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Routing games

Model for traffic in networks, e.g.,
— road networks

— data networks

— jobs in data centers

Common features:
— resources (e.g., roads) shared across
various agents (players)

— nobody dictates use of resources
— players compete for resources

Routing games: game-theoretic
model for traffic in networks

Seek to reason about how
competition affects traffic




Routing games: mathematical model

1 Players control infinitesimal traffic

O/\‘. Choose route from s to t

s\ At —> get an s-t flow of volume 1

2X

traffic going Called nonatomic routing
fromstot

per-unit delay with

traffic of x on edge
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Routing games: mathematical model

1 Players control infinitesimal traffic

0/\‘0 Choose route from s to t

s\ At —> get an s-t flow of volume 1

. 2% . .
traffic going N Called nonatomic routing

fromstot
te(x)
Equilibrium: each player chooses least-delay route

given other players’ choices
: : : - source, sink, demand J
Formally, a nonatomic routing game is specified by

'=(G, {{,:R; » R.},,s,t,d)

[ directed m [mncy functions}

(will assume are 1)




Routing games: mathematical model

1 Players control infinitesimal traffic

./\,‘ Choose route from s to t

SN At —> get an s-t flow of volume 1

traffic going 2% Called nonatomic routing

fromstot
Le(X)

Equilibrium: each player chooses least-delay route
given other players’ choices

Formally, a nonatomic routing game is specified by
'=(G, {{,:R; » R.},,s,t,d)

An s-t flow f of volume d is an equilibrium flow &

for all s-t paths P,0 z fe(fe) < z fe(fe)

with f, > 0 Ve € P,
eepP eeqQ
[total delay aloﬁ [mlay along Q J




Routing games: mathematical model

More generally, could have many
(source, sink, demand) tuples
Y called commodities:
G

[ = (G, {‘ge: Ry = R+}e'{5i: ti'di}?zl)

Model dates back to Wardrop 1952,
Beckmann-McGuire-Winston 1956

Equilibrium notion due to Wardrop

A multicommodity flow f = (f4, ..., fx), Where each fi
routes d; flow from s; to t; is an equilibrium flow &

for all Si'ti paths P, Q 2 {e(fe) < 2 'Be(fe)

b
with fo > 0 Ve € P, eeP e€qQ



Routing games: mathematical model

finite amounts of

‘/\‘. Players control infinisesirat traffic
Called senatomic routing

s\_/‘t

traffic going 2x Choose how to route their
fromstot l} (x) demand from their source to sink
e

* 1 route: atomic unsplittable

* multiple routes: atomic splittable

minimum-delay routing of its demand

Equilibrium: each player chooses least-delay—+erte=

given other players’ choices



Some basic questions

Does equilibrium flow exist! Is it unique!?

Can an equilibrium be computed efficiently?
In a decentralized way by players’ moves?

How bad are equilibria wrt. optimal flows!?
inefficiency of worst equilibrium: price of anarchy
Inefficiency of best equilibrium:  price of stability

Equilibria may be undesirable:

large total delay compared to optimal flow

heavy traffic in undesirable regions (e.g., residential areas)
Can one steer equilibria to desirable flows!? (E.g., by

imposing tolls on edges, or controlling portion of total flow)



For nonatomic routing

® Beckman et al. ‘56: Equilibria always exist, can be computed
efficiently by solving:

fe
Minimize Zf £, (x)dx
e 0

s.t. £ =Y.f'% f!routes d; flow from s; to t;

All £,(x) T = strictly convex program = unique equilibrium

* Roughgarden-Tardos ‘02, Roughgarden ’03: Total delay of
equilibrium can be much worse than that of optimal flow.

Can give a formula for (worst-case) price of anarchy for any
class of latency functions (under mild conditions).



For nonatomic routing

* Can efficiently find tolls on edges (if they exist) so th: Equilibrium
resulting equilibrium is a given target flow (e.g., optin after tolls

x+2 delay = 6 x+2+(6) delay = 12

2x  delay = 12 2x  delay = 12

toll 7, on edge e changes “delay” on e to|£,(x) + T,| = cost
(assuming here that players value time and money equally)

At equilibrium, players choose least-cost paths

Any minimal target flow f* can be imposed via edge tolls.
The tolls can be computed by solving an LP.

(Beckmann et al.’56, Cole et al.‘03, Fleischer et al.’04,
Karakostas-Kolliopoulos, ‘04 Yang-Huang ’04)



For nonatomic routing

> Stackelberg routing

* By centrally routing a-fraction of total flow

— in single-commodity networks: can reduce price of anarchy for any
class of latency functions (Roughgarden ‘03, S °07, ...)

— weaker results known for multicommodity networks

* Given target flow f* and fraction a, can efficiently find a
Stackelberg routing that yields f* as equilibrium (if one exists)



All algorithmic results:
equilibrium computation
finding tolls (to impose a given target flow )
Stackelberg routing (to impose a given target flow )

assume we have precise, explicit knowledge of latency f'ns

But latency functions may not be known or be unobtainable:
* obtaining detailed information may be costly (time, money)
* may be unable to isolate resources to determine latency f’ns.

Can one analyze routing games without knowing latency f’ns.?

Can we achieve the algorithmic ends—e.g.,imposing target flow
[ via tolls/Stackelberg routing—without the means!?



Query models

* Know the underlying network and the commodities,
but not the latency functions:

(G, Mi {Sil tii dl})
* Routing game is a black box: can only access via queries

* Efficiency of algorithm measured by:
— query complexity = no. of queries needed
— computational complexity



Two types of query models

* Cost/payoff queries

strategy profile cost under strategy profile
(flow in nonatomic routing) (total cost, player costs, ...)

:> Black box :>

— Common in empirical game theory, goal: compute equilibria

— Many variants depending on type of queries and type of equilibria
desired (pure/mixed/correlated)

— Much work for general strategic-form games (Papadimitriou-
Roughgarden ‘08, Hart-Nisan ‘1 3, ...,work based on regret-dynamics);
limited results for routing games (Blum et al. ‘10, Fisher et al. 06,
Kleinberg et al.’09, Fearnley et al.’ | 5; some require info. about unplayed strategies)
— Criticism: To respond to query, need to route players according to
strategy profile to compute cost, but can’t dictate routes to players



Two types of query models

Equilibrium queries: observe equilibrium flow
(Bhaskar-Ligett-Schulman-S ‘1 4)

Toll queries
toll = (6)

od )

08 ~0_ At

toll = (0)
)

Stackelberg queries

Stackelberg routing (= 0.3)
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Two types of query models

* Equilibrium queries: observe equilibrium flow
(Bhaskar-Ligett-Schulman-S ‘14)

Toll queries
toll = (6)

toll = (0)

2o >

)

Black

box
» m
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Equilibrium

<>
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Problem: Given target flow f*(that is minimal),
find tolls {7}, that yield f* as equilibrium flow
using polynomial no. of toll queries
(and preferably, polytime computation)




Results (Bhaskar-Ligett-Schulman-S ’14)

Polynomial query complexity for general
graphs, general (polynomial) latency f’ns. @’ ‘ i

novel application of the ellipsoid method

Improved query-complexity bounds for

series-parallel graphs, general latency f’ns.

general single-commodity networks, linear @o ‘ :

latency functions

All algorithms are polytime; also, with non-linear latencies, only

require that black box returns approximate equilibria (bounds
only meaningful under this relaxation as equilibria can be irrational)




Results: lower bounds
(BLSS ‘14)

Need > |E| — 1 queries, even for @D -

parallel links, linear latency functions

Can one learn the-latenefanmetions? equivalent latency f'ns.?
Latency f'ns. {£,}., {£.}. they yield same equilibrium
are (toll-) equivalent for all edge tolls

Q’n: Can one use toll queries to obtain {#,}, that are
equivalent to actual latency f’'ns {£,}.?

OPEN! Seems difficult (at least with poly-many queries)
Computational g’'n: Given {£,}., {fs}e, NP-hard
determine if they are not equivalent. (even if each £,, £, is const.)

Our algorithms are doing something less taxing than learning
latency f’ns. — learning “just enough” to impose target flow



Results (Bhaskar-Ligett-Schulman-S ’14)

Polynomial query complexity for general
graphs, general (polynomial) latency f’ns. @’ ‘ i

novel application of the ellipsoid method
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Enforcing target flow via toll queries

Given:  target flow ™ (assume is minimal),

toll queries for nonatomic routing game
This talk: (i) single commodity (minimal = acyclic)
(ii) linear latency f'ns. a,x + b, on each edge e

Let {7}}, be tolls that impose f~

(Recall: Tolls T* always exist (since f* is minimal)

f is equilibrium if whenever f, > 0 Ve € s-t path P, we have
Yieep te(fe) < Yeeq fe(fe) for all s-t paths Q)

IDEA: Use ellipsoid method to search for the point (a;, b;, T;2).



Kc R?

The Ellipsoid Method

Find xe K, or
determine K= 0

Ellipsoid = squashed sphere
Start with ball of radius R containing K.
y; = center of current ellipsoid.

If y.& I find violated inequality a-x <a-y,
to chop off infeasible hg’*¢llipsoid.

Separation oracle
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Ke R"™ Find xeK, or
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New ellipsoid = min. volume ellipsoid
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Repeat for i=0,1,...,T



The Ellipsoid Method

Ke R"™ Find xeK, or
determine K= 0 Ellipsoid = squashed sphere

Start with ball of radius R containing K.

y; = center of current ellipsoid.

If y.& I find violated inequality a-x < a-y,
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Repeat for i=0,1,...,T



The Ellipsoid Method

Ke R"™ Find xeK, or
determine K= 0 Ellipsoid = squashed sphere

Start with ball of radius R containing K.

y; = center of current ellipsoid.

If y.& I find violated inequality a-x < a-y,
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Repeat for i=0,1,...,T



The Ellipsoid Method

Ke R"™ Find xeK, or
determine K= 0 Ellipsoid = squashed sphere

Start with ball of radius R containing K.

y; = center of current ellipsoid.

If y.& I find violated inequality a-x < a-y,
to chop off infeasible half-ellipsoid.

If y.e K, Done!

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Repeat for i=0,1,...,T

T=poly| n ln( a )
PO\ radius of ball contained in X




The Ellipsoid Method

Start with ball of radius R containing K.

y; = center of current ellipsoid.

If y.& I find violated inequality a-x < a-y,
to chop off infeasible half-ellipsoid.

If y.e K, Done!

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Rep maximum bit complexity
of vertex or facet of /K

N

Theorem (Grotschel-Lovas ver):
K< R™: polytope of encoding size M Can use ellipsoid method to

have separation oracle that if yg K =) find xe X, or determine K= 0,

returns hyperplane of size < size(y), M in polytime, usiﬁg poly(n, M)
calls to separation oracle




Enforcing target flow via toll queries

Given:  target flow ™ (assume is minimal),

toll queries for nonatomic routing game
This talk: (i) single commodity (minimal = acyclic)
(ii) linear latency f'ns. a,x + b, on each edge e

Let {7}}, be tolls that impose f~

IDEA: Use ellipsoid method to search for the point (ag, b, ;).

Take K= {(a;, b;,1}).} — singleton set!
Encoding length = bit size of (a;, b;, ;). =M (part of input)
Show: given center p = (&e, Be,fe)e of current ellipsoid,

tolls 7 do not yield f* = can find hyperplane separating p from K



Enforcing target flow via toll queries

Take K= {(a;, b;,1;).} — singleton set!
Show: given center p = (éie, b,, fe)e of current ellipsoid,

tolls 7 do not yield f* = can find hyperplane separating p from K

1) f* # equilibrium flow for latency fns. {@,x + b,} , tolls {2}

Then 3 s-t paths P, Q (can be found efficiently) s.t. f, > 0 Ve € P,
but  Xeep(defe' + be +te) > Xeeq(defe' + be + 1)

Also f* = equilibrium flow for latency f'ns. {a;x + b;},., tolls {7;},
So,  Xeep(Gefe’ +be +72) < Xeeqlaefe’ + be +7e)

Then Yeep(ae fo +be +7e ) < Xoeolae fo +be +7e)
is an inequality violated by (de, b,, fe)e, but satisfied by K




Enforcing target flow via toll queries

Take K= {(a;, b;,1;).} — singleton set!

Show: given center p = (éie, b,, fe)e of current ellipsoid,

tolls 7 do not yield f* = can find hyperplane separating p from K
) If f* = equilibrium flow for latency f'ns. {@,x + Be}e,tolls {fe}e\/

2) So let f* = equilibrium flow for latency f’ns. {éiex + Be}e,tolls T

Let f = equilibrium flow for latency f’'ns. {a,x + b},, tolls T
(obtain from black box)



Enforcing target flow via toll queries

Take K= {(a;, b;,1;).} — singleton set!

Show: given center p = (&e, b,, fe)e of current ellipsoid,

tolls 7 do not yield f* = can find hyperplane separating p from K
) If f* = equilibrium flow for latency f'ns. {@,x + Be}e,tolls {fe}e\/

2) So let f* = equilibrium flow for latency f’ns. {éiex + Be}e,tolls T

Let f = equilibrium flow for latency f’'ns. {a,x + b},, tolls T
f # [7,so f # equilibrium flow for latency f’ns. {éiex + Be}e,tolls T

Again 3 s-t paths P, Q (can be found efficiently) st. f, >0 Vee€eP,
Yeer(@efe +be+te) > Teco(@efe +be+1e)
but  Yeeplacfe +b;+1. ) <Yeeolacfe +bi+1t.)

Then ZeEP(ae fe + be + fe ) < ZeEQ(ae fe + be + f'e )
is an inequality violated by (&e, b,, fe)e, but satisfied by /K



Enforcing target flow via toll queries

Theorem (BLSS *14): Using polynomial no. of toll queries, can find
tolls that enforce f*, or deduce that no such tolls exist, for:

* general nonatomic routing games (general graphs, latency f'ns.)

® nonatomic routing with linear constraints on tolls
— E.g., disallowing tolls, or bounding total toll paid by player

®* nonatomic congestion games
(Roth et al.’| 6 also obtain some of the above results using different methods.)

Improved bounds for:
* series-parallel graphs, general latency functions
* general single-commodity networks, linear latency functions

obtained by deriving new properties of tolls, multicommodity
flows in series-parallel graphs, and sensitivity of equilibria to tolls



Open directions with toll queries

* What about atomic routing games!?

— Quite open, for both unsplittable and splittable routing
(RECALL: players now control finite amounts of demand, choose how to
route their demand unsplittably/splittably from their source to sink)

— If we assume equilibria are unique for all latency f’ns. encountered
during ellipsoid, then machinery extends

— Challenge: get rid of uniqueness assumption

— Other issues:
* do not understand what target flows can be induced (uniquely)

* for atomic unsplittable routing, pure equilibria need not exist — useful to
focus first on settings where equilibria always exist (e.g., uniform
demands and/or linear latencies)



Open directions with toll queries

* What about atomic routing games!?

— Quite open, for both unsplittable and splittable routing

(RECALL: players now control finite amounts of demand, choose how to
route their demand unsplittably/splittably from their source to sink)

— If we assume equilibria are unique for all latency f’ns. encountered
during ellipsoid, then machinery extends

— Challenge: get rid of uniqueness assumption

* Better upper/lower bounds on query complexity!?

* What if we are allowed only a given fixed no. of queries? Or
making query incurs cost, and have a budget on total query cost?

— Can we obtain flow f (k) after k queries such that distance
between f (k) and f* decreases (nicely) with k?



Stackelberg queries

Stackelberg routing (o= 0.3) Black Equilibrium

2 = S [0 >
1 R ot
20 S t
> x(1=a)  2(x+4) >

Problem: Given target flow f "and «, find Stackelberg routing that
yields f* as equilibrium using polynomial no. of Stackelberg queries

(focus on single-commodity networks)

BLSS ‘14: solve problem for series-parallel &< | /

graphs latency f'ns. {£,}., {f.}. are Stackelberg-equivalent &
Everything else i: they yield same equilibrium for all Stackelberg routings

BLSS “14: learning latency f’ns. that are Stackelberg-equivalent to
true latency f’ns. requires exponential no. of queries

— also NP-hard when latency f’'ns. are explicitly given



Cost queries: equilibrium computation

strategy profile player costs under
(flow in routing game) strategy profile

:> Black box :>

Nonatomic routing: algorithms by Blum et al.’ |0, Fisher et al.’06

Atomic splittable routing: equilibrium computation not well-understood
even when latency f'ns. are explicitly given

Focus on atomic unsplittable routing & computing pure Nash equilibrium

NOT MUCH IS KNOWN

— Kleinberg et al.“09: require knowledge also about unplayed strategies

— Fearnley et al.” 5: obtain results for single source-sink parallel-link graphs
and single source-sink DAGs

— Challenge in adapting online learning results: get information about costs,
but equilibrium involves minimizing a different potential function



Cost queries: equilibrium computation

strategy profile player costs under
(flow in routing game) strategy profile

:> Black box :>

Focus on atomic unsplittable routing & computing pure Nash equilibrium

NOT MUCH IS KNOWN
really related to graph discovery,

Start,simple: single source-sink pair; only 1 player  network tomography
l.e., compute s-t shortest path using path-cost queries (edge costs = 0)

O(|E|) queries suffice (joint work with Bhaskar, Gairing, Savani) = 0 queries
* Find set B € P := {simple s-t paths} s.t. aff-span(B) contains P
* Query costs of all paths in B
* Solve LP: minimize cost(f) s.t. f € aff-span(B), f = 0.
* Decompose [ into simple s-t paths, cycles; one of the paths is shortest s-t path



Cost queries: equilibrium computation

strategy profile player costs under
(flow in routing game) strategy profile

:> Black box :>

Focus on atomic unsplittable routing & computing pure Nash equilibrium

NOT MUCH IS KNOWN
really related to graph discovery,

Start,simple: single source-sink pair; only 1 player  network tomography
l.e., compute s-t shortest path using path-cost queries (edge costs = 0)

O(|E|) queries suffice (joint work with Bhaskar, Gairing, Savani) = 0 queries
coNP-hard

* Find set B € P := {simple s-t paths} s.t. aff-span(B) contains P

OPEN: algorithm with polynomial query- and time- complexity?

(and more generally, for computing NE for unsplittable routing)



Summary

Query models: new perspective on routing games
Do not assume latency functions are explicitly given

Black-box access to routing games via queries
Present various new challenges

Various models
Cost queries (input: strategy profile, output: player costs)
Toll queries (input: tolls, output: equilibrium flow)
Stackelberg queries (input: Stackelberg routing, output: equilibrium)

Can consider other models: best/better-response queries

Strongest results known are for nonatomic games with
cost queries and toll queries

Atomic routing games: many gaps, don’t understand well

Even “simple” special cases pose interesting open questions



Thank you

Any queries?



