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Cake-cuAng	problems	
Input:			

!  A	set	of	resources	

!  A	set	of	agents,	with	possibly	different	
preferences	

Goal:	Divide	the	resources	among	the	
agents	in	a	fair	manner	

Mathema6cal	formula6ons:	Ini6ated	by	
[Steinhaus,	Banach,	Knaster	’48]	

Empirically:	since	ancient	6mes	



•  Ancient	Egypt:	
!  Land	division	around	Nile	(i.e.,	of	the	most	fer6le	land)	

•  Ancient	Greece:	
!  Sponsorships	of	theatrical	performances	

•  Undertaken	by	most	wealthy	ci6zens	

•  Mechanism	used	was	giving	incen6ves	so	that	wealthier	ci6zens	
could	not	avoid	becoming	sponsors	

•  First	references	of	the	cut-and-choose	protocol	
!  Theogony	(Hesiod,	8th	century	B.C.):	run	between	Prometheus	and	

Zeus	

!  Bible:	run	between	Abraham	and	Lot	

	

	

 

Some	early	references	
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•  hZp://www.spliddit.org	
!  Jonathan	Goldman,	Ariel	Procaccia	

!  Algorithms	for	various	classes	of	problems	(rent	division,	division	of	
goods,	etc)	

•  hZp://www.nyu.edu/projects/adjustedwinner/	
!  Steven	Brams,	Alan	Taylor	

!  Implementa6on	of	the	“adjusted	winner”	algorithm	for	2	players	

•  hZps://www.math.hmc.edu/~su/fairdivision/calc/	
!  Francis	Su	
!  Implementa6on	of	algorithms	for	alloca6ng	goods	with	any	number	of	

players 

Available	implementa6ons	
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Preferences:	
•  Modeled	by	a	valua6on	func6on	for	each	agent	

•  vi(S)	=	value	of	agent	i	for	obtaining	a	subset	S	

Type	of	resources:	
1.  Con6nuous	models	

!  Infinitely	divisible	resources	(usually	just	the	interval	[0,	1])	
!  Valua6on	func6ons:	defined	on	subsets	of	[0,	1]	

2.  Discrete	models	
!  Set	of	indivisible	goods	
!  Valua6on	func6ons:	defined	on	subsets	of	the	goods	

	
	
 

Modeling	Fair	Division	Problems	
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For	this	talk:	
•  Resources	=	a	set	of	indivisible	goods	M	=	{1,	2,	…,	m}	
•  Set	of	agents:	N	=	{1,	2,	…,	n}	
•  An	alloca6on	of	M	is	a	par66on	S	=	(S1,	S2,	...,	Sn),	Si	⊆	M	

! ∪i	Si	=	M	and	Si	∩	Sj	=	∅		

	
 

The	discrete	seAng	
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All	valua6ons	we	consider	sa6sfy:		
•  vi(∅)	=	0			(normaliza6on)	
•  vi(S)	≤	vi(T),	for	any	S	⊆	T			(monotonicity)	
	
Special	cases	of	interest:	
!  Addi6ve:	vi(S ∪ T) = vi(S) + vi(T),	for	any	disjoint	sets	S,	T	

!  Assumed	in	the	majority	of	the	literature	

!  Suffices	to	specify	vij for	any	good	j:	vi(S) = Σj ∈ S vij, for	any	S ⊆ M 	
!  Addi6ve	with	iden6cal	rankings	on	the	value	of	the	goods	
!  Iden6cal	agents:	Same	valua6on	func6on	for	everyone		

!  Submodular:	vi(S ∪ {j}) - vi(S) ≥ vi(T ∪ {j}) - vi(T),	for	any	S	⊆	T,	and	j∉T		
!  Subaddi6ve:	vi(S ∪ T) ≤ vi(S) + vi(T), for	any	S,	T	⊆	M	

	

	
	

Valua6on	func6ons	
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Valua6on	func6ons 
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Addi$ve	

Submodular	

Subaddi$ve	



Example	with	addi6ve	valua6ons		
	
 

The	discrete	seAng	
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35	 5	 25	 0	 35	

30	 40	 35	 5	 40	

30	 20	 40	 30	 0	

Charlie	

Franklin	

Marcie	



Part	1:	A	hierarchy	of	some	
solu6on	concepts	in	fair	division	
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1.  Propor6onality	

An	alloca6on	(S1,	S2,...,	Sn)	is	propor6onal,	if	for	every	agent	i,	
vi(Si)	≥	1/n	⋅	vi(M)				

	
Historically,	the	first	concept	studied	in	the	literature		
[Steinhaus,	Banach,	Knaster	’48]	
	

Solu6on	Concepts		
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2.	Envy-freeness	
	
An	alloca6on	(S1,	S2,...,	Sn)	is	envy-free,	if	vi(Si)	≥	vi(Sj)	for	any	pair	
of	players	i	and	j		
	
•  Suggested	as	a	math	puzzle	in	[Gamow,	Stern	’58]	
•  More	formally	discussed	in	[Foley	’67,	Varian	’74]	
	
A	stronger	concept	than	propor6onality	(as	long	as	valua6ons	
are	subaddi6ve):	
Envy-freeness	⇒	n	⋅	vi(Si)	≥	vi(M)	⇒	Propor6onality	
	

Solu6on	Concepts		
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In	our	example:	
	
 

The	discrete	seAng	
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35	 5	 25	 0	 35	

30	 40	 35	 5	 40	

30	 20	 40	 30	 0	

A	propor6onal	and	envy-free	alloca6on	



In	our	example:	
	
 

The	discrete	seAng	
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35	 5	 25	 0	 35	

30	 40	 35	 5	 40	

30	 20	 40	 30	 0	

A	propor6onal	but	not	envy-free	alloca6on	



3.	Compe66ve	Equilibrium	from	Equal	Incomes	(CEEI)	
	
Suppose	each	agent	is	given	the	same	(virtual)	budget	to	buy	
goods.		
A	CEEI	consists	of		
•  An	alloca6on	S	=	(S1,	S2,	...,	Sn)	
•  A	pricing	on	the	goods	p	=	(p1,	p2,	...,	pm)	
such	that	vi(Si)	is	maximized	subject	to	the	budget	constraint	
	
An	alloca6on	S	=	(S1,	S2,...,	Sn)	is	called	a	CEEI	alloca6on	if	it	
admits	a	pricing	p	=	(p1,...,pm),	such	that	(S,	p)	is	a	CEEI	

Solu6on	Concepts	
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•  A	well	established	no6on	in	economics	[Foley	’67,	Varian	’74]	
•  Combining	fairness	and	efficiency	
•  Quote	from[Arnsperger	’94]:	“To	many	economists,	CEEI	is	

the	descrip6on	of	perfect	jus6ce”	

Solu6on	Concepts	
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Claim:	A	CEEI	alloca6on	is	
• 	envy-free	(due	to	equal	budgets)	
• 	Pareto-efficient	in	the	con6nuous	seAng	
• 	Pareto-efficient	in	the	discrete	seAng	when	valua6ons	are	strict	
(no	2	bundles	have	the	same	value)	
	



Containment	Rela6ons	in	the	space	of	
alloca6ons 
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CEEI	

Envy-
freeness	

Propor$onality	



"  All	3	defini6ons	are	“too	strong”	for	indivisible	goods	

"  No	guarantee	of	existence	

"  More	appropriate	for	the	con6nuous	seAng	(existence	is	
always	guaranteed)	

"  Need	to	explore	relaxed	versions	of	fairness		

Some	issues	
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4.	Envy-freeness	up	to	1	good	(EF1)	
	
An	alloca6on	(S1,	S2,...,	Sn)	sa6sfies	EF1,	if	for	any	pair	of	agents	i,	
j,	there	exists	a	good	a	∈	Sj,	such	that	vi(Si)	≥	vi(Sj	\	{a})	
	
•  i.e.,	for	any	player	who	may	envy	agent	j,	there	exists	an	item	

to	remove	from	Sj	and	eliminate	envy	
•  Defined	by	[Budish	’11]	
	

Solu6on	Concepts	
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5.	Envy-freeness	up	to	any	good	(EFX)	
	
An	alloca6on	(S1,	S2,...,	Sn)	sa6sfies	EFX,	if	for	any	players	i	and	j,	
and	any	good	a	∈	Sj,	we	have	vi(Si)	≥	vi(Sj	\	{a})	
	
•  Removing	any	item	from	each	player’s	bundle	eliminates	envy	

from	other	players	
•  Defined	by	[Caragiannis	et	al.	’16]	
	
Fact:	Envy-freeness	⇒	EFX	⇒	EF1	

	

Solu6on	Concepts	
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6.	Maximin	Share	Alloca6ons	(MMS)	
	
	
A	thought	experiment:	
•  Suppose	we	run	the	cut-and-choose	protocol	for	n	agents.			
•  Say	agent	i	is	given	the	chance	to	suggest	a	par66on	of	the	

goods	into	n	bundles	
•  The	rest	of	the	agents	then	choose	a	bundle	and	i	chooses	last	
•  Worst	case	for	i:	he	is	lex	with	his	least	desirable	bundle	
	

Solu6on	Concepts	
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•  Given	n	agents	and	S	⊆	M,	the	n-maximin	share	of	i	w.r.t.	M	is			
	
	
	
	-	max	is	over	all	possible	par66ons	of	M	
	-	min	is	over	all	bundles	of	a	par66on	S	=	(S1,	S2,...,	Sn)	

	
Introduced	by	[Budish	’11]	
	

Solu6on	Concepts	
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An	alloca6on	(S1,	S2,...,	Sn)	is	a	maximin	share	(MMS)	alloca6on	if	
for	every	agent	i,	vi(Si)	≥	μi		

Fact:	Propor6onality	⇒	MMS	
	

Solu6on	Concepts	
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μ1	=	30	
	
μ2	=	40	
	
μ3	=	30	

Maximin	shares	
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35	 5	 25	 0	 35	

30	 40	 35	 5	 40	

30	 20	 40	 30	 0	



How	do	MMS	alloca6ons	compare	to	EF1	and	EFX?	

!  There	exist	EFX	alloca6ons	that	are	not	MMS	alloca6ons	

!  There	exist	MMS	alloca6ons	that	do	not	sa6sfy	EF1	(hence	
not	EFX	either)	

	

MMS	vs	EF1	(and	vs	EFX)	
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MMS	vs	EF1	(and	vs	EFX)	
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35	 5	 25	 0	 35	

30	 40	 35	 5	 40	

30	 20	 40	 30	 0	

A	MMS	alloca6on	that	does	not	sa6sfy	EF1	
•  Charlie	envies	Franklin	even	axer	removing	any	

item	from	Franklin’s	bundle		

μ1	=	30	
	
μ2	=	40	
	
μ3	=	30	



Rela6ons	between	fairness	criteria 
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CEEI	⇒	EF		

EFX	⇒	EF1		

Propor6onality	⇒	MMS		

For	subaddi6ve	valua6on	func6ons	
!  Upper	part	holds	for	general	monotone	valua6ons

		



Rela6ons	between	fairness	criteria 
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CEEI	

Envy-
freeness	

Propor$onality	

MMS		

EFX	

EF1	

Pictorially:	



Part	2:	Existence	and	Computa6on	
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Mostly	bad	news:	

"  No	guarantee	of	existence	for	either	propor6onality	or	envy-freeness	

"  NP-hard	to	decide	existence	even	for	n=2	(equivalent	to	makespan	
for	2	iden6cal	processors)	

"  NP-hard	to	compute	decent	approxima6ons	

"  E.g.	For	approxima6ng	the	minimum	envy	alloca6on	[Lipton,	
Markakis,	Mossel,	Saberi	’04]	

"  S6ll	open	to	understand	if	there	exist	subclasses	that	admit	good	
approxima6ons	

"  On	the	posi6ve	side:	Existence	with	high	prob.	on	random	instances,	
when	n	=	O(m/logm)	[Dickerson	et	al.	’14]	

Envy-freeness	and	Propor6onality	
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Part	2a:		
EF1	and	EFX	
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Existence	of	EF1	alloca6ons?	
	

Theorem:	For	monotone	valua6on	func6ons,	EF1	alloca6ons	
always	exist	and	can	be	computed	in	polynomial	6me	
	

EF1	
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Existence	established	through	an	algorithm	

	
Algorithm	1	-	Greedy	Round-Robin	
•  Fix	an	ordering	of	the	agents	
•  While	there	exist	unallocated	items	

•  Let	i	be	the	next	agent	in	the	round-robin	order	
•  Ask	i	to	pick	his	most	desirable	item	among	the	unallocated	ones	

EF1	for	Addi6ve	Valua6ons	
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Algorithm	1	works	for	addi6ve	valua6ons	
Proof:	Throughout	the	algorithm,	each	player	may	have	
an	advantage	only	by	1	item	w.r.t.	other	players		⇒		EF1	



•  For	non-addi6ve	valua6ons,	more	insigh|ul	to	look	at	a	
graph-theore6c	representa6on	

•  Let	S	be	an	alloca6on	(not	necessarily	of	the	whole	set	M)		
•  The	envy-graph	of	S:		

•  Nodes	=	agents	

•  Directed	edge	(i,	j)	if	i	envies	j	under	S	

•  How	does	this	help?	

EF1	for	General	Valua6ons	
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•  An	itera6ve	algorithm	6ll	we	reach	a	complete	alloca6on	
•  Suppose	we	have	built	a	par6al	alloca6on	that	is	EF1	

•  If	there	exists	a	node	with	in-degree	0:	give	to	this	agent	one	of	the	
currently	unallocated	goods		

•  If	this	is	not	the	case:		

!  The	graph	has	cycles	
!  Start	removing	them	by	exchanging	bundles,	as	dictated	by	each	

cycle	

!  Un6l	we	have	a	node	with	in-degree	0	
	

EF1	for	General	Valua6ons	
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Algorithm	2	–	The	Cycle	Elimina<on	Algorithm	
•  Fix	an	ordering	of	the	goods,	say,	1,	2,	...,	m	
•  At	itera6on	i:	

•  Find	a	node	j	with	in-degree	0	(by	possibly	elimina6ng	cycles	from	the	
envy-graph)	

•  Give	good	i	to	agent	j	

EF1	for	General	Valua6ons	

36	

Proof	of	correctness:	
•  Removing	cycles	terminates	fast	

•  Number	of	edges	decreases	axer	each	cycle	is	gone	
•  At	every	step,	we	create	envy	only	for	the	last	item	
•  The	alloca6on	remains	EF1	throughout	the	algorithm	



Existence	of	EFX	alloca6ons?	
-  for	n	=	2			

!  YES	(for	general	valua6ons)	
-  for	n	≥	3	

!  Great	open	problem!	
!  Guaranteed	to	exist	only	for	agents	with	iden6cal	

valua6ons		

EFX	
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[Rawls	’71]	
The	leximin	solu6on	is	the	alloca6on	that				

!  Maximizes	the	minimum	value	aZained	by	an	agent	

!  If	there	are	mul6ple	such	alloca6ons,	pick	the	one	maximizing	
the	2nd	minimum	value	

!  Then	maximize	the	3rd	minimum	value	

!  And	so	on...	

A	detour:	the	leximin	solu6on	
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•  This	induces	a	total	ordering	over	alloca6ons	
•  Leximin	is	a	global	maximum	under	this	ordering	



[Plaut,	Roughgarden	’18]:	a	slightly	different	version		
A	leximin++	alloca6on			

!  Maximizes	the	minimum	value	aZained	by	an	agent	

!  Maximizes	the	bundle	size	of	the	agent	with	the	minimum	value		

!  Then	maximizes	the	2nd	minimum	value	

!  Followed	by	maximizing	the	bundle	size	of	the	2nd	minimum	
value	

!  And	so	on...	

Existence	results	for	EFX	alloca6ons	
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Theorem:	For	general	but	iden6cal	agents,	the	leximin++	
solu6on	is	EFX	



[Plaut,	Roughgarden	’18]:		
Separa6on	between	general	and	addi6ve	valua6ons	
Theorem:		
1.  exponen6al	lower	bound	on	query	complexity	

•  Even	for	2	agents	with	iden6cal	submodular	valua6ons	
2.  Polynomial	6me	algorithm	for	2	agents	and	arbitrary	addi6ve	

valua6ons	
3.  Polynomial	6me	algorithm	for	any	n,	and	addi6ve	valua6ons	

with	iden6cal	rankings	
•  All	agents	have	the	same	ordering	on	the	value	of	the	goods	

Algorithmic	results	
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Algorithm	for	addi6ve	valua6ons	with	iden6cal	rankings:	
	
Run	the	cycle	elimina6on	algorithm,	by	ordering	the	goods	in	
decreasing	order	of	value	

!  At	every	step	of	the	algorithm	we	allocate	the	next	item	to	an	agent	no-
one	envies	

!  Envy	we	create	is	only	for	the	item	at	the	current	itera6on	

!  But	this	has	lower	value	than	all	the	previous	goods	
!  Hence	the	alloca6on	remains	EFX	throughout	the	algorithm	

Algorithmic	results	
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Algorithm	for	2	agents	and	arbitrary	addi6ve	valua6ons	
	
Varia6on	of	cut	and	choose	
!  Agent	1	runs	the	previous	algorithm	with	2	copies	of	herself	
!  Agent	2	picks	her	favorite	out	of	the	2	bundles	created	
!  Agent	1	picks	the	lex	over	bundle	

Algorithmic	results	
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Part	2b:		
MMS	alloca6ons	
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Existence?	
-  for	n	=	2		

!  YES	(via	a	discrete	version	of	cut-and-choose)	

-  for	n	≥	3	
!  NO	[Procaccia,	Wang	’14]	

!  Known	counterexamples	build	on	sophis6cated	construc6ons	

-  How	oxen	do	they	exist	for	n	≥	3	?		
!  Actually	extremely	oxen	

!  Extensive	simula6ons	[Bouveret,	Lemaitre	’14]	with	randomly	
generated	data	did	not	reveal	nega6ve	examples	

MMS	alloca6ons 		
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We	will	again	start	with	addi6ve	valua6ons	

Computa6on	

45	

Approximate	MMS	alloca6ons	
	
Q:	What	is	the	best	α	for	which	we	can	compute	an	alloca6on	
(S1,	S2,...,	Sn)	sa6sfying	vi(Si)	≥	α	μi	for	every	i?	
	



•  NP-hard	to	even	compute	the	quan6ty	μi	for	agent	i	
•  Existence	proof	of	MMS	alloca6ons	yields	an	exponen6al	

algorithm	
1.  Let	player	1	compute	a	par66on	that	guarantees	μ1	to	him	

!  i.e.,	a	par66on	that	is	as	balanced	as	possible	
2.  Player	2	picks	the	best	out	of	the	2	bundles	

•  Convert	Step	1	to	poly-6me	by	losing	ε,	e.g.	using	the	PTAS	of	
[Woeginger	’97]	

Corollary:	For	n=2,	we	can	compute	in	poly-6me	a	(1-ε)-MMS	
alloca6on		

	

Approxima6on	Algorithms	for	Addi6ve	
Valua6ons	

46	

For	n=2	



•  Start	with	an	addi6ve	approxima6on	
•  Recall	the	greedy	round-robin	algorithm	(Algorithm	1)	
	
Theorem:	
Greedy	Round-Robin	produces	an	alloca6on	(S1,	S2,...,	Sn)	such	
that	

vi(Si)	≥	μi	–	vmax,			where	vmax	=	max	vij		

Approxima6on	Algorithms	for	Addi6ve	
Valua6ons	

47	

For	n	≥	3	



When	does	Greedy	Round-Robin	perform	badly?	
•  In	the	presence	of	goods	with	very	high	value	

•  BUT:	each	such	good	can	sa6sfy	some	agent	

•  Suggested	algorithm:	Get	rid	of	the	most	valuable	goods	before	running	
Greedy	Round-Robin	

	

Algorithm	3:	
•  Let	S	:=	M,	and	αi	:=	vi(S)/n	

•  While	∃	i,	j,	such	that	vij	≥	αi	/2,		

•  allocate	j	to	i	

•  n	:=	n-1,	S	:=	S	\	{j},	recompute	the	αi’s	
•  Run	Greedy	Round-Robin	on	remaining	instance	

Approxima6on	algorithms	for	addi6ve	
valua6ons	
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All	we	need	is	to	ensure	a	monotonicity	property	
Lemma:	
If	we	assign	a	good	j	to	some	agent,	then	for	any	other	agent	i	≠	j:	

μi(n-1,	M\{j})	≥	μi(n,	M)		

	

Theorem:	
Algorithm	2	produces	an	alloca6on	(S1,	S2,...,	Sn)	such	that	for	
every	agent	i:	

vi(Si)	≥	1/2	μi(n,	M)	=	1/2	μi	

A	½-approxima6on	for	Addi6ve	
Valua6ons	

49	



•  Algorithm	2	is	6ght	
•  What	if	we	change	the	defini6on	of	“valuable”	by	considering	

vij	≥	2αi	/3	instead	of	αi	/2	?	
•  Not	clear	how	to	adjust	Greedy	Round-Robin	for	phase	2	
•  Bea6ng	1/2	needs	different	approaches	

Beyond	1/2...	
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2/3-approxima6on	guarantees:	
•  [Procaccia,	Wang	’14]		

!  2/3-ra6o,	exponen6al	dependence	on	n	

•  [Amana6dis,	Markakis,	Nikzad,	Saberi	’15]		
!  (2/3-ε)-ra6o	for	any	ε>0,	poly-6me	for	any	n	and	m	

•  [Barman,	Murty	’17]	
!  		2/3-ra6o,	poly-6me	for	any	n	and	m		

	

Beyond	1/2...	
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Recursive	algorithms	of		
[Procaccia,	Wang	’14],	[Amana6dis,	Markakis,	Nikzad,	Saberi	’15]	
Based	on:	
•  Exploi6ng	certain	monotonicity	proper6es	of	μi(⋅	,	⋅)	

!  To	be	able	to	move	to	reduced	instances	

•  Results	from	job	scheduling	

!  To	be	able	to	compute	approximate	MMS	par66ons	from	the	
perspec6ve	of	each	agent	

•  Matching	arguments	(perfect	matchings	+	finding	counterexamples	to	
Hall’s	theorem	when	no	perfect	matchings	exist)	

!  To	be	able	to	decide	which	agents	to	sa6sfy	within	each	itera6on	

2/3-approxima6on	algorithms	
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Recursive	algorithms	of		
[Procaccia,	Wang	’14],	[Amana6dis,	Markakis,	Nikzad,	Saberi	’15]	
	
High	level	descrip6on:	
•  Each	itera6on	takes	care	of	≥	1	person,	un6l	no-one	lex	
•  During	each	itera6on,			

Let	{1,	2,	...,	k}	=	s6ll	ac6ve	agents	

1.  Ask	one	of	the	agents,	say	agent	1,	to	produce	a	MMS	par66on	with	
k	bundles	according	to	his	valua6on	func6on	

2.  Find	a	subset	of	agents	such	that:	

a)  they	can	be	sa6sfied	by	some	of	these	bundles	

b)  the	remaining	goods	have	“enough”	value	for	the	remaining	agents	

2/3-approxima6on	algorithms	
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The	algorithm	of	[Barman,	Murty	’17]	
	
Lemma	1:	It	suffices	to	establish	the	approxima6on	ra6o	for	
addi6ve	valua6ons	with	iden6cal	rankings	

	
Lemma	2:	For	addi6ve	valua6ons	with	iden6cal	rankings,	the	
cycle	elimina6on	algorithm	(axer	ordering	the	goods	in	
decreasing	order	of	value)	achieves	a	2/3-approxima6on	

2/3-approxima6on	algorithms	
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•  An	intriguing	case...	

•  For	n=2,	MMS	alloca6ons	always	exist	

•  The	problems	start	at	n=3!	

•  S6ll	unclear	if	there	exists	a	PTAS	

	

The	case	of	n	=	3	agents	
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Progress	achieved	so	far:	
Algorithms	 Approx.	ra<o	

[Procaccia,	Wang	’14]	 3/4	

[Amana6dis,	Markakis,	Nikzad,	Saberi	’15]	 7/8	

[Gourves,	Monnot	’17]	 8/9	



•  None	of	the	algorithms	go	through	with	non-addi6ve	
valua6ons	

•  No	posi6ve	results	known	for	arbitrary	valua6ons	
	

Non-addi6ve	valua6ons	
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Theorem	[Barman,	Murty	’17]:	For	agents	with	submodular	
valua6ons,	there	exists	a	polynomial	6me	1/10-approxima6on	
algorithm	



[Ghodsi,	Hajiaghayi,	Seddighin,	Seddighin,	Yami	’17]:		
	
Posi6ve	results	for	various	classes	of	valua6on	func6ons:	
•  Addi6ve:	Polynomial	6me	¾-approxima6on	
•  Submodular:	Polynomial	6me	1/3-approxima6on	
•  Subaddi6ve:	Existence	of	O(logm)-approxima6on	

And	some	more	recent	progress	
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Part	3:	Related	open	problems	and	
other	research	direc6ons	
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Can	we	think	of	alterna6ve	relaxa6ons	to	envy-freeness	and/or	
propor6onality?	
[Caragiannis	et	al.	’16]:	
•  Pairwise	MMS	alloca6ons	

!  Consider	an	alloca6on	S	=	(S1,	S2,	...,	Sn),	and	a	pair	of	players,	i,	j	
!  Let	B:=	all	par66ons	of	Si	∪	Sj	into	two	sets	(B1,	B2)	
!  Fairness	requirement	for	every	pair	i,	j:	

•  A	stronger	criterion	than	EFX		
•  Related	but	incomparable	to	MMS	alloca6ons	
•  Existence	of	φ-approxima6on	(golden	ra6o)	

!  Open	problem	whether	pairwise	MMS	alloca6ons	always	exist	

	
	
	

Other	fairness	no6ons	
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Can	we	think	of	alterna6ve	relaxa6ons	to	envy-freeness	and/or	
propor6onality?	
Fairness	in	the	presence	of	a	social	graph	
[Chevaleyre,	Endriss,	Maudet	’17,	Abebe,	Kleinberg,	Parkes	’17,	Bei,	Qiao,	
Zhang	’17]	

•  Evaluate	fairness	with	regard	to	your	neighbors	
!  Most	defini6ons	easy	to	adapt	

!  E.g.,	graph	envy-freeness:	suffices	to	not	envy	your	neighbors	

[Caragiannis	et	al.	’18]:		

•  More	extensions,	without	completely	ignoring	the	goods	allocated	to	
non-neighbors	

	
	

Other	fairness	no6ons	
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•  So	far	we	assumed	agents	are	not	strategic	
•  Can	we	design	truthful	mechanisms?	
•  [Amana6dis,	Birmpas,	Christodoulou,	Markakis	’17]:	

!  Mechanism	design	without	money	

!  Tight	results	for	2	players	through	a	characteriza6on	of	truthful	
mechanisms	

!  Best	truthful	approxima6on	for	MMS:	O(1/m)	
!  Truthful	mechanisms	for	EF1:	only	if	m	≤	4	

•  Characteriza6on	results	for	≥3	players?	
	

	
	

Mechanism	design	aspects	
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•  Cake:	M	=	[0,	1]	
•  Set	of	agents:	N	=	{1,	2,	…,	n}	
•  Valua6on	func6ons:	

!  Given	by	a	non-atomic	probability	measure	vi	on	[0,	1],	for	each	i	

•  Access	to	the	valua6on	func6ons:	
!  Value	queries:	ask	an	agent	for	her	value	of	a	given	piece		
!  Cut	queries:	ask	an	agent	to	produce	a	piece	of	a	given	value	

	
	
	

The	con6nuous	seAng	
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"  Envy-free	(and	hence	propor6onal)	alloca6ons	always	exist	
	
Computa6on?	
"  n=2:	cut-and-choose	(2	queries)	
"  n=3:	[Selfridge,	Conway	circa	60s]	(less	than	15	queries)	
"  n=4:	[Aziz,	Mckenzie	’16a]	(close	to	600	queries)	
"  General	n:	

"  [Brams,	Taylor	’95]:	Finite	procedure	but	with	no	upper	
bound	on	number	of	queries	

"  [Aziz,	Mackenzie	’16b]:	First	bounded	algorithm	but	with	
excep6onally	high	complexity	

Envy-free	alloca6ons		
in	the	con6nuous	seAng	
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Lower	bounds	
	
"  Con6guous	pieces:	there	can	be	no	finite	protocol	that	

produces	envy-free	alloca6on	
"  Non-con6guous	pieces:	Ω(n2)	[Procaccia	’09]	

"  Separa6ng	envy-freeness	from	propor6onality	
"  Can	we	do	shorten	the	gap	between	the	upper	and	lower	

bound?	

Envy-free	alloca6ons		
in	the	con6nuous	seAng	
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Summarizing...	
A	rich	area	with	several	challenging	ways	to	go	
	
•  Conceptual	

–  Define	or	inves6gate	further	new	no6ons		

•  Αlgorithmic	
–  Best	approxima6on	for	MMS	alloca6ons?	
–  EFX	for	arbitrary	addi6ve	valua6ons?	
–  Algorithms	for	the	con6nuous	seAng?	
	

•  Game-theore6c	
–  Mechanism	design	aspects?	
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