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 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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 Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Buyers with independent values over time

◦ Eg. Ad impressions arrive over time

◦ Value distribution is a function of (age, location, gender,…) 

◦ Usually independent across time
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 General questions:

• Best achievable revenue and welfare?

• Compare with single-shot optimal

• Is the mechanism easy to implement? 

• What flavor of IC/IR does it satisfy?

 State of the art in real-world:

• Classic single-shot auctions have found their way to the web
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 Single buyer (many results extend to multiple buyers)

 For steps 𝑡 = 1…𝑇
◦ item arrives (ad impression)

◦ Buyer observes his value 𝑣𝑡 ∼ 𝐹𝑡

◦ Buyer reports bid 𝑏𝑡

◦ Auction decides allocation 𝑥𝑡 𝑏1…𝑡, 𝐹1…𝑇 and payment 𝑝𝑡 𝑏1…𝑡, 𝐹1…𝑇

◦ Buyer gets utility: 𝑢𝑡 = 𝑣𝑡𝑥𝑡 𝑏1…𝑡, 𝐹1…𝑇 − 𝑝𝑡 𝑏1…𝑡, 𝐹1…𝑇

 Buyer wants to maximize overall utility: 

𝑈𝑡 = 𝑢𝑡 𝑣𝑡 , 𝑏1…𝑡 , 𝐹1…𝑇 + 𝐸𝐹𝑡+1…𝑇
[  

𝜏=𝑡+1

𝑇

𝑢𝜏(𝑣𝜏 , 𝑏1…𝜏 , 𝐹1…𝑇)]

 Let ℎ𝑡 = 𝑏1…𝑡 and let 𝑭 = 𝐹1…𝑇
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 Dynamic Incentive Compatibility:

∀ 𝑡, ℎ𝑡−1: 𝑣𝑡∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑏 𝑈𝑡(𝑣𝑡 , ℎ𝑡−1, 𝑏 , 𝑭)

 Dynamic Individual Rationality:

∀ 𝑡, ℎ𝑡−1: 𝑈𝑡 𝑣𝑡 , ℎ𝑡−1, 𝑣𝑡 , 𝑭 ≥ 𝟎

 Per round / periodic Individual Rationality: 

∀ 𝑡, ℎ𝑡−1: 𝑣𝑡𝑥𝑡 (ℎ𝑡−1, 𝑣𝑡), 𝑭 − 𝑝𝑡 (ℎ𝑡−1, 𝑣𝑡), 𝑭 ≥ 0
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 After all, single-shot auctions are:

◦ easy to reason about for buyers

◦ easy to implement for sellers

 Motivation:

◦ Better targeting technologies  more surplus to buyers

◦ Auctions are quite thin  not much competition

◦ Need ways to improve publisher revenue
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 Sell today, a single item whose value in U[0,1] will be realized tomorrow

• Post price = ½−𝜖 today: buyer accepts; revenue = ½−𝜖

• But violates ex-post IR

• Post price = ½ tomorrow: buyer accepts when 𝑣 ≥
1

2
, revenue = ¼

• Can’t get more than ¼ with ex-post IR
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 One item today and one will arrive tomorrow, both U[0,1]:

• Buyer knows today’s value, but not tomorrow’s

• Post price = 1 today; buyer buys if today’s 𝑣 ≥
1

2

• This again violates ex-post IR

• Seems like no benefit from linking?
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From Papadimitriou+Pierrakos+Psomas+Rubenstein’16: 

 Example:

• Round-1: Equal revenue distribution supported in [1,n]:

• 𝐹 𝑥 = 1 −
1

𝑥
; Mean = log(𝑛)

• Round-2: Equal revenue distribution supported in [1, 𝑒𝑛]

• Mean = 𝑛

 Optimal static auction revenue = 2 (post any price in each round)

 Dynamic mechanism:

• Allocate always in 1st round, and charge bid 𝑏1

• Allocate in 2nd round with probability 
𝑏1

𝑛

• Utility of bidding 𝑏1: 𝑣1 − 𝑏1 +
𝑏1

𝑛
⋅ 𝑛 = 𝑣1 (hence truthful)

• Revenue = log(𝑛)
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 Papadimitriou+Pierrakos+Psomas+Rubenstein’16

• Opt. deterministic auction: NP-hard when the days are correlated

• Opt. randomized auction: computed via LP polynomial in support size
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 Ashlagi+Daskalakis+Haghpanah’16, Mirrokni+Paes-Leme+Tao+Zuo’16a,’16b:

• Structural characterization of optimal auction

• Optimal auction gives zero utility to buyer in all but last round

• Give simple constant factor approximations

 Drawback: use positive transfer to get round per-round ex-post IR

• Extreme example: buyer pays bid (=value) in all but last round where the 
mechanism compensates him
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• Optimal allocation & payment in round 𝑡 depend just on a state variable, and 

round 𝑡 bid

• I.e., all other aspects of history irrelevant



 Real ad auctions: today ~ tomorrow; 

• zero utility for a sequence of days is unacceptable

 Requirement: buyer utility per auction is a martingale [Balseiro+Mirrokni+Paes-Leme’16]

• Akin to industry practice of smooth delivery/pacing

 Model

• Time discounted infinite horizon model: discount of 𝛽 ∈ 0,1

• IID values for buyer across rounds

 Result:

• Achieve close to entire surplus as the number of rounds 𝑇 → ∞

• Simple auction based on hard and soft floors
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 Auction:

• If bid < hard-floor: no allocation

• Hard-floor < bid < soft-floor: first-price-auction

• Bid > soft-floor: second-price-auction

 Used in practice by different ad exchanges

Balu Sivan: Dynamic Mechanism Design

Bid

Payment

Hard

floor
Soft

floor



 Maintain a state variable 𝑤𝑡

• 𝑥: 𝑣𝑡 × 𝑤𝑡 → 0,1 (allocation)

• 𝑝: 𝑣𝑡 × 𝑤𝑡 → 𝑅 (payment)

• 𝑢: 𝑣𝑡 × 𝑤𝑡 → 𝑤𝑡+1 (promised utility)

 In round 𝑡, apart from allocation 𝑥𝑤𝑡
(𝑣𝑡) and payment 𝑝𝑤𝑡

(𝑣𝑡), mechanism 

promises a future discounted utility of 𝛽𝑢𝑤𝑡
(𝑣𝑡)

Constraints:

 Dynamic IC:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 𝑣𝑥𝑤 𝑣′ − 𝑝𝑤 𝑣′ + 𝛽𝑢𝑤 𝑣′

 Promise keeping:

𝑤 = 𝐸𝑣[𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ]

 Dynamic IR:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 0
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Constraints:

 Dynamic IC:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 𝑣𝑥𝑤 𝑣′ − 𝑝𝑤 𝑣′ + 𝛽𝑢𝑤 𝑣′

 Promise keeping:

𝑤 = 𝐸𝑣[𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ]

 Dynamic IR:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 0

 Periodic IR:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 ≥ 0

 Martingale:

𝐸𝑣[𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 ] is a martingale

Or equivalently

𝐸𝑣[𝑢𝑤 𝑣 ] is a martingale
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Myerson’s payment identity:

𝑝𝑤 𝑣 = 𝑣𝑥𝑤 𝑣 −  
0

𝑣

𝑥𝑤 𝑦 𝑑𝑦

Payment identity for our problem:

𝑝𝑤 𝑣 − 𝜷𝒖𝒘(𝒗) = 𝑣𝑥𝑤 𝑣 −  
0

𝑣

𝑥𝑤 𝑦 𝑑𝑦
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The final mechanism:

 Pick state thresholds 𝑤𝑙𝑜𝑤 and 𝑤𝑚𝑎𝑥

 When 𝑤 ∈ 𝑤𝑙𝑜𝑤 , 𝑤𝑚𝑎𝑥 : follow the fixed hard-floor + dynamic soft-floor 

mechanism

 When 𝑤 < 𝑤𝑙𝑜𝑤: don’t allocate
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 Single-shot IC is easy to verify:

• Split traffic randomly across 𝑘 buckets

• Try different bid shading factors in each bucket

• Shading factor of 1 should yield highest surplus

 Dynamic IC: impossible to verify

 Buyers:

• May not trust the seller to stick to his word forever

• May not be sophisticated

• May employ learning mechanisms to bid

• Is your auction robust to all these?
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 Dynamic IC: 

• Truth-telling maximizes current + sum-of-all-future-utilities

• It assumes all buyers have infinite lookahead

• Buyer may think seller won’t be around for that long!

 What if buyers are limited lookahead: say k-lookahead?

 What if buyers are learners?

• IC buyers look ahead

• No-regret learners look back
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Agrawal+Daskalakis+Mirrokni+Sivan’17:

 Design a single auction that gets a const. fraction of optimal revenue from

• a k-lookahead buyer for each k

• a no-regret learner

• a policy-regret learner (preferred regret notion against adaptive adversary)

 Setting:

• Single buyer IID private values drawn repeatedly from a known distribution 𝐹
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 What is the benchmark?

• Against infinite lookahead buyer, cannot extract more than mean 𝜇

• Against myopic (0-lookahead) buyer, cannot extract more than 𝑅𝑀𝑦𝑒

• 𝑅𝑀𝑦𝑒 is revenue of static single-shot revenue optimal mechanism
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 Result: There exists a single auction that gets, for any 𝛼 ∈ 0,1 :

• 1 − 𝛼 𝜇 revenue against a k-lookahead buyer for any 𝑘 ≥ 1

•
𝛼

2
𝑅𝑀𝑦𝑒 revenue against a myopic buyer

• 1 − 𝛼 𝜇 revenue against a policy-regret learner

•
𝛼

2
𝑅𝑀𝑦𝑒 revenue against a no-regret learner

 Eg. Choose 𝛼 =
2

3
 Get a 1/3 approximation against all categories
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 Result: Any mechanism that gets, for any 𝛼 ∈ 0,1 , a revenue of 

• 1 − 𝛼 𝜇 revenue against an infinite-lookahead buyer 

• Cannot get more than 2𝛼𝑅𝑀𝑦𝑒 revenue against a myopic buyer



1. There are distributions for which:

• High revenue against myopic buyer  high utility for myopic buyer

2. Infinite-lookahead buyer utility smaller than 𝛼𝜇

3. So myopic buyer utility smaller than 𝛼𝜇
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 Result: Any mechanism that gets, for any 𝛼 ∈ 0,1 , a revenue of 

• 1 − 𝛼 𝜇 revenue against an infinite-lookahead buyer 

• Cannot get more than 2𝛼𝑅𝑀𝑦𝑒 revenue against a myopic buyer



1. Extend results to multi-parameter settings

2. Get rid of positive transfer assumption present  in many works

3. Make auctions learnable by buyers: IC  learning

4. Can seller learn distributions over time instead of knowing it ahead?

• What if buyers and seller both play learning algorithms?

Theory still not mature enough to inform practice…
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Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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Q: How does a consumer respond to prices?

Standard answer: 

1. Consumer has a private value for an item (or bundle of items)

2. His utility for a bundle 𝐵 is 𝑢(𝐵) = 𝑣𝑎𝑙𝑢𝑒 𝐵 − 𝑝𝑟𝑖𝑐𝑒(𝐵)

3. Consumer picks 𝐵∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝐵𝑢(𝐵)
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Key assumption: Consumer precisely knows his value for all available bundles
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Current selling mechanism: A Buy-It-Now (BIN) price
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1. How do consumers make decisions when their private 

information evolves with usage?

2. How do we use this to improve revenue and buyer utility?



Chawla+Devanur+Karlin+Sivan’16:

𝑉0 :  Value for first usage; sampled from distribution 𝐹

◦ 𝑉0 is private to buyer

◦ 𝐹 is known to seller

𝑉𝑡 : Value for the 𝑡 + 1-th usage

◦ 𝑉𝑡 known to buyer only after t usages

◦ 𝑉𝑡 evolves according to a random process known to buyer and seller

 Buy-It-Now (BIN) scheme: 

1. Set 𝐄  𝑡 𝑉𝑡 𝑉0] to be the buyer’s “one-shot value”

2. Set the optimal price for this value distribution

 Hurts both the buyer and the seller
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Buy-It-Now Scheme: Price game at $50

Hurts both buyer and seller

1. Buyer: Large payment upfront + Uncertainty 

about value derived from product

2. Seller:

 No price discrimination

 Reducing to “one-shot value” overlooks other 

natural pricing schemes
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HORZA
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Question: What benefits can alternate payment schemes offer, 

in terms of 

a. Revenue

b. Buyer utility

c. Mitigating buyer’s risk?



Pay-Per-Play (PPP)

 Seller sets price 𝑝𝑡 for 𝑡-th usage 

 Buyer accepts or rejects 𝑝𝑡

 If buyer rejects, game ends: value stops 
evolving

E.g. PPP-CAP

 Pay $1/hour

 After paying $50, game is yours

Advantages:

1. Every buyer is happier with this scheme than 
a BIN with $50 price

2. Buyer gets fine-grained control over his 
utility: never suffer a large “regret”

3. Natural price discriminator
◦ Customers who remain interested for a longer 

time pay more
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HORZA

Revenue?



Buyer’s value:

 𝑣 ∈ [0,1] for the first 𝑇(𝑣) usages, and 0 after that

 𝑇 𝑣 is a random variable, with 𝐄 𝑇 𝑣 𝑣] non-decreasing in 𝑣

Buyer knows: 

 𝑣 and 𝐄 𝑇 𝑣 | 𝑣

 Value for 𝑡-th usage only after 𝑡 − 1 usages

Seller knows: 

 The distribution 𝐹 from which 𝑣 is initially drawn

 The distribution of 𝑇(𝑥) for each 𝑥

Goal: Compare BIN and PPP
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Risk-neutral buyer:

 Buy whenever expected utility is non-negative 

Risk-averse buyer:

 Buy only when probability of negative utility is 0
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 One-shot value of a risk-neutral buyer with value 𝑣 is 𝑣 ⋅ 𝐄 𝑇 𝑣 𝑣]

 Let  𝐹 be the distribution of 𝑣 ⋅ 𝐄 𝑇 𝑣 𝑣]

 Optimal BIN price p∗ ∈ 𝑎𝑟gmaxp max𝑝(1 −  𝐹 𝑝 )

 Optimal risk-neutral BIN revenue = 𝑅0
𝐵𝐼𝑁 = 𝑝∗(1 −  𝐹 𝑝∗ )

 [Myerson’81]
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 Consider a per-play price of 𝑣∗

◦ where 𝑣∗𝐄 𝑇 𝑣∗ 𝑣∗] = 𝑝∗is the BIN optimal price  

 In both PPP and BIN,  only those buyers with 𝑣 ≥ 𝑣∗ purchase
◦ ⇒ both PPP and BIN schemes get equal social welfare

 However, the PPP scheme gets more revenue:
◦ Buyer with value 𝑣 (≥ 𝑣∗) pays 𝑝∗ = 𝑣∗𝐄 𝑇 𝑣∗ 𝑣∗] in the BIN scheme

◦ Buyer with value 𝑣(≥ 𝑣∗) pays 𝑣∗𝐄 𝑇 𝑣 𝑣] (≥ 𝑝∗) in the PPP scheme

 Reduce the PPP price continuously till PPP revenue = BIN revenue
◦ PPP’s social welfare increases beyond BIN’s; but revenue matches

◦ Social welfare = Buyer utility + Seller revenue
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PPP-CAP obtains higher revenue, yields 

higher buyer utility, and completely 

removes buyer risk
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Binary value model: PPP-CAP vs BIN, with initial values drawn from 

Normal distribution truncated in [0,1], (µ=0.2, σ = µ/c)
E[Time alive] = (initial-value)0.5

% Revenue Increase for PPP-CAP

% Increase in number of buyers for PPP-CAP

% Price Decrease for PPP-CAP

BIN: Risk-neutral

PPP-CAP: Risk-averse
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Binary value model: PPP-CAP vs BIN, with initial values drawn 
from Normal distribution truncated in [0,1], (µ=0.2, σ = µ/5)

E[Time alive] = (initial-value)q

% Revenue Increase for PPP-CAP

% Increase in Number of Buyers for PPP-CAP

% Price Decrease for PPP-CAP

BIN: Risk-neutral

PPP-CAP: Risk-averse
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Buyer’s value:

 𝑉0 ∈ [0,1] for the first usage

 Evolves as a random walk with step-size 𝛿; i.e., 𝑉𝑡+1 = 𝑉𝑡 ± 𝛿

 Reflection at 1 and absorption at 0

Buyer knows: 

 𝑉0 and the random walk governing value evolution

 Value for 𝑡-th usage only after 𝑡 − 1 usages

Seller knows: 

 The distribution 𝐹 from which V0 is initially drawn

 The random walk governing value evolution

Balu Sivan: Dynamic Mechanism Design

𝑉𝑡+1 = 𝑉𝑡 ± Δ𝑡

1

0

𝑣0

Value

# usages

1
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Q: What is the smallest value for which the buyer accepts a price of p?

Answer:

 Certainly for all 𝑣 ≥ 𝑝, buyer accepts

 But even if 𝑣 < 𝑝, buyer could accept, hoping for his value to climb up

Let 𝑈(𝑣, 𝑤, 𝑝) denote the buyer’s expected future utility when his:

◦ current value is 𝑣

◦ price per usage is 𝑝

◦ purchase lasts until his value > 𝑤

Purchase lasts till value is at least 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤𝑈 𝑤 + 𝛿,𝑤, 𝑝 ≥ 0
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 Q: Suppose your value is 0.2, and the per-round PPP  price is 0.5; 

Random-walk of step size 𝛿 = 0.01. What will you do?

a) Buy

b) Reject

c) Indifferent

 At a price of ½, the buyer never stops buying until his value hits 0

◦ Even a buyer with value 𝛿, still buys at a price of 1/2
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 Recall: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝑈 𝑤 + 𝛿,𝑤, 𝑝 ≥ 0

 Calculations: When 𝑝 ≤
1

2
, we have 𝑈 𝑤 + 𝛿,𝑤, 𝑝 ≥ 0 for all 𝑤 ≥ 0

⇒At a price of ½, the buyer never stops buying till his value hits 0

◦ Even a buyer with value 𝛿, still buys at a price of 
1

2

⇒ Revenue of PPP is at least half the cumulative value of buyer

◦ 𝑅0
𝑃𝑃𝑃 ≥

1

2
⋅ 𝐶(𝑣)
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PPP results in near perfect price discrimination 

for risk-neutral buyers
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1. Rev(PPP) ≥ Θ(
1

𝛿
) Rev(BIN) for risk-averse buyers

2. PPP also offers much larger buyer utility than BIN

3. The factor Θ(
1

𝛿
) is tight 

Intuition: PPP gets better as the buyer becomes more risk-averse



Risk-neutral buyer:

 Buy whenever expected utility ≥ 0

Risk-averse buyer:

 Buy only when P[Utility < 0] = 0

𝛼-Risk-averse buyer:

 Buy only when

◦ Expected utility ≥ 0,  and,  P[Utility < −
1

𝛼
] = 0
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Theorem: For every 𝛼, and for every distribution of initial values, 

there exists a PPP scheme with

𝑅𝛼
𝑃𝑃𝑃 ≥

1

32
𝑅𝛼

𝐵𝐼𝑁

Risk-neutral: 𝛼 = 0
Risk-averse: 𝛼 = ∞
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Random walk model: PPP vs BIN with initial values drawn from Normal distribution 

truncated in [0,1] with (µ=0.2, σ = 0.05)
Fixed Risk Profiles
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BIN’s prices are risk-specific

PPP’s prices are risk-agnostic
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Bayesian Risk Profiles with Truncated Normal distribution in [0,1],  σ = 0.3
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PPP’s revenue at 0.1-risk aversion 

≥ BIN’s revenue at risk-neutral  
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 Offer the product free for the first 𝑇 usages

 Charge a price of 𝑝 per usage there after

Risk-averse buyer behavior: Buy only if current value ≥ 𝑝

Hope: Buyer’s value will climb sufficiently high during the free trial period

Q: How to set the # of free trials 𝑇 and price 𝑝

◦ 𝑇 large enough for value to hit 𝑝

◦ 𝑇 small enough so that the random walk spends 

sufficient time above 𝑝
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𝑣0

Value

# usages

𝑝

𝑇 𝑇



Q: What is the expected time for buyer’s value to hit 1, given that it hits 1?

◦ 𝐸𝑣 𝜏 𝑣𝜏 = 1] = ?

Lemma (Levin+Peres+Wilmer’09): 𝐸𝑣 𝜏 𝑣𝜏 = 1] =
1−𝑣2

3𝛿2

≤
1

3𝛿2
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Let 𝑇 =
2

3𝛿2 be the number of free trials

Markov’s inequality: 𝑃𝑣 𝜏 > 𝑇 | 𝑉𝜏 = 1 ≤
1

2

Let 𝑇′ be the number of rounds after free trial is over for which value is ≥ 𝑝

 𝑅𝑒𝑣 𝑃𝑃𝑃 = 𝑅∞
𝑃𝑃𝑃 = 𝑝. 𝐄𝑣[𝑇

′]

 𝐄𝑣 𝑇′ ≥ 𝐏𝑣 V𝜏 = 1 ⋅ 𝐏𝑣 𝜏 ≤ 𝑇 𝑉𝜏 = 1]. (ℎ1𝑝 − 𝑇)

≥ 𝑣 ⋅
1

2
⋅[

1−𝑝 2−
2

3

𝛿2 ]

 ⇒ 𝑅∞
𝑃𝑃𝑃 = 𝑝 ⋅ 𝑣 ⋅

1

2
⋅[

1−𝑝 2−
2

3

𝛿2 ]

 For sufficiently small 𝑝, 𝑅∞
𝑃𝑃𝑃 = Θ

𝑣

𝛿2 = Θ(𝐶 𝑣 )
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Free trial + PPP results in near perfect price discrimination 

for infinitely risk-averse buyers



 Usage-based value evolution creates opportunities for alternate payment 

schemes

 Pay-Per-Play schemes provide substantial advantages over the traditional 

Buy-It-Now scheme in terms of 

◦ Revenue

◦ Buyer utility

◦ Eliminating risk

 Free trial for a few rounds combined with PPP results in near perfect 

price discrimination even for infinitely risk averse buyer 
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 All the results extend to general martingale value evolution

 Buyer need not know anything about the value evolution: just buy when 

value exceeds price

 Seller need not know about distribution of buyer’s value evolution. Just a 

few conservative estimates
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Impact

1. Research featured in IT-world article

2. An app-maker tried the PPP scheme for his app after seeing the article!



1. Try other value evolution models: super-martingale seems the most realistic for 

value evolution over time. 

2. What are the strategic aspects of offering a PPP scheme? 

◦ E.g. The music streaming industry has converged to a $9.99 per month model 

(Xbox music, Google music, Spotify, Deezer,…)

◦ If one of them shifts to a PPP scheme, capped at $12, what are the strategic 

aspects of such a move?

3. What are natural experiments to answer questions like:

◦ Does a music pass offering a pay-per-play subscription, capped at $12, increase or 

decrease revenue?

◦ By how much?

◦ How many new subscribers will such a modified plan bring?
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Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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 A single seller offering a fresh copy of an item every day for 𝑛 days

 To the same buyer, with additive valuations

◦ Buyer’s private value 𝑣 remains the same every day

◦ Private value 𝑣 initially drawn from a publicly known distribution 𝐹

◦ Seller’s cost normalized to 0

Rules of the game:

Seller: Can post a price every day

Buyer: Take-it-or-leave-it at the posted price
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* Thanks to Amos Fiat for suggesting the name for this problem. 

Seller Buyer

𝑣 ~𝐹 = 𝑈[0,1]

𝑝𝐹
∗ =

1

2

Accept/Reject

One day interaction

Revenue = 𝑝𝐹 ⋅ 𝑃 𝑣 ≥ 𝑝𝐹 =
1

4
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* Thanks to Amos Fiat for suggesting the name for this problem. 

Seller Buyer

𝑣 ~𝐹 = 𝑈[0,1]

Same 𝑣 for both rounds

Two days interaction

Revenue = ?
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½

If the seller could commit to future prices:

Day 1: 

½ ½Day 2: 

Reject Accept 

Revenue for 2 days = 2 ⋅
1

4
=

1

2

Revenue for 𝑛 days = 𝑛 ⋅
1

4
=

𝑛

4
(Myerson optimal revenue)
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Q: If the seller cannot commit to future prices:

• a) seller extracts almost entire value of buyer

• b) seller gets exactly Myerson optimal revenue (𝑛/4)

• c) seller doesn’t even get Myerson optimal revenue

Proof by contradiction: Here is a single-round mechanism with more than Myerson’s 
revenue

1. Solicit buyer’s value

2. Simulate repeated mechanism and pick 1 round uniformly at random. Allocation 
and pricing are decided based on that day

3. Buyer’s utility matches the one in equilibrium, so he reports true val
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?

?
?

For many distributions, the revenue doesn’t even grow with 𝑛
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𝑝1

Seller cannot commit to future prices:

Day 1: 

𝑝2
𝑅 𝑝2

𝐴Day 2: 

Reject if 𝑣 < 𝑡 Accept if 𝑣 ≥ 𝑡

𝑈[0,1]

𝑈[0, 𝑡] 𝑈[𝑡, 1]

=
𝑡

2
= max(

1

2
, 𝑡)
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𝑝1
Day 1: 

𝑝2
𝑅 𝑝2

𝐴Day 2: 

Reject if 𝑣 < 𝑡 Accept if 𝑣 ≥ 𝑡

𝑈[0,1]

𝑈[0, 𝑡] 𝑈[𝑡, 1]

=
𝑡

2
= max(

1

2
, 𝑡)

Buyer with value 𝑣 = 𝑡 should be indifferent between accepting and rejecting ⇒

𝑡 −
𝑡

2

⇒ 𝑝1 =
𝑡

2

Revenue = 1 − 𝑡 ⋅[𝑡

2
+ max

1

2
, 𝑡 ] + 𝑡

2
⋅
𝑡

2
maximized at 𝑡 =

3

5
= 0.6

= 𝑡 − 𝑝1
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0.3Day 1: 

0.3 0.6Day 2: 

Reject if 𝑣 < 0.6 Accept if 𝑣 ≥ 0.6

Revenue = 
9

20
10% smaller than Myerson optimal revenue of 

1

2
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Perfection: Strategies are in equilibrium for every sub-game

Bayesian: Seller does a Bayesian update of  his beliefs about buyer’s distribution
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Formally, a seller’s strategy specifies:

1) A price 𝑝1 to be posted in 1st round

2) For every possible price 𝑥 ∈ [0,1] in 1st round, 

• a 2nd round price 𝑝2
𝑅 if buyer rejects in 1st round the price of 𝑥

• a 2nd round price 𝑝2
𝐴 if buyer accepts in 1st round the price of 𝑥

Formally, a buyer’s strategy specifies:

For every possible value, history of prices and accept/reject decisions, and 

every possible current price 𝑥, whether accept or reject 



Hart & Tirole [1988]: 

 Finite horizon, 𝑛 rounds

 2 point distribution 𝑣 ∈ 𝑙, ℎ

∀ except the last few ( i.e. 𝑂(1) ) rounds, price = 𝑙

Even if the buyer and seller discount future utilities by 1 − 𝛿

Schmidt [1993]: 

 Discrete distributions 

 𝑙 = lowest point in the support  

∀ except the last few ( i.e. 𝑂(1) ) rounds, price = 𝑙

• Really bad deal for the seller 

• Unnatural and not really seen in 

practice. Why? 
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Devanur+Peres+Sivan’15:

Possible explanation for why we don’t see the eq. in practice 

 Posit: “Threshold Equilibria” = natural equilibria

◦ Otherwise, seller’s belief supported on fragmented intervals

◦ E.g. 𝑈[0,
1

5
] w.p. 

1

2
, and 𝑈[

1

3
,
2

3
] w.p. 

1

2

 Characterize when threshold eq. exists:

◦ Only for those distributions where 𝑝1 = 𝑙

in a two rounds game

 Almost never? 

𝑝1

𝑝2
𝑅 𝑝2

𝐴
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Devanur+Peres+Sivan’15:

1-sided commitment from seller: cannot increase price, can decrease price

◦ ≡ price guarantee 

◦ Not decreasing the price is harder to enforce

◦ Decreasing price is beneficial to both buyer & seller. 

Results

 Unique threshold equilibrium with some restrictions

 For 𝑈[0,1], revenue is 
𝑛

2
+

log 𝑛

8
+ 𝑂(1)
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Immorlica+Lucier+Pountourakis+Taggart’17:

 Study the same problem (seller cannot commit), but there are 𝑛 buyers

 Seller posts a single price each day

 If more than one buyer interested in buying, allocate uniformly at random

 There exists a unique PBE after refinements:

 Where seller gets a constant fraction of Myerson’s revenue

 PBE structure: explore + exploit

 Slowly raise price; keep raising if at least two buyer are interested

 After that, post the highest price that the remaining buyer is guaranteed to buy
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Build upon this to handle more general settings 

 Multiple buyers, multiple sellers, multiple items, 

auctions, etc.

 Both seller and buyer have private information 

Motivation: 

 Behavior based price discrimination

◦ privacy issues related to tracking 

◦ Loyalty cards, cookies, etc. 
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Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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Devanur + Sivan + Syrgkanis’18:

 Two unit-demand buyers

 Two different items (say, watch and sunglass)

 4 private values: 𝑣11, 𝑣12, 𝑣21, 𝑣22

 Watch arrives on day-1

 Unknown: whether or not sunglass will arrive on day-2

 Allocation has to be made immediately when item arrives

 Pricing can be done at the end of 2 days

 Design auctions to maximize welfare
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Problem captures three crucial aspects

 Multi-parameter agents

 Online arrival of items 

 Need a truthful mechanism

When any one of these constraints is dropped, problem becomes trivial
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Multi-parameter + online + truthful

 [Feldman+Korula+Mirrokni+Muthukrishnan+Pal’09]: simple greedy 

algorithm based on marginal valuation gives a ½ approximation
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Multi-parameter + online + truthful

 VCG is optimal
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Multi-parameter + online + truthful

 Run second-price auction each day

 On the last day, if k items have arrived, charge everyone the 𝑘 + 1-th highest 

price

Even if we wanted prompt pricing (can’t wait until last day):

 Babaioff+Blumrosen+Roth’09: 𝑂(log 𝑛) approximation, where n is number of 

bidders
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Multi-parameter + online + truthful

Devanur + Sivan + Syrgkanis’18:

 No deterministic auction can get any finite approximation to welfare

1. What about randomized mechanisms?

 There’s a trivial min(𝑚, 𝑛) approximation, where 𝑚 is number of items 

and 𝑛 is number of agents. Anything better possible?

2. What about Bayesian valuations?

3. What happens when arrival is stochastic?

 Eg. When second item arrives with probability 𝑝, we can implement VCG 

with truthful-in-expectation guarantee. 

 Can we generalize to arbitrary number of items?
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