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IBM recently implemented Optimizer, a system for flexible
and optimal control of service levels and spare parts inven-
tory, in its US network for service support. It is based upon
recent research in multi-echelon inventory theory to address
the IBM network. The inherent complexity and very large
scale of the basic problem required IBM to develop suitable
algorithms and sophisticated data structures and required
large-scale systems integration. Optimizer has greatly im-
proved IBM’s US service business. The implementation of
Optimizer has made it possible to make strategic changes to
the configuration and control of the parts distribution net-
work. It resulted in simultaneously reducing inventory invest-
ment and operating costs and i‘m‘proving service levels. Most
important, however, Optimizer has proven to be a highly
flexible planning and operational control system.

l he information processing industry proliferation of both end-products and

has experienced several decades of services. These trends, which have an im-
sustained, profitable growth. Recently, portant implication for all aspects of busi-
competition has intensified, and as a re- ness operations, are especially relevant
sult, there have been rapid advances in for after-sales service. Maintaining a ser-
computer technology, leading to a vice parts logistics system to support
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products installed in the field is essential
to competing in this industry.

Growth in both sales and the scope of
products offered has dramatically in-
creased the number of spare parts that
must be maintained. Spare parts for infor-
mation technology have also become
more modular and more expensive and
are used with increased commonality.
These design changes economize on
training costs of customer engineers and
simplify diagnostic procedures.

For the IBM Corporation, the number
of installed machines and the annual
usage of spare parts have both increased.
This growth has put upward pressure on
the dollar value of service inventories,
which are used to maintain the extremely
high levels of service expected by IBM's
customers. IBM has developed an exten-
sive multiple-echelon logistic structure to
provide prompt service for the vast popu-
lation of installed machines, which are
distributed throughout the US.

IBM’s National Service Division (NSD)
developed an extensive and sophisticated
inventory management system to provide
customers with prompt and reliable ser-
vice. For many years we considered this
system adequate in maintaining service
and controlling inventory levels. A rapidly
changing NSD business environment and
the pressures to decrease inventory in-
vestment led IBM to search for improve-
ments in its control system. The
improvements it sought included (1) man-
agement flexibility in setting strategically
driven service targets for different market
segments and (2) improved inventory effi-
ciency and cost control. In response to
these new needs, IBM initiated the
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development of a new planning and con-
trol system for service parts management.

The effort resulted in the creation and
implementation of a system called
Optimizer.

An Overview of IBM Service Logistics

NSD, the service division of IBM, is re-
sponsible for providing high quality,
after-market support to IBM’s customers.
It must also support IBM’s marketing ef-
forts and manage a profitable and com-
petitive (after-sales) service business. The
service marketplace is comprised of com-
mercial and government customers and
IBM internal accounts, with products in-
stalled or on order in the United States
and its territories. Apart from IBM, a
number of third-party maintainers vie for
the service business afforded by this large
customer base.

The geographic dispersion of service
customers, coupled with the need for
very quick response and repair, requires
a large customer engineering work force.
IBM also employs an efficient and sophis-
ticated group of people and systems to
support the work of the customer engi-
neers. NSD employs over 15,000 customer
engineers (CEs), who are trained to repair
and maintain all of the installed systems.

When a machine does fail, a CE is dis-
patched in response to a customer tele-
phone call to a dispatch center, or
automatically by communication from the
failed machine. Most repair calls require
parts for replacement, diagnostics, or
tools. Hence, quick and efficient deploy-
ment of these parts is vital to getting the
customer’s machine fixed and running
quickly. CEs may obtain the needed parts
in several ways. For example, they may
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be delivered to the customer site before or
after the CEs arrive, or the CEs may use
parts stored on the customer premise (an
outside location). They also carry a lim-
ited number of parts in their car trunks
(or tool chests).

The distribution organization of NSD is
responsible for procuring and storing
parts and deploying them to CEs and di-
rectly to customers. Direct sales are to
dealers, third party maintainers, and self
servicers. It has been a mainstay of IBM’s
competitive strategy to deliver parts
within a very short time.

Distribution consists of two suborgani-
zations, Distribution Operations and In-
ventory Planning. Distribution Operations
is responsible for transportation, ware-
housing, order entry, and other physical

distribution functions, such as inventory
record maintenance, quality inspection of
inbound and outbound parts, and pack-
aging parts. Inventory Planning is re-
sponsible for procuring, planning, and
maintaining inventory throughout the
parts network. It gets involved early in
the life of a product in order to procure
and maintain inventory to support the
product throughout its market life. Inven-
tory P
service delivery group to gather and use

lanning also works closely with the

data, such as the projected number of
machine installations, parts failure rates,
critical parts, engineering changes,
upgrades, and service strategy.

About 1,000 IBM products are in ser-
vice. The installed population of these
products exceeds tens of millions.

MULTI- ECHELON STRUCTURE

B Demand Point
- — Replenishment

Manufacturer/Vendor

National Warehouses
Regional Warehouses

Minor Warehouses

Local Stations
Outside Locations

Installed Machines

® Stocking Point
— Emergency

Figure 1: IBM’s parts distribution network consists of national warehouses, field distribution
centers, emergency parts support centers and outside locations.
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Inventory Planning controls over 200,000
part numbers to support the operation of
these products throughout the installed
customer machine population. The major
task of this group is to manage the flow
of material in a manner that keeps the
system supplied, reduces costs, and
achieves IBM’s stringent performance
targets.

The IBM parts distribution system is a
large, complex, multi-echelon network
(Figure 1). Prior to the implementation of
the Optimizer system, the locations were
organized into four echelons as follows:
(1) Two central automated warehouses,
(2) 21 field distribution centers (FDCs),
(3) 64 parts stations (PSs), and
(4) 15,000 outside locations (OLs).

The central warehouses are located in
Mechanicsburg, Pennsylvania and Lexing-
ton, Kentucky. These two sites receive
parts from IBM plants and vendors and

Inventory Planning controls
over 200,000 part numbers to
support the operation of
about 1,000 IBM products in
service.

resupply the rest of the network. The
central sites replenish the 21 FDCs and
provide emergency backup for demands
not filled by the FDCs. They are also re-
sponsible for shipping domestically man-
ufactured parts to non-US IBM field
service organizations and for providing
parts to tens of thousands of authorized
dealers and external customers.

Located in the major populated metro-
politan areas, the FDCs act as regional
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distribution centers. They provide emer-
gency support to their assigned regions
of the country, and they also replenish all
of the PSs and OLs located in their terri-
tories. Each FDC can support other FDCs
within the network.

PSs are stocking stations located in the
service branch offices. They are responsi-
ble for filling failure induced (emergency)
orders only. The PSs are usually located
in medium to small metropolitan areas.
Outside locations are stocking locations
that are not staffed. There are three basic
types of OLs: on-site customer stock loca-
tions, CE car trunks or tool chests, and
shared parts sets stocked at local branches.

The inventory level for each part num-
ber is tracked at all stocking locations (ex-
cept at OLs where only parts costing
more than a certain threshold are
tracked). Each tracked part/location com-
bination is called a stock-keeping unit
(SKU). There are currently several million
SKUs in the NSD parts distribution
network.

The parts inventory maintained in this
network is both large and diverse. It is
valued in the billions of dollars. Most of
this inventory is carried at noncentral site
locations. The network is extremely ac-
tive, especially in the upper echelons.
Millions of parts transactions are pro-
cessed through the network annually.
These include returns from CEs as well as
disbursements to CEs.

The logistics of this network are man-
aged by sophisticated information and
control system called the parts inventory
management system (PIMS). PIMS is a
large complex system containing millions
of lines of code (Figure 2).
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Figure 2: The PIMS system depicted as 5
major modules.

PIMS accounting module maintains all
the accounting and costing information.
Central distribution plans and controls
the flow of parts from the plants and ven-
dors into the spare parts distribution sys-
tem. In order to process the large volume
of transactions in a timely manner, IBM
implemented a real-time order-processing
system {RTS) in the FDC and PS loca-
tions. The CEs are in constant communi-
cation with the real-time system through
hand-held terminals. This sophisticated
information and communication system
makes the job of filling CE parts orders a
highly efficient, paperless, and phoneless
operation.

The field systems of PIMS consist of
dedicated information systems used to
track the direct support and backup loca-
tions for each machine installed in the
field identified by machine type, model,
and serial number. Through the field sys-
tems, each unique customer machine is
linked to a list of part numbers contained
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in that machine. IBM must maintain ma-
chine records down to the serial number
because of the level of customization used
in the production of high-end systems.
This information allows the inventory
planning and control system to ascertain
all of the parts that each stocking location
may need. PIMS also enables IBM to de-
ploy parts to support its introduction of
new products.

Prior to the implementation of Opti-
mizer, the inventory planning and control
functions of PIMS were performed by two
systems working in conjunction, a recom-
mended spare parts (R5P) system and a
demand system. An RSP list was associ-
ated with each machine type. It specified
a minimum complement of parts that
should be stocked at each echelon. The
RSP lists were prepared initially by the
product designers and then revised pe-
riodically based on the history of part
usage and on judgment. PIMS used the
RSP list to set minimum stock levels for
each part number in order to provide an
acceptable level of customer service. The
demand system in PIMS used standard,
single-location order point, order-up-to-
level logic in conjunction with an expo-
nential smoothing forecast based on site-
specific, locally observed consumption
patterns.

Potential for Improvement

The principal requirements for effective
after-sales service support are service
level flexibility and inventory efficiency.
The challenge facing NSD was to achieve
lower costs while maintaining or improv-
ing customer service.

A variety of service measures can be
used to support information system
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technology products. PIMS used the parts
availability level (PAL) as its basic per-
formance measure. PAL is equal to the
fraction of a part’'s demand that is filled
immediately from on-hand stock at a
stocking location. Since multiple parts
make up a machine, the PALs for these
many parts affect service performance
when machines fail. In the newly devel-
oped Optimizer system, machine service
objectives are specified for each echelon
level. These service objectives then deter-
mine target PAL values for each part used
in each machine. Many different PAL-
combinations yield a given machine ser-
vice objective. The old PIMS stocking pro-
cedures did not consider all of the cost
consequences of alternative PAL
combinations.

This problem is compounded by the
proliferation of high technology products.
For such products IBM has identified spe-
cific groupings of parts, called technology
component groups (TCGs). A failure of a
TCG part leads to the complete failure of
the machine. We wanted to provide the
flexibility to specify service requirements
not only for products, but for TCG’s
within products as well. Also manage-
ment wants to be able to set different
service goals for different market require-
ments (products/locations) in order to re-
spond to changes in the competitive
environment.

The existing process used by service
delivery and inventory planning analysts
in assuring service performance was com-
plex and arduous. They used on-line
parts-ranking models and judgment to
define RSP lists. These lists were input to
PIMS to establish the parameters of the
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stocking policy. It was difficult to change
an RSP list and its associated stocking
policy parameters in response to changes
in service requirements.

Concurrent with its need to achieve
service flexibility, IBM is also committed
to containing the growth of its parts-in-
ventory investment and other inventory-
related costs. We determined that PIMS
could be improved in several ways:

— by improving the demand forecasting
method,

— by accounting for the multi-echelon
structure,

— by accounting for part commonality,
and

— by enhancing cost-service trade-offs,

Information on the number of installed
machines (each with a unique comple-
ment of parts) in each geographical re-
gion, together with part-failure rates, can
be used to improve the forecast for re-
gional demand of parts. Moreover, the lo-
cal-consumption-based exponential-
smoothing procedure used in PIMS had
difficulty in dealing with parts for which
demand was erratic and infrequent.

The inventory control algorithms in
PIMS used single location logic in deter-
mining parameters for stocking control. In
a multi-echelon setting, the stocking con-
trol decisions at lower echelon locations
affect the patterns of demand observed
(quantity, timing, and priority) at higher
echelon supply points. Moreover, the de-
mand faced by a given higher echelon lo-
cation can be classified into different
priority types (1) requirements generated
by part failures in customer machines di-
rectly supported by this location; (2)
emergency (expedited) requirements for
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customer demands not filled at lower ech-
¢lon locations, which use this location as
an emergency backup supply; and (3) re-
plax‘aig}m‘\ent requirements to restock
lower echelon locations that use this loca-
tion as their source. These linkages and
demand priorities should be considered in
setting stocking control parameters for all
locations in the network.

Products of the same family have many
parts in common. Hence, the stocking
policies for a common part affect the cus-
tomer service of all machines that use
that part. Significant savings in inventory
can be achieved by incorporating the
commonality relationship into stock
control procedures.

The existing (PIMS/RSP) system used a
simple cost classification in setting service
priority targets for parts. It also used an
EOQ formula to set replenishment batch
sizes. In order to improve the efficiency of
the inventory control system, we had to
evaluate total costs, which also include
emergency (expediting) transportation
costs. Cost trade-offs also had to be con-
sidered over all locations and parts.

The challenge facing NSD was to ad-
dress the escalating need for increased
service flexibility and inventory efficiency
by creating a new inventory control
system.

Model Development

An initial review of the PIMS capabili-
ties indicated that it would not be able to
address IBM's concerns for increased
service flexibility and inventory efficiency.
In 1983-84, researchers from IBM and the
academic team (working as consultants)
started to develop a model formulation
and a solution algorithm. The magnitude
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of the project was complicated by the fol-

lowing factors:

~— There are over 15 million part-location

combinations;

— There are over 50,000 product-location

combinations;

System control parameters must be

updated frequently (weekly) in re-

sponse to changes in the service envi-
ronment and installed base;

— The success of the system is vital to
IBM’s daily operations and can have a
major impact on its future sales and
revenues; and
Employees within the organization
could be expected to resist any
change; the existing control system
was functioning, and sophisticated
and the overall parts logistics problem
was complex.

A review of the literature showed that

most of the relevant existing multi-eche-

lon theory is based on a one-for-one re-
plenishment model structure [Feeney and

The parts inventory
maintained in this network is
valued in the billions of
dollars.

Sherbrooke 1966]. The one-for-one replen-
ishment policy is the basis of military lo-
gistics control, and represents the state of
the art for low demand spare stocking
contral systems {Sherbrooke 1968; Muck-
stadt and Thomas 1980; and Graves 1985].
While appropriate for low-demand items,
this policy does not provide adequate cost
and service performance for the wide
range of demand rates present in IBM’s
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parts environment. Moreover, these

models treat items independently and

hence product and part service interac-
tions are not captured. Finally, these
models are restricted to one demand
priority class; IBM's parts inventory sys-
tem contains multiple demand priority
classes and their explicit treatment is
necessary.

We began to solve the problem. Our
objective was to determine a stock control
policy for each location and for each part
that would minimize the expected costs
for the whole system and satisfy service
constraints for products and TCGs. The
cost function that we used included (1)
replenishment cost, (2) emergency (expe-
diting) cost, and (3) inventory holding
cost. Replenishment cost contains trans-
portation, handling, and order setup
components. A comprehensive set of in-
ventory management decisions include
(1) Reorder-point, order-up-to (s,5) stock-

control parameters for each part at
each location and echelon in the
system,

{2) Alternative sourcing network struc-
tures for each part, for both emer-
gency backup and stock
replenishment requirements, and

(3) Issuing policy that determines the
priority attached to different classes of
demand when shortages arise.

We decomposed the model development

process into three stages:

(1) A one-part, one-location model,

(2) A multi-product, one-location model,
and

(3) A multi-product, multi-echelon
model.

For the one-part, one-location problem,
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we formulated a periodic review, stochas-
tic model. It included prioritized demand
classes, shortage expediting, fixed lead
times, and two supply sourcing network
structures (one for emergency backup of
failure-induced demands, and the other
for replenishment purposes). We devel-
oped a general (s,5) stochastic inventory
control model for a single item with prior-
itized demand classes to support the solu-
tion to the location-specific service
allocation problem. The replenishment
lead times are based on the assumption
that the replenishment sources have am-
ple supplies of the required parts. An ex-
act representation of the stochastic
processes describing material flows in
such systems requires the solution of a
large-scale Markov chain for each policy
alternative. For computational efficiency,
we developed renewal theory-based ap-
proximations for both the expected cost
and service level functions [Cohen,
Kleindorfer, and Lee 1988].

Separate models can be formulated for
the case where at most one order is out-
standing (S —s>s) and where there is one-
for-one replenishment (S~ 1,5). An impor-
tant refinement to the basic single part
model involved the interpolation of these
two extreme cases for the computation of
part fill rates [Kamesam and Tekerian
1986]. For each location within an eche-
lon, we used the model to consider the
problem of minimizing expected inven-
tory-related costs for all parts used by
machines supported by that location (dli-
rectly and indirectly), subject to product
service constraints at that location. The
outputs of this problem are (s,5) values
for all relevant parts. We refer to this
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multi-product, one-location model as the
service allocation problem.

We used a greedy heuristic solution
procedure in solving the service allocation
problem. At each iteration of the algo-
rithm, increments to part stocking levels
are selected on the basis of their marginal
contributions to improving the objective
function and to meeting the service con-
straints. The effectiveness of this heuristic
is reported in Cohen, Kleindorfer, and
Lee [1988 and forthcoming], and Cohen et
al. [1989].

The multi-product, one-location model
solutions are then embedded into a solu-
tion algorithm for the overall multi-eche-
lon problem. This solution algorithm is
based on a level-by-level decomposition
method. The decomposition starts with
the locations at the lowest echelon (OLs),
where all demands are generated by

Key
E = Echelon

L = Location Index
Within Echelon

Demand
Aggregation
L3

Serve
Allocation

i

Pass-Up
Demand

{ Stop J

Figure 3: The level by level decomposition al-
gorithm links the stocking policies at higher
echelons with those of the lower echelons.
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failures of machines installed at customer
sites. At each location in that echelon, a
location-specific service allocation prob-
lem is solved. The sclutions to these
problems are then used to derive a char-
acterization of the “passed-up” demands
that are experienced at the next echelon
locations. We obtained probability distri-
butions for both emergency backup and
replenishment demands using a method
based on nonlinear regression techniques
[Cohen et al. 1986]. Given these passed-
up demand distributions, the set of loca-
tion-specific service-allocation problems
for all locations at the next higher echelon
can be solved. The procedure is then re-
peated until all echelons have been con-
sidered (Figure 3).

The level-by-level decomposition algo-
rithm does not, in general, give truly op-
timal solutions to the multi-echelon
problem. In reality, the replenishment
lead time at each location is a random
variable and depends on the stocking pol-
icies of higher echelons. By treating the
echelons one at a time, we use the as-
sumption that this lead time is constant,
that is; there is always an ample supply
of parts at the replenishment sources.
Such a solution procedure is likely to be
closer to optimality in cases where the
service requirements at all sites are high.
The appendix contains the details of the
mathematical formulation and solution
algorithms.

System Development and Implementation

Soon after we completed the initial re-
search efforts, we wrote prototype com-
puter programs to test the algorithms. We
developed an event-driven Monte-Carlo
simulator to validate the approximations
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for fill rates and costs incorporated in the

multi-echelon algorithm. These experi-

ments showed that the PAL estimates
generated by this algorithm are slightly
conservative. We compared the perform-
ance of the policies generated by the algo-
rithm against those generated by PIMS
and by the one-for-one replenishment
model of Feeney and Sherbrooke [1966] to
understand the relative cost/service effi-
ciencies. We made numerous runs based
on subsets of the logistics system loca-
tions, product lines, and parts popula-
tion. By the end of 1984, we were
convinced that these methodologies held
promise (that is; that they could be
adapted into an operational system) but
knew they would require a great effort to
develop and implement. We recognized
that integrating such a system with

PIMS would be an equally big challenge.

During the 1985-88 period we worked on

and completed the design, testing, and

installation of the new system, Optimizer.

An important first step in the Opti-
mizer project was to form a multi-func-
tional project group. The project group
members were divided into the following
teams:

—- The User Team: Members of the user
team were drawn from each functional
area that would be affected by the in-
troduction of a new parts-control sys-
tem (including information systems,
inventory and distribution, product
serviceability, and customer engineer-
ing). These team members worked on
the project on a part-time basis by at-
tending system-design sessions, re-
viewing user-acceptance tests, and
helping to write design specifications.
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— The Information Systems (I/S) Team:
This team consisted of the I/S pro-
grammers who developed code to feed
data to the model and to interface the
model output into PIMS.

— Model Development Team: This team
included an operations researcher and
computer scientist, who was also one
of the project leaders, and a mathema-
tician-scientific programmer. The for-
mer reported to the user organization
and the latter to the I/S group. Their
roles were to define the system archi-
tecture, develop highly efficient and
numerically stable implementations of
the algorithms, and integrate them
into a full-scale operational control
system to be written in PL/1.

Filling customer engineer
parts orders is a highly
efficient, paperless, and
phoneless operation.

Even though the project had the strong
support of NSD senior management, it
immediately became clear that people
within the organization had serious reser-
vations about its potential for actual im-
provement. There were also concerns
based on the complexity of the task. For
these reasons all the team leaders decided
to conduct a pre-implementation test to
quickly demonstrate the feasibility of the
multi-echelon-based algorithm and its po-
tential for improving system performance
and to identify all design problems early
enough to fix them. The project team
leaders were determined that the system
would be successfully implemented. Their
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optimism was reflected in the names
given to the three project phases well be-
fore implementation was assured. The be-
lief was instilled in all project team-
members that any problem that emerged
would have an acceptable solution, and it
was their job to find it. The system devel-
opment for Optimizer was organized into
the following overlapping phases:

— The pre-implementation test,

— The field implementation test, and

— National implementation.

Each phase began with joint application
design (JAD) sessions. In the JAD ses-
sions, the user and information systems
groups worked together to develop design
specifications. Each phase entailed devel-
oping a system that would provide code
useable for the next phase. The objective
was to minimize the amount of throw-
away code and to use the system devel-
oped for each phase as a foundation for
the next. System development involved
sizing the design specification to obtain
the required I/S resources, developing a
detailed design, coding, testing, and inte-
grating the systems.

After developing a system in each
phase, the user group and the IS group
performed tests of various modules, as
well as of the entire system. Test cases
were developed ahead of time, with pro-
grammer instructions and expected re-
sults. Fach test case was run, and the
results were documented. Test cases that
did not achieve expected results were
kept open until a user and programmer
team found the root cause and a fix.

We used the results of the user accept-
ance tests to redefine the specifications
for the next phase. To accelerate final
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implementation, we carried out the
phases in a partially parallel manner. The
user and I/5 project members conducted
reviews at each major milestone to rede-
fine the specifications, designs, and ap-
proach. These reviews were conducted

encouraged.
The Pre-Implementation Test

The system we developed in this phase
contained a minimal interface to provide
data inputs and the multi-echelon algo-
rithm without any enhancements. We did
not develop an output interface to PIMS.
Most of the major changes from the origi-
nal design occurred in this phase. Some
of these changes are of particular interest.

During the JAD sessions, we discovered
that the echelon structure was actually
more complex than the structure used in
the analytic model. In particular we dis-
covered that two installations of the same
machine type and model could share a
first-level support location and have dif-
ferent backup support locations. This was
due to the fact that in the PIMS system
the backup support structure for each
machine installation was established inde-
pendently of the other machine installa-
tions. The user team members were
adamant that such flexibility in assigning
initial and back up support locations be
maintained. Consequently, we had to de-
velop extensions to the demand pass-up
methodology and incorporate them into
the model.

The pre-implementation test was con-
ducted in early 1986. This test led to the
discovery that the value of the total in-
ventory generated by the new system was
much smaller than expected. Test team
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members poured through the output runs
until they discovered that the problem
was due to differences in criticality of
parts. Failure of some parts can cause a
machine to fail or run in a degraded
state. Other parts, such as screws, wash-
ers, covers, supplies, and filters are con-
sumed in great volumes but have no
direct impact on machine performance.
The algorithm made extensive use of
these inexpensive, nonfunctional parts to
achieve product service objectives. It was
clear that only functional parts should be
counted in computing the impact of PALs
on product service performance. The
model development team modified the
model and data structures to account for
this dichotomy in part criticality. We es-
tablished a parts classification process to
group parts on an ongoing basis.

Another problem discovered at this
stage was the churn (instability) in the
recommended stock levels from week to
week. Although stock levels are expected
to change from time to time in response
to changing failure rates and to changes
in the installed base, it is desirable to
keep the stock levels quasi-static in order
to avoid serious logistic and supply prob-
lems. We developed suitable control pro-
cedures and modified the model to take
care of the churn problem.
Field Implementation Test

In this phase, we completed all of the
functions required for implementation, in-
cluding code to interface the algorithm
into PIMS. We also developed an exten-
sive measurement system to monitor the
field implementation test. It was interest-
ing to note that by this stage all of the
project members had become ardent
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supporters of Optimizer. They all had
hands-on experience with the system and
were comfortable with it. They also had
contributed to shaping the system design.
As a result, all project members had a
strong sense of ownership. They began to
sell Optimizer to their functional areas.

After completing system coding for this
phase, we conducted a very extensive
user acceptance test. Every program
module was tested both individually and
jointly. About 400 test cases were run for
this purpose. Finally, an extensive field
implementation test went live on seven
machine types in one FDC cluster. This
test began in early 1987. Needless to say
there was much celebrating when we dis-
covered that the system worked as ex-
pected. The scope of the field test was
gradually expanded. The results were
monitored on a weekly (and then a
monthly) basis by the measurement
system.

National Implementation

In this phase we completed the devel-
opment and installation of all the func-
tions currently in place in Optimizer. The
system was able to provide the specified
service performance for all parts and loca-
tions by machine, model, and TCG. We
also completed a variety of additional en-
hancements in this stage. User acceptance
testing and final system integration went
smoothly.

Most of the project team was kept in-
tact throughout the three stages. This
helped to facilitate delivery of Optimizer
in the final stage. The project staging
helped sustain support for the project by
demonstrating concrete progress through-
out the implementation process. It also
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helped to flush out formulation and algo-
rithm problems and programming bugs
early on. As a result, very few problems
occurred when the system went live
nationally.

The final Optimizer system for national
implementation was a PL/1 based applica-
tion system consisting of four major
modules:

— A forecasting system module that con-
sists of a few programs that estimate
the failure rates of individual part
numbers in each product, and pro-
orams that combine these failure rates
with information on the machine in-
stallation base to estimate the first two
moments of the part failure probability
distributions;

A data delivery system module that
contains approximately 100 PL/1 pro-
grams that process over 15 gigabytes

i
i
i

of data to provide the basic data
inputs for Optimizer;

— A decision system that solves the
multi-echelon stock-control problem. It
is designed to handle the enormous
and varying internal memory require-
ments of the algorithms, as well as to
provide computational efficiency. The
module has its own dynamic memory
management scheme to control the al-
location and release of storage for all
the data structures. The tailored dy-
namic memory management scheme
had a dramatic impact on processing
time. Today, the decision system gen-
erates a solution in under 75 minutes
of CPU time and less than five hours
of elapsed time on a IBM 3084 CPU
(which is well under the desired pro-
cessing requirement); and
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- The PIMS Interface System, which
consists of six PL/1 programs that
serve as interfaces for the output of
the decision system and PIMS.

Optimizer is now an integral part of

PIMS and is run each week.

Impact

The implementation of Optimizer
yielded a variety of benefits.

(1) A reduction in inventory investment
required,

(2) Improved service,

(3) Enhanced flexibility in responding to
changing service requirements,

(4) The provision of a planning capability,
(5) Improved understanding of the impact
of parts operations on a customer

service,

(6) Increased responsiveness of the con-
trol system, and

(7) Increased efficiency of NSD human
resources.

These benefits can be traced to the key
advantages of the Optimizer methodol-
ogy: optimization, improved forecasting,
multi-echelon linkages, and product-part
interactions. We believe that much of the
savings resulted from the improved fore-
casting and optimization of stocking levels.

The measurement system installed dur-
ing the field implementation test phase
was used to quantify a number of these
benefits relative to a baseline derived
from the existing PIMS stocking logic.
The time-averaged value of inventory rec-
ommended by the stocking policies of
Optimizer was 20 to 25 percent below
that of the existing system. This differ-
ence was obtained along with equal or
improved levels of service. This difference
is in excess of a half a billion dollars of



COHEN ET AL.

inventory investment. NSD management,
however, decided to redeploy part of the
inventory reduction to improve the ser-
vice levels and to reduce operating costs.
Nevertheless, a conservative estimate of
the annual total inventory reduction from
operating Optimizer throughout the en-
tire network is in excess of a quarter of a
billion dollars.

In September 1988, NSD began to im-
plement strategic network changes involv-
ing facility location, sourcing of
emergency and replenishment material
flows, and service targets for critical loca-
tions. These changes included decreasing

The time-averaged value of
inventory recommended by
the stocking policies of
Optimizer was 20 to 25
percent below that of the
existing system.

the number of field distribution centers,
increasing the number of parts stations,
and increasing the fill rates at the parts
stations and outside locations. Concurrent
with the overall reduction in inventory in-
vestment, these strategic changes have
yielded
— a 10 percent improvement in the parts
availability at the lower echelons while
maintaining the parts availability levels
at the higher echelons, and
—- operational efficiency on the order of
20 million dollars a year.
Optimizer was instrumental in developing
and implementing these strategies. It did
so by providing a planning tool to evalu-
ate the potential impact of service policy
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changes for different network configura-
tions. Moreover, Optimizer also drives
the operating system used to adjust
stocking policies in response to these
policy changes.

Identifying the role of functional parts
in providing product service is an exam-
ple of the benefits derived from the im-
plementation of Optimizer. Classifying
parts according to their functionality has
led to more effective management and
measurement of product service.

The ability to run Optimizer on a
weekly basis has increased the respon-
siveness of the entire parts inventory sys-
tem. Stocking list updates, which used to
be performed monthly, are now recom-
puted weekly with each OPTIMIZER run.

Finally, for machines controlled by Op-
timizer, inventory analysts no longer have
to specify parts stocking lists for each
echelon in order to assure that service ob-
jectives are attained. These analysts can
now focus on other critical management
issues, such as inventory deployment for
new product support, and engineering
changes.

Optimizer has proved to be an ex-
tremely valuable planning and operating
control tool for NSD. It has enhanced the
effectiveness of after-sales service deliv-
ery, and as a result, it supports IBM’s
competitiveness. The full impact of
Optimizer has yet to be realized.
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APPENDIX
This appendix gives an overview of the

mathematical formulation of the Opti-

mizer problem and the associated solu-
tion algorithm. Details for the model, its
properties, and the effectiveness of the
solution algorithm are reported in Cohen,

Kleindorfer, and Lee [1985], Cohen,

Kleindorfer, Lee, and Tekerian [1986],

Cohen, Kleindorfer, and Lee [1988],

Cohen, Kleindorfer, and Lee [forthcom-

ing], and Cohen, Kleindorfer, Lee, and

Pyke [1989].

et

5 = reorder point for part j of lo-
cation k in the network, je/,
kek;

- order-up-to point for part j of
location k in the network, je/,
keK;

§ = vector of all the s, je], keK;

5 = vector of all the S, je], keK;

= target parts availability level
for product { at location k, iel,
keK;

- expected cost for part j at lo-
cation k, when the stocking
policies at all locations are
givery; and

- expected fill rate for product i
at location k, when the stock-
ing policies for all parts are
given.

The expected cost for a part at location

k depends on the stocking policies of the

same part at other locations (specifically,

locations at lower echelons that are sup-
plied by k). This is so because stocking
policies at locations in Jower echelons will
affect the incoming demand distribution
for location k. Also the expected fill rate

January-February 1990

for product i at location k is a function of
the stocking policies of all the parts that
support that product at all locations. The
stocking policies at location k determine
the parts availability levels (PALs) for all
items stored at that location. Given the
product structure, these PALs determine
a product service level for the parts re-
quirements generated by product repair
orders. The overall probiem can be stated
as a mathematical program:

Minimize 5( PZ[ duls, S) (0

subject to Yu(s, S) = PAL,, for all iel, keK.
To specify by(s, S) and (s, S), we de-
fine the following for each location k. Sub-
scripts j and k are dropped for
convenience.
CY = unit cost for each unit shipped
from location k to satisfy emer-
gency demand or direct customer
demand;
similar to above for replenishment
demand within the region sup-
ported by location k;
= similar to above for emergency de-
mand of one unit from the next
higher echelon in support of
location k;
average cost, excluding setup, for
each unit of replenishment orders
shipped to location k from higher
echelons;
setup cost for normal
replenishment;
inventory holding cost per unit per
period;
= emergency shipment and direct
customer demand to location k
during lead time L, with mean p;
and variance o;;
replenishment demand to location
k during lead time L, with mean
Hers
total demand to location k during
lead time, L, that is, Dt = D!+
D}, with mean g, variance o2, and
probability density function f(.);
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Ce = C{; - C‘;V;

Co = CY~ CY;

Yy = 7 + Di;

Y = Z + Dg;

Z = undershoot variable of stock at the
time a replenishment order is
place‘d

Prob {Z=u}= :’?.: z fr{x) for u<ts, and

Prob {Z =s}= l 2 2 frlx);

VAV hm L(/) (pwwl + o2,

Given he demand distributions to loca-
tion k (which are functions of the stocking
policies of lower echelons), we can write
dbils, 5) as a function of the (s,S) value for
part j at location k only. For a particular
part j, du(s, S,) can be approximated by
the tollowuu, function, where the sub-
«»crlpts j and k are again dropped for con-
venience [Cohen, Kleindorfer, and Lee
1988].

P“{K + (CI_T o C—}e)”(Y, —-—g)t

+ Zy—E(Z)]}

(1)
S—s + Zy, + E(Y,—s)*
+ ";u [S—s + E(Z) + 2E(s—Yy)*]

The notation X* denotes Max(0,X). The
PAL (fill rate) for this part at location k is
given by
B.u(s,S) = _ IS—s + E(Z)] )
' [§—s + Zy + E(Y,—s)*]
The ser viu? Ie:vcl L()mtraint for product 7,

:k(“‘ib) ) = .{/&Lx,;\ ; W’hel(, (3)

""" PYII%»(")K
Vil S) = {Ej—w Bi(sy,5x); that is

o

v, P
Ya = the contribution to the service of
product i from part j at location k;
mean demand per unit time of part
J in support of product i usage at
location k; and

Py =
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M; = set of all parts that are used in
product i.

A level-by-level decomposition algorithm
is used to solve problem (I). The algo-
rithm starts with locations at the lowest
echelon, which face demands generated
by part failures in customer installed ma-
chines. Hence there are no replenishment
demands at this echelon. At each location
k, the following problem is solved:
Minimize 2} bulsi Si) (In)

subject to (3), for all iel.

The solution to problem (II) utilizes a
greedy heuristic [Cohen, Kleindorfer, Lee
1988]. It is not necessary to search simul-
taneously with respect to both s and S.
This follows since the order-up-to point
can be expressed as a function of the
reorder point in the following manner
(again, the subscripts j and k are dropped
for convenience).

D(s)=5-s
= {2E [K + (Co ~ CQIE(Y; —5)"
Cu

+ ';% (Z ~E@Z)]

+ GIE(Yr =s)* + Zy ~E(2)]
+ A@) P2 —Zy —E(Yr —s)*, where

Als) = [ = (C; — CRIE(Y7 —s9)°
+ ( %} )(ZM - E(Z))

Ce — CIIE(Y, —5) *
+ ( 5 CollE( )
+ Zy — E(Z)] - K]*.

The idea behind this specification of 5 is

that, for a given s,D(s) minimizes dby. The

adjustment factor A(s) ensures the fill rate

B to be nondecreasing in s. These results

allow us to use a one dimensional greedy

heuristic to solve problem (II). The algo-

rithm uses the following steps.

(i) Sets;™ 0, S;" si + Max {1,Dy(s)}, for
all je].

(i) j° L
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(iif) Set sp s F 1 57
{1,Dylsi + D
Compute vy, =
= bulsu, »;A)

If v; = 0, then go to (iii), otherwise,
set j " j + 1L

sp + 1 + Max

Gulsi + 1, Splsy + 1))

go to (m) c)therwme, set ] " + 1.
(iv) !’)eﬁne I' = {i | (3) is not satisfied}. If
I = &, go to (vi), otherwise
continue,
(v) Compute v; = dulsp + 1, Sulsy + 1)
= byl S
Op = Wlsu + 1, Suls + 1))
ds,,k(s,k Su), for all je]; and

6)& = f—l‘ 01/&
. Yk
Determine ;' such that 7" = Min ().
| "“7 N
St.:‘t ‘gj'k". SJ' 1 C; ”(’” 1 + de

{LD;ulsp +
(vi) End.

This algorithm computes “near-opti-
mal” (s,5) values for all parts at all loca-
tions in the first echelon. The algorithm
then proceeds to the second echelon and
repeats the calculations. At the second
echelon locations, however, the incoming

1} Go to xv)

demand distributions are no longer exoge-

nously determined. These distributions

are consequences of the stocking policies

computed for the first echelon, and their
parameters must be computed explicitly.

Three kinds of incoming demands can be

seen at each location in the second

echelon:

— Replenishment demands from loca-
tions at the lower echelons that are
sourced by the second echelon
location;

~~~~~ Emergency demands generated by
parts failure from locations in the
lower echelon that are supported by
the second echelon location;

»»»»»»» Failure-induced demands from cus-
tomer machines that are supported di-
rectly by the location.

While it is possible, theoretically, to
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compute the exact distributions of these
two types of “passed-up” demands via

Markov chains analysis, approximation
methods are used in Optimizer for com-
putational efficiency. The central idea is to
estimate the first two moments of the
passed-up demand distributions for the
respective locations from the lower eche-
lon, based on parameters specific to the
respective locations. Consider a part at a
location of a lower echelon. Given the
(s,5) policy used at this location, the part
fill-rate B can be computed from (2). Let
Me, Ve = mean and variance of emer-
gency passed-up demands, respectively;
Mk, Vi = mean and variance of normal re-
plenishment passed-up demands,
respectively;

V= variance of total passed-up demands;

L=lead time of normal replenishment for

this location.

The means and variances of the passed-

up demands can be estimated as

e =(1-B)ps

M=K — N

Vi = s+ 1)L3(S ~5)
) o) ()™

Vi = Nfs+DMLM¥S~s)

M) o) () and

Ki(Vie)" (Vi)™

+iy(Ve Vi)™

where the parameters a, b, ¢, and d,, were

estimated by regression techniques from

a large number of numerical simulation

runs [Cohen, Kleindorfer, Lee, and

Tekerian 1986}.

The incoming demand distributions to a
particular location at the second echelon
are then obtained by aggregating the first
two moments from all the locations at
lower echelons that are supported by this
current location, as well as those from the
direct customer demands at the location.
The first two moments of the aggregated
demands are then used to fit a Com-
pound Poisson distribution with logarith-
mic compounding density. In this way,
the incoming demand distributions for

V,! =
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the second echelon are specified.

Similar logic is then used in progress-
ing from the second to next echelon and
so on (Figure 3).
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R. L. Sullivan, Director-Distribution,
National Service Division, IBM, 400 Par-
son’s Pond Drive, Franklin Lakes, New
Jersey 07417, writes: “We could have im-
plemented Optimizer in a manner that
addressed only the inventory investment.
We, however, applied the strengths of
Optimizer along with its decision suppor

~~

capability to make fundamental changes
to our network. This implementation re-
sulted in improvements in service level,
operating expenses and inventory invest-
ment. That is why we sometimes refer to
Optimizer as the cornerstone of our parts
logistics capability.”
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