorithm for additive valuations with identical rankings:

Run the cycle elimination algorithm, by ordering the goods in decreasing order of value

- At every step of the algorithm we allocate the next item to an agent noone envies
- Envy we create is only for the item at the current iteration
- But this has lower value than all the previous goods
- Hence the allocation remains EFX throughout the algorithm

Algorithmic results

Algorithm for 2 agents and arbitrary additive valuations

Variation of cut and choose

- Agent 1 runs the previous algorithm with 2 copies of herself
- Agent 2 picks her favorite out of the 2 bundles created
- Agent 1 picks the left over bundle

Part 2b: MMS allocations

MMS allocations

Existence?

- for n = 2

YES (via a discrete version of cut-and-choose)

- for $n \ge 3$
 - > NO [Procaccia, Wang '14]
 - Known counterexamples build on sophisticated constructions
- How often do they exist for $n \ge 3$?
 - Actually extremely often
 - Extensive simulations [Bouveret, Lemaitre '14] with randomly generated data did not reveal negative examples

Computation

Approximate MMS allocations

Q: What is the best α for which we can compute an allocation $(S_1, S_2, ..., S_n)$ satisfying $v_i(S_i) \ge \alpha \mu_i$ for every *i*?

We will again start with additive valuations

Approximation Algorithms for Additive Valuations

For n=2

- NP-hard to even compute the quantity μ_i for agent i
- Existence proof of MMS allocations yields an exponential algorithm
 - 1. Let player 1 compute a partition that guarantees μ_1 to him
 - i.e., a partition that is as balanced as possible
 - 2. Player 2 picks the best out of the 2 bundles
- Convert Step 1 to poly-time by losing ε, e.g. using the PTAS of [Woeginger '97]

Corollary: For n=2, we can compute in poly-time a $(1-\varepsilon)$ -MMS allocation

Approximation Algorithms for Additive Valuations

For $n \ge 3$

- Start with an additive approximation
- Recall the greedy round-robin algorithm (Algorithm 1)

Theorem:

Greedy Round-Robin produces an allocation $(S_1, S_2, ..., S_n)$ such that

$$v_i(S_i) \ge \mu_i - v_{max}$$
, where $v_{max} = \max v_{ij}$

Approximation algorithms for additive valuations

When does Greedy Round-Robin perform badly?

- In the presence of goods with very high value
- BUT: each such good can satisfy some agent
- Suggested algorithm: Get rid of the most valuable goods before running Greedy Round-Robin

Algorithm 3:

- Let S := M, and $\alpha_i := v_i(S)/n$
- While $\exists i, j$, such that $v_{ij} \ge \alpha_i/2$,
 - allocate *j* to *i*
 - n := n-1, S := S \ {j}, recompute the α'_i s
- Run Greedy Round-Robin on remaining instance

A ½-approximation for Additive Valuations

All we need is to ensure a monotonicity property

Lemma:

If we assign a good j to some agent, then for any other agent $i \neq j$:

 $\mu_i(n-1, M \setminus \{j\}) \ge \mu_i(n, M)$

Theorem:

Algorithm 2 produces an allocation $(S_1, S_2, ..., S_n)$ such that for every agent *i*:

 $v_i(S_i) \ge 1/2 \ \mu_i(n, M) = 1/2 \ \mu_i$

Beyond 1/2...

- Algorithm 2 is tight
- What if we change the definition of "valuable" by considering $v_{ij} \ge 2\alpha_i/3$ instead of $\alpha_i/2$?
- Not clear how to adjust Greedy Round-Robin for phase 2
- Beating 1/2 needs different approaches

Beyond 1/2...

2/3-approximation guarantees:

- [Procaccia, Wang '14]
 - 2/3-ratio, exponential dependence on n
- [Amanatidis, Markakis, Nikzad, Saberi '15]
 - > $(2/3-\varepsilon)$ -ratio for any ε >0, poly-time for any n and m
- [Barman, Murty '17]
 - > 2/3-ratio, poly-time for any n and m

2/3-approximation algorithms

Recursive algorithms of

[Procaccia, Wang '14], [Amanatidis, Markakis, Nikzad, Saberi '15]

Based on:

- Exploiting certain monotonicity properties of $\mu_i(\cdot, \cdot)$
 - To be able to move to reduced instances
- Results from job scheduling
 - To be able to compute approximate MMS partitions from the perspective of each agent
- Matching arguments (perfect matchings + finding counterexamples to Hall's theorem when no perfect matchings exist)
 - > To be able to decide which agents to satisfy within each iteration

2/3-approximation algorithms

Recursive algorithms of

[Procaccia, Wang '14], [Amanatidis, Markakis, Nikzad, Saberi '15]

High level description:

- Each iteration takes care of \geq 1 person, until no-one left
- During each iteration,

Let {1, 2, ..., k} = still active agents

- 1. Ask one of the agents, say agent 1, to produce a MMS partition with k bundles according to his valuation function
- 2. Find a subset of agents such that:
 - a) they can be satisfied by some of these bundles
 - b) the remaining goods have "enough" value for the remaining agents

2/3-approximation algorithms

The algorithm of [Barman, Murty '17]

Lemma 1: It suffices to establish the approximation ratio for additive valuations with identical rankings

Lemma 2: For additive valuations with identical rankings, the cycle elimination algorithm (after ordering the goods in decreasing order of value) achieves a 2/3-approximation

The case of n = 3 agents

- An intriguing case...
- For n=2, MMS allocations always exist
- The problems start at n=3!
- Still unclear if there exists a PTAS

Progress achieved so far:

Algorithms	Approx. ratio
[Procaccia, Wang '14]	3/4
[Amanatidis, Markakis, Nikzad, Saberi '15]	7/8
[Gourves, Monnot '17]	8/9

Non-additive valuations

- None of the algorithms go through with non-additive valuations
- No positive results known for arbitrary valuations

Theorem [Barman, Murty '17]: For agents with submodular valuations, there exists a polynomial time 1/10-approximation algorithm

And some more recent progress

[Ghodsi, Hajiaghayi, Seddighin, Seddighin, Yami '17]:

Positive results for various classes of valuation functions:

- Additive: Polynomial time ³/₄-approximation
- Submodular: Polynomial time 1/3-approximation
- Subadditive: Existence of O(logm)-approximation

Part 3: Related open problems and other research directions

Other fairness notions

Can we think of alternative relaxations to envy-freeness and/or proportionality?

[Caragiannis et al. '16]:

- Pairwise MMS allocations
 - > Consider an allocation $S = (S_1, S_2, ..., S_n)$, and a pair of players, i, j
 - > Let B:= all partitions of $S_i \cup S_j$ into two sets (B_1, B_2)
 - Fairness requirement for every pair i, j:

$$v_i(S_i) \ge \max_{B=(B_1,B_2)} \min\{v_i(B_1), v_i(B_2)\}$$

- A stronger criterion than EFX
- Related but incomparable to MMS allocations
- Existence of φ-approximation (golden ratio)
 - Open problem whether pairwise MMS allocations always exist

Other fairness notions

Can we think of alternative relaxations to envy-freeness and/or proportionality?

Fairness in the presence of a social graph

[Chevaleyre, Endriss, Maudet '17, Abebe, Kleinberg, Parkes '17, Bei, Qiao, Zhang '17]

- Evaluate fairness with regard to your neighbors
 - Most definitions easy to adapt
 - E.g., graph envy-freeness: suffices to not envy your neighbors

[Caragiannis et al. '18]:

• More extensions, without completely ignoring the goods allocated to non-neighbors

Mechanism design aspects

- So far we assumed agents are not strategic
- Can we design truthful mechanisms?
- [Amanatidis, Birmpas, Christodoulou, Markakis '17]:
 - Mechanism design without money
 - Tight results for 2 players through a characterization of truthful mechanisms
 - Best truthful approximation for MMS: O(1/m)
 - ▶ Truthful mechanisms for EF1: only if $m \le 4$
- Characterization results for ≥3 players?

The continuous setting

- Cake: M = [0, 1]
- Set of agents: N = {1, 2, ..., n}
- Valuation functions:

> Given by a non-atomic probability measure v_i on [0, 1], for each i

- Access to the valuation functions:
 - Value queries: ask an agent for her value of a given piece
 - Cut queries: ask an agent to produce a piece of a given value

Envy-free allocations

in the continuous setting

Envy-free (and hence proportional) allocations always exist

Computation?

- n=2: cut-and-choose (2 queries)
- n=3: [Selfridge, Conway circa 60s] (less than 15 queries)
- n=4: [Aziz, Mckenzie '16a] (close to 600 queries)
- General n:
 - [Brams, Taylor '95]: Finite procedure but with no upper bound on number of queries
 - [Aziz, Mackenzie '16b]: First bounded algorithm but with exceptionally high complexity

#queries $\leq n^{n^{n^n^n}}$

Envy-free allocations in the continuous setting

Lower bounds

- Contiguous pieces: there can be no finite protocol that produces envy-free allocation
- Non-contiguous pieces: Ω(n²) [Procaccia '09]
 - Separating envy-freeness from proportionality
- Can we do shorten the gap between the upper and lower bound?

Summarizing...

A rich area with several challenging ways to go

- Conceptual
 - Define or investigate further new notions
- Algorithmic
 - Best approximation for MMS allocations?
 - EFX for arbitrary additive valuations?
 - Algorithms for the continuous setting?
- Game-theoretic
 - Mechanism design aspects?

