
Balu Sivan: Dynamic Mechanism Design



 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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 Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Buyers with independent values over time

◦ Eg. Ad impressions arrive over time

◦ Value distribution is a function of (age, location, gender,…) 

◦ Usually independent across time
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 General questions:

• Best achievable revenue and welfare?

• Compare with single-shot optimal

• Is the mechanism easy to implement? 

• What flavor of IC/IR does it satisfy?

 State of the art in real-world:

• Classic single-shot auctions have found their way to the web
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 Single buyer (many results extend to multiple buyers)

 For steps 𝑡 = 1…𝑇
◦ item arrives (ad impression)

◦ Buyer observes his value 𝑣𝑡 ∼ 𝐹𝑡

◦ Buyer reports bid 𝑏𝑡

◦ Auction decides allocation 𝑥𝑡 𝑏1…𝑡, 𝐹1…𝑇 and payment 𝑝𝑡 𝑏1…𝑡, 𝐹1…𝑇

◦ Buyer gets utility: 𝑢𝑡 = 𝑣𝑡𝑥𝑡 𝑏1…𝑡, 𝐹1…𝑇 − 𝑝𝑡 𝑏1…𝑡, 𝐹1…𝑇

 Buyer wants to maximize overall utility: 

𝑈𝑡 = 𝑢𝑡 𝑣𝑡 , 𝑏1…𝑡 , 𝐹1…𝑇 + 𝐸𝐹𝑡+1…𝑇
[  

𝜏=𝑡+1

𝑇

𝑢𝜏(𝑣𝜏 , 𝑏1…𝜏 , 𝐹1…𝑇)]

 Let ℎ𝑡 = 𝑏1…𝑡 and let 𝑭 = 𝐹1…𝑇
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 Dynamic Incentive Compatibility:

∀ 𝑡, ℎ𝑡−1: 𝑣𝑡∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑏 𝑈𝑡(𝑣𝑡 , ℎ𝑡−1, 𝑏 , 𝑭)

 Dynamic Individual Rationality:

∀ 𝑡, ℎ𝑡−1: 𝑈𝑡 𝑣𝑡 , ℎ𝑡−1, 𝑣𝑡 , 𝑭 ≥ 𝟎

 Per round / periodic Individual Rationality: 

∀ 𝑡, ℎ𝑡−1: 𝑣𝑡𝑥𝑡 (ℎ𝑡−1, 𝑣𝑡), 𝑭 − 𝑝𝑡 (ℎ𝑡−1, 𝑣𝑡), 𝑭 ≥ 0

Balu Sivan: Dynamic Mechanism Design



 After all, single-shot auctions are:

◦ easy to reason about for buyers

◦ easy to implement for sellers

 Motivation:

◦ Better targeting technologies  more surplus to buyers

◦ Auctions are quite thin  not much competition

◦ Need ways to improve publisher revenue
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 Sell today, a single item whose value in U[0,1] will be realized tomorrow

• Post price = ½−𝜖 today: buyer accepts; revenue = ½−𝜖

• But violates ex-post IR

• Post price = ½ tomorrow: buyer accepts when 𝑣 ≥
1

2
, revenue = ¼

• Can’t get more than ¼ with ex-post IR
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 One item today and one will arrive tomorrow, both U[0,1]:

• Buyer knows today’s value, but not tomorrow’s

• Post price = 1 today; buyer buys if today’s 𝑣 ≥
1

2

• This again violates ex-post IR

• Seems like no benefit from linking?
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From Papadimitriou+Pierrakos+Psomas+Rubenstein’16: 

 Example:

• Round-1: Equal revenue distribution supported in [1,n]:

• 𝐹 𝑥 = 1 −
1

𝑥
; Mean = log(𝑛)

• Round-2: Equal revenue distribution supported in [1, 𝑒𝑛]

• Mean = 𝑛

 Optimal static auction revenue = 2 (post any price in each round)

 Dynamic mechanism:

• Allocate always in 1st round, and charge bid 𝑏1

• Allocate in 2nd round with probability 
𝑏1

𝑛

• Utility of bidding 𝑏1: 𝑣1 − 𝑏1 +
𝑏1

𝑛
⋅ 𝑛 = 𝑣1 (hence truthful)

• Revenue = log(𝑛)
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 Papadimitriou+Pierrakos+Psomas+Rubenstein’16

• Opt. deterministic auction: NP-hard when the days are correlated

• Opt. randomized auction: computed via LP polynomial in support size
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 Ashlagi+Daskalakis+Haghpanah’16, Mirrokni+Paes-Leme+Tao+Zuo’16a,’16b:

• Structural characterization of optimal auction

• Optimal auction gives zero utility to buyer in all but last round

• Give simple constant factor approximations

 Drawback: use positive transfer to get round per-round ex-post IR

• Extreme example: buyer pays bid (=value) in all but last round where the 
mechanism compensates him
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• Optimal allocation & payment in round 𝑡 depend just on a state variable, and 

round 𝑡 bid

• I.e., all other aspects of history irrelevant



 Real ad auctions: today ~ tomorrow; 

• zero utility for a sequence of days is unacceptable

 Requirement: buyer utility per auction is a martingale [Balseiro+Mirrokni+Paes-Leme’16]

• Akin to industry practice of smooth delivery/pacing

 Model

• Time discounted infinite horizon model: discount of 𝛽 ∈ 0,1

• IID values for buyer across rounds

 Result:

• Achieve close to entire surplus as the number of rounds 𝑇 → ∞

• Simple auction based on hard and soft floors
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 Auction:

• If bid < hard-floor: no allocation

• Hard-floor < bid < soft-floor: first-price-auction

• Bid > soft-floor: second-price-auction

 Used in practice by different ad exchanges

Balu Sivan: Dynamic Mechanism Design

Bid

Payment

Hard

floor
Soft

floor



 Maintain a state variable 𝑤𝑡

• 𝑥: 𝑣𝑡 × 𝑤𝑡 → 0,1 (allocation)

• 𝑝: 𝑣𝑡 × 𝑤𝑡 → 𝑅 (payment)

• 𝑢: 𝑣𝑡 × 𝑤𝑡 → 𝑤𝑡+1 (promised utility)

 In round 𝑡, apart from allocation 𝑥𝑤𝑡
(𝑣𝑡) and payment 𝑝𝑤𝑡

(𝑣𝑡), mechanism 

promises a future discounted utility of 𝛽𝑢𝑤𝑡
(𝑣𝑡)

Constraints:

 Dynamic IC:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 𝑣𝑥𝑤 𝑣′ − 𝑝𝑤 𝑣′ + 𝛽𝑢𝑤 𝑣′

 Promise keeping:

𝑤 = 𝐸𝑣[𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ]

 Dynamic IR:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 0
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Constraints:

 Dynamic IC:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 𝑣𝑥𝑤 𝑣′ − 𝑝𝑤 𝑣′ + 𝛽𝑢𝑤 𝑣′

 Promise keeping:

𝑤 = 𝐸𝑣[𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ]

 Dynamic IR:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 + 𝛽𝑢𝑤 𝑣 ≥ 0

 Periodic IR:

𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 ≥ 0

 Martingale:

𝐸𝑣[𝑣𝑥𝑤 𝑣 − 𝑝𝑤 𝑣 ] is a martingale

Or equivalently

𝐸𝑣[𝑢𝑤 𝑣 ] is a martingale
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Myerson’s payment identity:

𝑝𝑤 𝑣 = 𝑣𝑥𝑤 𝑣 −  
0

𝑣

𝑥𝑤 𝑦 𝑑𝑦

Payment identity for our problem:

𝑝𝑤 𝑣 − 𝜷𝒖𝒘(𝒗) = 𝑣𝑥𝑤 𝑣 −  
0

𝑣

𝑥𝑤 𝑦 𝑑𝑦
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The final mechanism:

 Pick state thresholds 𝑤𝑙𝑜𝑤 and 𝑤𝑚𝑎𝑥

 When 𝑤 ∈ 𝑤𝑙𝑜𝑤 , 𝑤𝑚𝑎𝑥 : follow the fixed hard-floor + dynamic soft-floor 

mechanism

 When 𝑤 < 𝑤𝑙𝑜𝑤: don’t allocate
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 Single-shot IC is easy to verify:

• Split traffic randomly across 𝑘 buckets

• Try different bid shading factors in each bucket

• Shading factor of 1 should yield highest surplus

 Dynamic IC: impossible to verify

 Buyers:

• May not trust the seller to stick to his word forever

• May not be sophisticated

• May employ learning mechanisms to bid

• Is your auction robust to all these?
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 Dynamic IC: 

• Truth-telling maximizes current + sum-of-all-future-utilities

• It assumes all buyers have infinite lookahead

• Buyer may think seller won’t be around for that long!

 What if buyers are limited lookahead: say k-lookahead?

 What if buyers are learners?

• IC buyers look ahead

• No-regret learners look back

Balu Sivan: Dynamic Mechanism Design



Agrawal+Daskalakis+Mirrokni+Sivan’17:

 Design a single auction that gets a const. fraction of optimal revenue from

• a k-lookahead buyer for each k

• a no-regret learner

• a policy-regret learner (preferred regret notion against adaptive adversary)

 Setting:

• Single buyer IID private values drawn repeatedly from a known distribution 𝐹
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 What is the benchmark?

• Against infinite lookahead buyer, cannot extract more than mean 𝜇

• Against myopic (0-lookahead) buyer, cannot extract more than 𝑅𝑀𝑦𝑒

• 𝑅𝑀𝑦𝑒 is revenue of static single-shot revenue optimal mechanism

Balu Sivan: Dynamic Mechanism Design



Balu Sivan: Dynamic Mechanism Design

 Result: There exists a single auction that gets, for any 𝛼 ∈ 0,1 :

• 1 − 𝛼 𝜇 revenue against a k-lookahead buyer for any 𝑘 ≥ 1

•
𝛼

2
𝑅𝑀𝑦𝑒 revenue against a myopic buyer

• 1 − 𝛼 𝜇 revenue against a policy-regret learner

•
𝛼

2
𝑅𝑀𝑦𝑒 revenue against a no-regret learner

 Eg. Choose 𝛼 =
2

3
 Get a 1/3 approximation against all categories
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 Result: Any mechanism that gets, for any 𝛼 ∈ 0,1 , a revenue of 

• 1 − 𝛼 𝜇 revenue against an infinite-lookahead buyer 

• Cannot get more than 2𝛼𝑅𝑀𝑦𝑒 revenue against a myopic buyer



1. There are distributions for which:

• High revenue against myopic buyer  high utility for myopic buyer

2. Infinite-lookahead buyer utility smaller than 𝛼𝜇

3. So myopic buyer utility smaller than 𝛼𝜇
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 Result: Any mechanism that gets, for any 𝛼 ∈ 0,1 , a revenue of 

• 1 − 𝛼 𝜇 revenue against an infinite-lookahead buyer 

• Cannot get more than 2𝛼𝑅𝑀𝑦𝑒 revenue against a myopic buyer



1. Extend results to multi-parameter settings

2. Get rid of positive transfer assumption present  in many works

3. Make auctions learnable by buyers: IC  learning

4. Can seller learn distributions over time instead of knowing it ahead?

• What if buyers and seller both play learning algorithms?

Theory still not mature enough to inform practice…
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Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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Q: How does a consumer respond to prices?

Standard answer: 

1. Consumer has a private value for an item (or bundle of items)

2. His utility for a bundle 𝐵 is 𝑢(𝐵) = 𝑣𝑎𝑙𝑢𝑒 𝐵 − 𝑝𝑟𝑖𝑐𝑒(𝐵)

3. Consumer picks 𝐵∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝐵𝑢(𝐵)
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Key assumption: Consumer precisely knows his value for all available bundles
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Current selling mechanism: A Buy-It-Now (BIN) price
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1. How do consumers make decisions when their private 

information evolves with usage?

2. How do we use this to improve revenue and buyer utility?



Chawla+Devanur+Karlin+Sivan’16:

𝑉0 :  Value for first usage; sampled from distribution 𝐹

◦ 𝑉0 is private to buyer

◦ 𝐹 is known to seller

𝑉𝑡 : Value for the 𝑡 + 1-th usage

◦ 𝑉𝑡 known to buyer only after t usages

◦ 𝑉𝑡 evolves according to a random process known to buyer and seller

 Buy-It-Now (BIN) scheme: 

1. Set 𝐄  𝑡 𝑉𝑡 𝑉0] to be the buyer’s “one-shot value”

2. Set the optimal price for this value distribution

 Hurts both the buyer and the seller
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Buy-It-Now Scheme: Price game at $50

Hurts both buyer and seller

1. Buyer: Large payment upfront + Uncertainty 

about value derived from product

2. Seller:

 No price discrimination

 Reducing to “one-shot value” overlooks other 

natural pricing schemes
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HORZA
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Question: What benefits can alternate payment schemes offer, 

in terms of 

a. Revenue

b. Buyer utility

c. Mitigating buyer’s risk?



Pay-Per-Play (PPP)

 Seller sets price 𝑝𝑡 for 𝑡-th usage 

 Buyer accepts or rejects 𝑝𝑡

 If buyer rejects, game ends: value stops 
evolving

E.g. PPP-CAP

 Pay $1/hour

 After paying $50, game is yours

Advantages:

1. Every buyer is happier with this scheme than 
a BIN with $50 price

2. Buyer gets fine-grained control over his 
utility: never suffer a large “regret”

3. Natural price discriminator
◦ Customers who remain interested for a longer 

time pay more
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HORZA

Revenue?



Buyer’s value:

 𝑣 ∈ [0,1] for the first 𝑇(𝑣) usages, and 0 after that

 𝑇 𝑣 is a random variable, with 𝐄 𝑇 𝑣 𝑣] non-decreasing in 𝑣

Buyer knows: 

 𝑣 and 𝐄 𝑇 𝑣 | 𝑣

 Value for 𝑡-th usage only after 𝑡 − 1 usages

Seller knows: 

 The distribution 𝐹 from which 𝑣 is initially drawn

 The distribution of 𝑇(𝑥) for each 𝑥

Goal: Compare BIN and PPP
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𝑇(𝑣)

𝑣

Value

# usages



Risk-neutral buyer:

 Buy whenever expected utility is non-negative 

Risk-averse buyer:

 Buy only when probability of negative utility is 0
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 One-shot value of a risk-neutral buyer with value 𝑣 is 𝑣 ⋅ 𝐄 𝑇 𝑣 𝑣]

 Let  𝐹 be the distribution of 𝑣 ⋅ 𝐄 𝑇 𝑣 𝑣]

 Optimal BIN price p∗ ∈ 𝑎𝑟gmaxp max𝑝(1 −  𝐹 𝑝 )

 Optimal risk-neutral BIN revenue = 𝑅0
𝐵𝐼𝑁 = 𝑝∗(1 −  𝐹 𝑝∗ )

 [Myerson’81]
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 Consider a per-play price of 𝑣∗

◦ where 𝑣∗𝐄 𝑇 𝑣∗ 𝑣∗] = 𝑝∗is the BIN optimal price  

 In both PPP and BIN,  only those buyers with 𝑣 ≥ 𝑣∗ purchase
◦ ⇒ both PPP and BIN schemes get equal social welfare

 However, the PPP scheme gets more revenue:
◦ Buyer with value 𝑣 (≥ 𝑣∗) pays 𝑝∗ = 𝑣∗𝐄 𝑇 𝑣∗ 𝑣∗] in the BIN scheme

◦ Buyer with value 𝑣(≥ 𝑣∗) pays 𝑣∗𝐄 𝑇 𝑣 𝑣] (≥ 𝑝∗) in the PPP scheme

 Reduce the PPP price continuously till PPP revenue = BIN revenue
◦ PPP’s social welfare increases beyond BIN’s; but revenue matches

◦ Social welfare = Buyer utility + Seller revenue

Balu Sivan: Dynamic Mechanism Design

PPP-CAP obtains higher revenue, yields 

higher buyer utility, and completely 

removes buyer risk
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Binary value model: PPP-CAP vs BIN, with initial values drawn from 

Normal distribution truncated in [0,1], (µ=0.2, σ = µ/c)
E[Time alive] = (initial-value)0.5

% Revenue Increase for PPP-CAP

% Increase in number of buyers for PPP-CAP

% Price Decrease for PPP-CAP

BIN: Risk-neutral

PPP-CAP: Risk-averse
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Binary value model: PPP-CAP vs BIN, with initial values drawn 
from Normal distribution truncated in [0,1], (µ=0.2, σ = µ/5)

E[Time alive] = (initial-value)q

% Revenue Increase for PPP-CAP

% Increase in Number of Buyers for PPP-CAP

% Price Decrease for PPP-CAP

BIN: Risk-neutral

PPP-CAP: Risk-averse
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Buyer’s value:

 𝑉0 ∈ [0,1] for the first usage

 Evolves as a random walk with step-size 𝛿; i.e., 𝑉𝑡+1 = 𝑉𝑡 ± 𝛿

 Reflection at 1 and absorption at 0

Buyer knows: 

 𝑉0 and the random walk governing value evolution

 Value for 𝑡-th usage only after 𝑡 − 1 usages

Seller knows: 

 The distribution 𝐹 from which V0 is initially drawn

 The random walk governing value evolution
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𝑉𝑡+1 = 𝑉𝑡 ± Δ𝑡

1

0

𝑣0

Value

# usages

1
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Q: What is the smallest value for which the buyer accepts a price of p?

Answer:

 Certainly for all 𝑣 ≥ 𝑝, buyer accepts

 But even if 𝑣 < 𝑝, buyer could accept, hoping for his value to climb up

Let 𝑈(𝑣, 𝑤, 𝑝) denote the buyer’s expected future utility when his:

◦ current value is 𝑣

◦ price per usage is 𝑝

◦ purchase lasts until his value > 𝑤

Purchase lasts till value is at least 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤𝑈 𝑤 + 𝛿,𝑤, 𝑝 ≥ 0
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 Q: Suppose your value is 0.2, and the per-round PPP  price is 0.5; 

Random-walk of step size 𝛿 = 0.01. What will you do?

a) Buy

b) Reject

c) Indifferent

 At a price of ½, the buyer never stops buying until his value hits 0

◦ Even a buyer with value 𝛿, still buys at a price of 1/2
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 Recall: 𝑤∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 𝑈 𝑤 + 𝛿,𝑤, 𝑝 ≥ 0

 Calculations: When 𝑝 ≤
1

2
, we have 𝑈 𝑤 + 𝛿,𝑤, 𝑝 ≥ 0 for all 𝑤 ≥ 0

⇒At a price of ½, the buyer never stops buying till his value hits 0

◦ Even a buyer with value 𝛿, still buys at a price of 
1

2

⇒ Revenue of PPP is at least half the cumulative value of buyer

◦ 𝑅0
𝑃𝑃𝑃 ≥

1

2
⋅ 𝐶(𝑣)

Balu Sivan: Dynamic Mechanism Design

PPP results in near perfect price discrimination 

for risk-neutral buyers
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1. Rev(PPP) ≥ Θ(
1

𝛿
) Rev(BIN) for risk-averse buyers

2. PPP also offers much larger buyer utility than BIN

3. The factor Θ(
1

𝛿
) is tight 

Intuition: PPP gets better as the buyer becomes more risk-averse



Risk-neutral buyer:

 Buy whenever expected utility ≥ 0

Risk-averse buyer:

 Buy only when P[Utility < 0] = 0

𝛼-Risk-averse buyer:

 Buy only when

◦ Expected utility ≥ 0,  and,  P[Utility < −
1

𝛼
] = 0
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Theorem: For every 𝛼, and for every distribution of initial values, 

there exists a PPP scheme with

𝑅𝛼
𝑃𝑃𝑃 ≥

1

32
𝑅𝛼

𝐵𝐼𝑁

Risk-neutral: 𝛼 = 0
Risk-averse: 𝛼 = ∞
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Random walk model: PPP vs BIN with initial values drawn from Normal distribution 

truncated in [0,1] with (µ=0.2, σ = 0.05)
Fixed Risk Profiles
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BIN’s prices are risk-specific

PPP’s prices are risk-agnostic
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Random walk model: PPP vs BIN with initial values drawn from Normal distribution 

truncated in [0,1] with (µ=0.2, σ = 0.05)

Bayesian Risk Profiles with Truncated Normal distribution in [0,1],  σ = 0.3
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PPP’s revenue at 0.1-risk aversion 

≥ BIN’s revenue at risk-neutral  
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 Offer the product free for the first 𝑇 usages

 Charge a price of 𝑝 per usage there after

Risk-averse buyer behavior: Buy only if current value ≥ 𝑝

Hope: Buyer’s value will climb sufficiently high during the free trial period

Q: How to set the # of free trials 𝑇 and price 𝑝

◦ 𝑇 large enough for value to hit 𝑝

◦ 𝑇 small enough so that the random walk spends 

sufficient time above 𝑝
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𝑣0

Value

# usages

𝑝

𝑇 𝑇



Q: What is the expected time for buyer’s value to hit 1, given that it hits 1?

◦ 𝐸𝑣 𝜏 𝑣𝜏 = 1] = ?

Lemma (Levin+Peres+Wilmer’09): 𝐸𝑣 𝜏 𝑣𝜏 = 1] =
1−𝑣2

3𝛿2

≤
1

3𝛿2
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Let 𝑇 =
2

3𝛿2 be the number of free trials

Markov’s inequality: 𝑃𝑣 𝜏 > 𝑇 | 𝑉𝜏 = 1 ≤
1

2

Let 𝑇′ be the number of rounds after free trial is over for which value is ≥ 𝑝

 𝑅𝑒𝑣 𝑃𝑃𝑃 = 𝑅∞
𝑃𝑃𝑃 = 𝑝. 𝐄𝑣[𝑇

′]

 𝐄𝑣 𝑇′ ≥ 𝐏𝑣 V𝜏 = 1 ⋅ 𝐏𝑣 𝜏 ≤ 𝑇 𝑉𝜏 = 1]. (ℎ1𝑝 − 𝑇)

≥ 𝑣 ⋅
1

2
⋅[

1−𝑝 2−
2

3

𝛿2 ]

 ⇒ 𝑅∞
𝑃𝑃𝑃 = 𝑝 ⋅ 𝑣 ⋅

1

2
⋅[

1−𝑝 2−
2

3

𝛿2 ]

 For sufficiently small 𝑝, 𝑅∞
𝑃𝑃𝑃 = Θ

𝑣

𝛿2 = Θ(𝐶 𝑣 )
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Free trial + PPP results in near perfect price discrimination 

for infinitely risk-averse buyers



 Usage-based value evolution creates opportunities for alternate payment 

schemes

 Pay-Per-Play schemes provide substantial advantages over the traditional 

Buy-It-Now scheme in terms of 

◦ Revenue

◦ Buyer utility

◦ Eliminating risk

 Free trial for a few rounds combined with PPP results in near perfect 

price discrimination even for infinitely risk averse buyer 
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 All the results extend to general martingale value evolution

 Buyer need not know anything about the value evolution: just buy when 

value exceeds price

 Seller need not know about distribution of buyer’s value evolution. Just a 

few conservative estimates
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Impact

1. Research featured in IT-world article

2. An app-maker tried the PPP scheme for his app after seeing the article!



1. Try other value evolution models: super-martingale seems the most realistic for 

value evolution over time. 

2. What are the strategic aspects of offering a PPP scheme? 

◦ E.g. The music streaming industry has converged to a $9.99 per month model 

(Xbox music, Google music, Spotify, Deezer,…)

◦ If one of them shifts to a PPP scheme, capped at $12, what are the strategic 

aspects of such a move?

3. What are natural experiments to answer questions like:

◦ Does a music pass offering a pay-per-play subscription, capped at $12, increase or 

decrease revenue?

◦ By how much?

◦ How many new subscribers will such a modified plan bring?
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Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems

Balu Sivan: Dynamic Mechanism Design



 A single seller offering a fresh copy of an item every day for 𝑛 days

 To the same buyer, with additive valuations

◦ Buyer’s private value 𝑣 remains the same every day

◦ Private value 𝑣 initially drawn from a publicly known distribution 𝐹

◦ Seller’s cost normalized to 0

Rules of the game:

Seller: Can post a price every day

Buyer: Take-it-or-leave-it at the posted price
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* Thanks to Amos Fiat for suggesting the name for this problem. 

Seller Buyer

𝑣 ~𝐹 = 𝑈[0,1]

𝑝𝐹
∗ =

1

2

Accept/Reject

One day interaction

Revenue = 𝑝𝐹 ⋅ 𝑃 𝑣 ≥ 𝑝𝐹 =
1

4
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* Thanks to Amos Fiat for suggesting the name for this problem. 

Seller Buyer

𝑣 ~𝐹 = 𝑈[0,1]

Same 𝑣 for both rounds

Two days interaction

Revenue = ?
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½

If the seller could commit to future prices:

Day 1: 

½ ½Day 2: 

Reject Accept 

Revenue for 2 days = 2 ⋅
1

4
=

1

2

Revenue for 𝑛 days = 𝑛 ⋅
1

4
=

𝑛

4
(Myerson optimal revenue)
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Q: If the seller cannot commit to future prices:

• a) seller extracts almost entire value of buyer

• b) seller gets exactly Myerson optimal revenue (𝑛/4)

• c) seller doesn’t even get Myerson optimal revenue

Proof by contradiction: Here is a single-round mechanism with more than Myerson’s 
revenue

1. Solicit buyer’s value

2. Simulate repeated mechanism and pick 1 round uniformly at random. Allocation 
and pricing are decided based on that day

3. Buyer’s utility matches the one in equilibrium, so he reports true val
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?

?
?

For many distributions, the revenue doesn’t even grow with 𝑛
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𝑝1

Seller cannot commit to future prices:

Day 1: 

𝑝2
𝑅 𝑝2

𝐴Day 2: 

Reject if 𝑣 < 𝑡 Accept if 𝑣 ≥ 𝑡

𝑈[0,1]

𝑈[0, 𝑡] 𝑈[𝑡, 1]

=
𝑡

2
= max(

1

2
, 𝑡)
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𝑝1
Day 1: 

𝑝2
𝑅 𝑝2

𝐴Day 2: 

Reject if 𝑣 < 𝑡 Accept if 𝑣 ≥ 𝑡

𝑈[0,1]

𝑈[0, 𝑡] 𝑈[𝑡, 1]

=
𝑡

2
= max(

1

2
, 𝑡)

Buyer with value 𝑣 = 𝑡 should be indifferent between accepting and rejecting ⇒

𝑡 −
𝑡

2

⇒ 𝑝1 =
𝑡

2

Revenue = 1 − 𝑡 ⋅[𝑡

2
+ max

1

2
, 𝑡 ] + 𝑡

2
⋅
𝑡

2
maximized at 𝑡 =

3

5
= 0.6

= 𝑡 − 𝑝1
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0.3Day 1: 

0.3 0.6Day 2: 

Reject if 𝑣 < 0.6 Accept if 𝑣 ≥ 0.6

Revenue = 
9

20
10% smaller than Myerson optimal revenue of 

1

2
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Perfection: Strategies are in equilibrium for every sub-game

Bayesian: Seller does a Bayesian update of  his beliefs about buyer’s distribution

Balu Sivan: Dynamic Mechanism Design

Formally, a seller’s strategy specifies:

1) A price 𝑝1 to be posted in 1st round

2) For every possible price 𝑥 ∈ [0,1] in 1st round, 

• a 2nd round price 𝑝2
𝑅 if buyer rejects in 1st round the price of 𝑥

• a 2nd round price 𝑝2
𝐴 if buyer accepts in 1st round the price of 𝑥

Formally, a buyer’s strategy specifies:

For every possible value, history of prices and accept/reject decisions, and 

every possible current price 𝑥, whether accept or reject 



Hart & Tirole [1988]: 

 Finite horizon, 𝑛 rounds

 2 point distribution 𝑣 ∈ 𝑙, ℎ

∀ except the last few ( i.e. 𝑂(1) ) rounds, price = 𝑙

Even if the buyer and seller discount future utilities by 1 − 𝛿

Schmidt [1993]: 

 Discrete distributions 

 𝑙 = lowest point in the support  

∀ except the last few ( i.e. 𝑂(1) ) rounds, price = 𝑙

• Really bad deal for the seller 

• Unnatural and not really seen in 

practice. Why? 
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Devanur+Peres+Sivan’15:

Possible explanation for why we don’t see the eq. in practice 

 Posit: “Threshold Equilibria” = natural equilibria

◦ Otherwise, seller’s belief supported on fragmented intervals

◦ E.g. 𝑈[0,
1

5
] w.p. 

1

2
, and 𝑈[

1

3
,
2

3
] w.p. 

1

2

 Characterize when threshold eq. exists:

◦ Only for those distributions where 𝑝1 = 𝑙

in a two rounds game

 Almost never? 

𝑝1

𝑝2
𝑅 𝑝2

𝐴
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Devanur+Peres+Sivan’15:

1-sided commitment from seller: cannot increase price, can decrease price

◦ ≡ price guarantee 

◦ Not decreasing the price is harder to enforce

◦ Decreasing price is beneficial to both buyer & seller. 

Results

 Unique threshold equilibrium with some restrictions

 For 𝑈[0,1], revenue is 
𝑛

2
+

log 𝑛

8
+ 𝑂(1)
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Immorlica+Lucier+Pountourakis+Taggart’17:

 Study the same problem (seller cannot commit), but there are 𝑛 buyers

 Seller posts a single price each day

 If more than one buyer interested in buying, allocate uniformly at random

 There exists a unique PBE after refinements:

 Where seller gets a constant fraction of Myerson’s revenue

 PBE structure: explore + exploit

 Slowly raise price; keep raising if at least two buyer are interested

 After that, post the highest price that the remaining buyer is guaranteed to buy
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Build upon this to handle more general settings 

 Multiple buyers, multiple sellers, multiple items, 

auctions, etc.

 Both seller and buyer have private information 

Motivation: 

 Behavior based price discrimination

◦ privacy issues related to tracking 

◦ Loyalty cards, cookies, etc. 
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Mechanisms for repeated interactions between seller and buyer (eg. Internet ad 

auctions)

 Review a few strands of literature

 Buyers with independent values over time (additive)

 Buyers with values evolving over time (additive)

 Buyers with fixed value over time (additive)

 Buyers with fixed value, but unit-demand / fixed budget, and unknown supply

 Discuss main results & commonly used techniques

 Present future directions / open problems
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Devanur + Sivan + Syrgkanis’18:

 Two unit-demand buyers

 Two different items (say, watch and sunglass)

 4 private values: 𝑣11, 𝑣12, 𝑣21, 𝑣22

 Watch arrives on day-1

 Unknown: whether or not sunglass will arrive on day-2

 Allocation has to be made immediately when item arrives

 Pricing can be done at the end of 2 days

 Design auctions to maximize welfare
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Problem captures three crucial aspects

 Multi-parameter agents

 Online arrival of items 

 Need a truthful mechanism

When any one of these constraints is dropped, problem becomes trivial
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Multi-parameter + online + truthful

 [Feldman+Korula+Mirrokni+Muthukrishnan+Pal’09]: simple greedy 

algorithm based on marginal valuation gives a ½ approximation
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Multi-parameter + online + truthful

 VCG is optimal
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Multi-parameter + online + truthful

 Run second-price auction each day

 On the last day, if k items have arrived, charge everyone the 𝑘 + 1-th highest 

price

Even if we wanted prompt pricing (can’t wait until last day):

 Babaioff+Blumrosen+Roth’09: 𝑂(log 𝑛) approximation, where n is number of 

bidders
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Multi-parameter + online + truthful

Devanur + Sivan + Syrgkanis’18:

 No deterministic auction can get any finite approximation to welfare

1. What about randomized mechanisms?

 There’s a trivial min(𝑚, 𝑛) approximation, where 𝑚 is number of items 

and 𝑛 is number of agents. Anything better possible?

2. What about Bayesian valuations?

3. What happens when arrival is stochastic?

 Eg. When second item arrives with probability 𝑝, we can implement VCG 

with truthful-in-expectation guarantee. 

 Can we generalize to arbitrary number of items?
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