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Abstract
Eliciting accurate information on any object (perhaps a new prod-
uct or service or person) using the wisdom of a crowd of individuals
utilizing web-based platforms such as social networks is an impor-
tant and interesting problem. Peer-prediction method is one of the
known efforts in this direction but is limited to a single level of par-
ticipating nodes. We non-trivially generalize the peer-prediction
mechanism to the setting of a tree network of participating nodes
that would get formed when the query about the object originates at
a root node and propagates to nodes in a social network through for-
warding. The feedback provided by the participating nodes must be
aggregated hierarchically to generate a high quality answer at the
root level. In the proposed tree-based peer-prediction mechanism,
we use proper scoring rules for continuous distributions and prove
that honest reporting is a Nash Equilibrium when prior probabili-
ties are common knowledge in the tree and the observations made
by the sibling nodes are stochastically relevant. To compute pay-
ments, we explore the logarithmic, quadratic, and spherical scoring
rules using techniques from complex analysis. Through detailed
simulations, we obtain several insights including the relationship
between the budget of the mechanism designer and the quality of
answer generated at the root node.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems -
Games

General Terms
Economics, Algorithms, Design, Experimentation

Keywords
Mechanism Design; Social Networks; Crowdsourcing; Peer-Prediction;
Continuous Scoring Rules

1. INTRODUCTION
Eliciting honest feedback from experts as well as lay persons is

an important problem in electronic markets and web-based plat-
forms. Decision makers often depend on feedback given by mul-
tiple individuals while making decisions. Increasingly, online ap-
plications are trying to extract knowledge from a large group of
users, which is called wisdom of the crowds [1]. The query posed
to these individuals may be objective, the answer of which can be
verified to be correct or wrong at a future point of time, for exam-
ple: which soccer team is going to win World Cup? Who is going
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to be the next president of a particular country? What will be the
stock price of product X in next month? etc. For these questions, it
is easy to compare the feedback obtained with the correct answer.
Prediction markets [2] precisely serve this purpose. The situation
becomes more interesting when the question asked is hypothetical,
that is, when the answer to the question is subjective rather than
objective. Examples of such questions include: How do you rate
the restaurant X? Is it good for government of X to adopt policy Y?,
What is the source of anomaly in this system?, etc. These type of
queries are especially relevant in online reputation systems, where
users leave feedback about quality of some product or service. In
our work, we focus on the latter type of questions. Our goal is to
use the wisdom of the crowd or a social network to elicit a high
quality answer to such a question.

The problem studied in this paper has a wide range of applica-
tions. For example if a social planner (for example, government) is
interested in collecting opinion about a new bill/policy, the planner
can use binary signals: good or bad and obtain collective feedback
from experts and citizens by incentivizing them in some appropriate
way. On the other hand it can be used to detect source of anomaly
in a system by the administrator: suppose there are M possible
sources of anomaly. Each subsystem can play the role of a node in
the tree and report a probability distribution over M sources.

The success of such a system which tries to elicit opinions from
individuals faces two challenges. Firstly it has to ensure that users
put in enough effort to get the report, because reporting feedback
does take time and effort. For example in order to provide a review
about a product, one has to first buy and use the product or at least
have enough knowledge about the product. Also the buyers have to
understand the rating scale. Again some manual effort is involved
in preparing and submitting the report. If no explicit reward is given
to the agents, then it is possible that they provide feedback only
when they have some ulterior motives, which results in a biased
feedback [3]. The second challenge is to guarantee honesty among
the agents. Rational agents try to maximize their utility and it may
not always be a best response to report the truth. To overcome the
first challenge, participating agents must be rewarded more than
their cost of reporting for giving feedback, and to overcome second
challenge an honest feedback must receive more reward than any
distorted feedback.

The peer-prediction method [4] is one of the known efforts in
this direction but is limited by its applicability to only situations
involving agents at a single level. In this paper, we non-trivially
generalize the peer-prediction mechanism to the setting of a tree
network of participating nodes that gets formed when the query
originates at a (root) node and propagates to different nodes in the
social network or crowd in a hierarchical fashion through forward-
ing. The feedback to this query received from the nodes in the tree
must be honest and accurate, and the feedback also must be aggre-
gated in a hierarchical fashion to generate a high quality answer at
the root level. In order to motivate the nodes to put in sufficient ef-



fort and report truthfully, we propose a tree-based peer-prediction
framework using proper scoring rules for continuous probability
distributions. In this framework, we prove that honest reporting
is a Nash Equilibrium (NE) when prior probabilities are common
knowledge of the nodes in the tree and the observations made by
the sibling nodes are stochastically relevant. We investigate the
application of this mechanism using three popular proper scoring
rules namely logarithmic, quadratic, and spherical rules. We use
techniques from complex analysis to compute payments derived
from these proper scoring rules. We validate our findings through
simulations and obtain several insights. In particular, we study the
relationship between the budget of the mechanism designer and the
quality of answer generated at the root node.

1.1 Related Work
There have been several recent studies on web-based crowd-

sourcing, where the objective is to elicit opinions from a popula-
tion and incentivize them to contribute to the best of their abili-
ties. Miller, Resnick and Zeckhauser [4] propose peer-prediction
rule where a central body (information aggregator) collects feed-
back from a number of strategic agents on some particular prod-
uct/object. Then each agent is scored based on her report and the
report submitted by her reference rater. The authors prove the ex-
istence of an incentive-compatible payment scheme where honest
reporting by all the agents forms a Bayesian Nash Equilibrium.
Our work non-trivially generalizes this mechanism to a general hi-
erarchical setting. In our setting an agent who is contacted by the
central body can also make contacts to other agents who are known
to him to get the answer. Our model resembles the query incentive
network model (Kleinberg and Raghavan [5]) where request for in-
formation propagates along the paths in the network. This connects
the agents having the required information to those seeking this in-
formation. The underlying idea is to use the contact-links present
in an underlying social network to find the answer of a hypothetical
question. Figure 1 shows the network structure in the case of the
peer-prediction method and the network structure that we deal with
in this paper.

Figure 1: Generalization of the peer-prediction model

There are two major differences between our setting and the set-
ting used in peer prediction or other methods designed for reputa-
tion systems. The first difference is that, in our model, the network
will have multiple levels. In other words, the central information
aggregator can be connected to a number of nodes each of which
can be connected to another set of nodes and so on. The added
advantage with this setting is that there may be users who are not
directly reachable from the central body, but can contribute valu-
able feedback to the system. Also, some node directly connected to
the central body may not have enough information about the query
and may be willing to seek feedback from its own contacts. So, the
network in peer prediction can be thought as a special case of our
network with just one level.

Secondly, in the case of peer prediction, the role of the reputation
mechanism is signaling and each agent reports a single signal about
the product indicating his perception about the product. But there
are situations where it is easier for a user to report a distribution
on the signals. For example suppose the posed question is will
you vote in the next presidential election?, and available signals are
definitely, probably, probably not, definitely not. A user may prefer
to report definitely with 50%,probably with 25%, probably not with
25% and definitely not with 0%, instead of choosing a single signal
for answering. Clearly, reporting a single signal is a degenerate
case of reporting a distribution. So, in our model we allow users
to report a probability distribution over a set of available signals,
making it much more powerful than the peer-prediction setting.

Another issue with the peer-prediction scheme is that the scaling
of rewards can lead to arbitrarily high payments causing loss to the
reputation mechanism. Jurca and Faltings [3] addressed this issue
and proposed an automated mechanism design technique to com-
pute the optimal payments that minimize the total budget required.
It offsets both the cost of reporting and the external incentive an
agent can achieve by reporting dishonestly. They also introduce
the use of several reference raters instead of one. Another aspect
of peer-prediction is that it makes the assumption that every rater
has common knowledge of the prior probability distribution over
the types of the product. Prelec [6] presents Bayesian Truth Serum
(BTS) mechanism which relaxes this assumption. The work still
assumes that there is a common prior but the mechanism designer
need not know this. Here in addition to an information report, every
agent also has to give a prediction report, which reflects his belief
about the distribution of the information reports submitted by the
entire population. In this mechanism, an agent gets paid more when
its information report is more common than collectively predicted
or in other words when his information report is “surprisingly com-
mon”. On the other hand, when the prediction report matches with
the true distribution of the population, his reward is maximized.
One requirement for this mechanism to be incentive compatible is
that the number of participating agents should be very large. In ad-
dition, the reward received by an agent may be negative and BTS
is not numerically robust for all inputs.

Witkowski and Parkes [7] present a mechanism built on Bayesian
Truth Serum (BTS) which relaxes the requirement of very large
number of participating agents. Here, reporting scheme is same
as BTS, but with the restriction that it applies to elicit only binary
information. Using quadratic scoring rule, they propose a strictly
incentive compatible mechanism for n ≥ 3.

Jurca and Faltings [8] address reporting incentives for online
opinion polls. Here, there are only two possible answers available
for the raters, and current distribution of the submitted reports is
published to the remaining agents. This mechanism requires the
agents to report only the information report, but it is not incentive
compatible. Jurca and Faltings [9] allow a small deviation in the
prior probabilities known to the agents rather than it being com-
mon knowledge. They also prove that no reward mechanism can
be strictly incentive compatible when the mechanism designer does
not know the prior information of the participants. In [10], differ-
ent scenarios, where some or all the agents can collude are analyzed
using automated mechanism design techniques.

Kleinberg and Raghavan([5]) propose the branching process model
for query incentive networks. In this setting, a query is originated
at the root of an infinite d-ary tree where each node possesses the
answer to the query with probability 1/n, where n is the rarity of
the answer. For any general node v, if r is the reward offered by
its parent and fv(r) is the fraction of r which v offers to its chil-
dren, then the payoff for node v is (r− fv(r)− 1). They analyzed



the Nash Equilibrium in this model and also investigated the rela-
tion between the branching factor of the network and the reward
required to find the answer with a constant probability.

Dikshit and Narahari [11] consider the issue of the quality of the
answer in query incentive networks. They define a quality con-
scious model where the incentive is modulated based on the quality
of the answer. They show the existence of a unique Nash Equilib-
rium and study the impact of quality of answer on the growth rate
of the initial reward with respect to the branching factor of the tree
network.

A fundamental difference between the model used in query in-
centive networks [11, 5] and our model is that in their model the
query has a specific answer and whenever a node is found to be
knowing the answer, searching for answer terminates and that an-
swer only is propagated to the root, so there is no need for infor-
mation aggregation. But in our model the objective is aggregate
opinions from a population while ensuring the feedback is honest,
so information aggregation plays an important role here.

Many of the studies above use proper scoring rules to set up the
mechanisms. Such scoring rules have been used in a wide variety
of ways, for example, see Boutilier [12], Bickel [13]. In our study
here, we use proper scoring rules for continuous distributions, in
particular the logarithmic, quadratic and spherical scoring rules.

1.2 Contribution and Outline
The various contributions of this paper are described below.
• In Section 2, we non-trivially generalize the peer-prediction

method [4] to the case of a tree network. Further, in the pro-
posed method, we use proper scoring rules for continuous dis-
tributions to enable the participating nodes to report probability
distributions rather than discrete signal values. The key reason
to consider tree networks is the fact that when a query originates
at a (root) node and propagates to different nodes in the crowd
or social network through forwarding, a hierarchy of participat-
ing nodes gets naturally formed. In this framework, we prove
that honest reporting is a Nash Equilibrium when prior probabil-
ities are common knowledge among the nodes in the tree and the
observations made by sibling nodes are stochastically relevant.
• We pick three popular strictly proper scoring rules - logarithmic,

quadratic, and spherical rules - to investigate the application of
the proposed tree based peer prediction mechanism. In Section 3,
we develop computational procedures to compute payments de-
rived from these rules using techniques from complex analysis.
• In Section 4, we carry out detailed simulations using an under-

lying social network of 100 nodes and validate our findings. We
obtain several insights, in particular, we study the relationship
between the budget of the mechanism designer and the quality
of answer generated at the root node.

2. MODEL AND PROBLEM FORMULATION

2.1 Peer Prediction Model: A Quick Review
We first outline the peer-prediction method proposed by Miller,

Resnick and Zeckhauser [4]. Consider a product which a number
of raters have experienced and they are able to provide their feed-
back about this product. Each product has a type associated with
it and we assume the number of product types to be finite and be
indexed by t ∈ {1, . . . , T}. There is a prior probability assigned
to type t which is denoted by p(t) and it is assumed to be a com-
mon knowledge among the raters. We assume p(t) > 0 for all t.
Let S = {s1, . . . , sM} denote the set of possible signals that a rater
can observe. Si denotes the random variable representing the signal
for rater i, and sim denotes the event {Si = sm}. Let f(sm|t) =

Pr(Si = sm|t) > 0 for all sm and t and
∑M
m=1 f(sm|t) = 1 for

all t. This f(sm|t) is assumed to be common knowledge. Assume
that raters are risk neutral and seek to maximize their utility. Each
rater has a perception about the product and it is assumed to be pri-
vate information. Let τi(a) be the payment made to agent i where
a is the vector representing all the reports made by all the raters of
i. The report by any node will be a probability distribution on the
set S. We denote the report by i-th node as āi ∈ ∆(S). Miller et
al. [4] show that for any two distinct buyers i and j, Si is stochas-
tically relevant for Sj in their mechanism. That is, for any two
distinct realizations si and ŝi of Si, there exists some realization
sj of Sj such that P (Sj = sj |Si = si) 6= P (Sj = sj |Si = ŝi).
If Si is stochastically relevant for Sj , then rater i’s signal provides
some information about the distribution of rater j’s signal. So, if
it is known that rater j is reporting truthfully, then eliciting rater
i’s information is reduced to eliciting his belief about the distribu-
tion of j’s signal. Finally they prove that if the payments are made
according to the following rule then truthful reporting becomes a
strict Nash equilibrium of the simultaneous reporting game:

τ∗i (āi, ār(i)) = R(ār(i)|āi)

where r(i) denotes the reference rater of rater i and r(i) 6= i, R is
a strictly proper scoring rule.

2.2 Need for Continuous Scoring Rules
In this setting, as the nodes are able to report probability vec-

tors as their report, there is a need to use the continuous analogs of
the strictly proper scoring rules for calculation of the payment for
any node (i.e., for computing τ∗i (āi, ār(i)), ∀i). In this paper, we
work with the continuous analogs of three popular and highly stud-
ied strictly proper scoring rules namely logarithmic, quadratic and
spherical rules. The continuous logarithmic, quadratic and spheri-
cal scoring rules (Matheson and Winkler [14]) are given below:

S(q(x)) = ln(q(x)) [ Logarithmic scoring rule ]

S(q(x)) = 2q(x)−
∫
u∈X q

2(u)du [ Quadratic scoring rule ]

S(q(x)) =
q(x)√∫

u∈X q
2(u)du

[ Spherical scoring rule ]

where x is the revealed value of the variable of interest (in the con-
text of this paper, this represents a probability vector over the sig-
nals) and q(·) is the corresponding density function that is assigned
by the subject.

2.3 Problem Formulation
We have a mechanism designer who is interested to know the

rating of a particular object (product, service, person etc.) using a
network of social contacts who have experienced the product. As
explained earlier, let the number of quality ratings be finite and be
indexed by t ∈ {1, . . . , T}. Let p(t) be the prior probability for
the object of being type t. We assume that the prior probabilities
are common knowledge in the network. In this setting, it is a three-
step process for eliciting the quality of the concerned object. We
describe the three steps below.

2.4 Contract Signing
In the first step, the network is created by making contracts in the

following way. It starts from the root node representing the entity
interested to get feedback from the network. The root node agrees
to offer a reward, A, to each of its children. Now they become leaf
nodes. Then each of these children has two options: either it can
report by itself or it can seek help from its own children by contact-
ing them and propagating the query. In order to get help from any



child, it has to promise a fraction of its own reward to that child. If
that child agrees to acquire and report feedback with offered reward
then it makes a contract with its parent. Initially, all the children of
a parent are promised equal payment. The same process contin-
ues with current leaf nodes and they may in turn become parents
of other nodes. The process stops when one of the two things oc-
cur: there is no node which wants to contact any of its children,
or when none of the contacted children agrees to sign the contract
with offered reward.

2.5 Information Propagation
After the first step, our network consists of only those nodes who

have signed the contract with their parent and the root node itself.
Propagation of reported signal starts from the leaf nodes. Each leaf
node reports its observation to its parent, then the parent “appropri-
ately” aggregates all the reports from its children to a single report
which becomes its observation (belief about the object). The exact
way of aggregation is discussed later. Then this parent also reports
back to its parent. Finally the root node receives reports from its
first level children and aggregates them to the final answer of the
query. Our objective is to make this final result close to a distribu-
tion which reflects the true type of the object concerned.

2.6 Reward Propagation
In step 1, only contract signing was involved and there was no

monetary transfer. Payment is done in a top-down manner starting
from the root node. It is not possible for the root node to reach
out to every node in the tree and make payment, so payment is
done in a decentralized manner where a node gets paid by only its
parent. When we make actual payments, we would like to do it in
a way that honest reporting results in more reward than dishonest
reporting. So, we have to ensure that for every parent node, all its
children are reporting truthfully. The payments are computed by
the parent using the scores received by the children based on their
reports. This is discussed later in detail.

We make the assumption about the network that one node can
be child of at most one parent, which prevents formation of any
cycle in the network. Under the above setting, the only source of
raw information is the leaf nodes, because parent nodes are only re-
sponsible for aggregating information received from their children.
But this restriction can be relaxed by making the following small
change to the setting. We assume every parent node also wants
to contribute information, and it does so by having a dummy child
which will report that information as perceived by the parent. The
only difference between this dummy child and any other child is
that a dummy child does not take part in contract signing and it
does not have to be rewarded by the parent, though during aggre-
gation of reports its report is taken into account.

3. TREE-BASED PEER PREDICTION
MECHANISM

We now describe the proposed tree-based peer-prediction mecha-
nism.

3.1 Reporting Scheme
Let S = {s1, s2, . . . , sM} be the set of signals that a node can

observe about the object’s type. The report by any node will be
a probability distribution on the set S. We denote the report of
i-th node by āi ∈ ∆(S). Let f(ā|t) > 0 denote the probabil-
ity density of a node reporting ā given that true type of the ob-
ject is t. So, we need following property to be satisfied: ∀t ∈
{1, 2, . . . , T},

∫
ā∈∆(S)

f(ā|t) = 1,

3.2 Payment Scheme
Let us consider any parent node having I children, indexed 1 to

I . We employ the peer-prediction method at each parent to ensure
truthful reporting by children. So, the score given to i-th child is

τi(āi, ār(i)) = R(ār(i)|āi)

whereR(p|r) is a function derived from any strictly proper scoring
rule (such as given in Section 2.2) and r(i) is the reference function
given by r : {1, 2, . . . , I} → {1, 2, . . . , I}.

Theorem 1. The above mentioned payment ensures that all the
children reporting their true feedback is a strict Nash Equilibrium
when, for every parent,
• For any child x of that parent r(x) 6= x.
• If i is a child of this parent, f(āi|t) is a common knowledge

among the siblings of i.
• If i and j are any two children of this parent, and their observa-

tions are āi and āj , then āi is stochastically relevant for āj .

PROOF. Assume that, except the i-th child, all the other children
are truthful, and for any j-th child, its observation (either obtained
directly from the experience with the object or by aggregating ob-
servations of children) is given by āj . The i-th child reports b̄. As
āi is stochastically relevant for r(i)’s report, the expected payoff
for the i-th child will be

Eār(i) [τ(b̄, ār(i))] =
∫
ār(i)∈∆(S)

R(ār(i)|b̄)g(ār(i)|āi) (1)

g(ār(i)|āi) denotes the probability that r(i) reports ār(i) given that
i has reported āi, and g(ār(i)|āi) can be computed with the knowl-
edge of f(ār(i)|t), f(āi|t) and p(t) for all t ∈ {1, 2, . . . , T}. RHS
of expression in Equation 1 can be written in the following form:∫

x∈X S(q(x))h(x)dx (2)

where x = ār(i), X = ∆(S), q(·) = g(·|b̄), h(·) = g(·|āi) and
R is such that S(q(x)) = R(ār(i)|b̄), and S is a strictly proper
scoring rule in continuous probability distribution of x (such as
given in Section 2.2). From the property of proper scoring rule,
we get

∫
x
S(q(x))h(x)dx is uniquely maximized when q(x) =

h(x), ∀x ∈ X . Hence, the expected payoff will be uniquely maxi-
mized when b̄ = āi, i.e., when i-th child reports truthfully.

4. COMPUTATIONAL ISSUES
In this section, we discuss some computational issues and de-

velop computational procedures for calculating payments based on
the proposed tree-based peer-prediction mechanism. To recall, Ta-
ble 1 presents the relevant notation used in the paper.

4.1 Computation of g(ār(i)|āi)
For this computation, we can assume the index does not matter

i.e., g(āi|āj) does not depend on i or j, it only depends on the
values of āi and āj .

We calculate g(ā|b̄) as g(ā|b̄) =
∑T
t=1 f(ā|t)Pr(t|b̄) where

Pr(t|b̄) = f(b̄|t)p(t)
f(b̄)

and f(b̄) =
∑T
t=1 f(b̄|t)p(t)

4.2 Computation of f(ā|t)
This f(ā|t) is a common knowledge and it needs to satisfy∫
ā∈∆(S)

f(ā|t) = 1 for all t because this quantity represents a
probability density function. We assumed that it follows Dirich-
let distribution. But the problem of directly using Dirichlet dis-
tribution is it assigns probability 0 to any event having 0 at some



Symbol Meaning
∆(S) Set of all possible probability distributions over signal set S
āi Report by agent i
ā, b̄ Elements from the set ∆(S)

p(t) Prior probability for the object to be of type t
f(ā|t) Probability density of reporting ā given that true type of object is t
r(i) Reference Rater of i-th child

Table 1: Important Notations
component of ā, but some rater may prefer to assign zero probabil-
ity to some component(s) of their reported distribution. To avoid
this problem we first transform the probability vector ā to c̄ where

c̄i = eā
i∑M

j=1 e
āj

where c̄i represents the ith component of c̄. This

mapping can easily be verified to be one-to one, and it ensures c̄ is
a probability distribution having all positive entries. The only place
where we need to use f(ā|t) is computation of g(ār(i)|āi), so here
we first transform both ār(i) and āi, then use them for calculation.

4.3 Computation of Scoring Rules
As we can see from the definitions in Section 2.2, computing the

strictly proper scoring rules involves two parts:

• Computation of q(x)

• Computation of
∫
x∈X q

2(x)dx

We will examine how to compute these terms in the next section.

4.3.1 Computation of q(x)
From the proof of Theorem 1, we know that q(x) = g(x|b̄).

q(x) = g(x|b̄) =
∑T
i=1

(
f(x|ti)Pr(ti|b̄)

)
=
∑T
i=1

[
f(x|ti)

( f(b̄|ti)p(ti)∑T
i=1 f(b̄|ti)p(ti)

)
︸ ︷︷ ︸

Constant (denote as c(ti))

]
=
∑T
i=1 (f(x|ti)c(ti))

4.3.2 Computation of
∫

x∈X
q2(x)dx

∫
x∈X

q2(x)dx =
∫
x∈X

[∑T
i=1 (f(x|ti)c(ti))

]2
dx

=
∫
x∈X

∑T
i=1 (f(x|ti)c(ti))2 dx

+ 2
∫
x∈X

∑
i<j (f(x|ti)f(x|tj)c(ti)c(tj)) dx

=
∑T
i=1

∫
x∈X

(
f2(x|ti)c2(ti)

)
dx

+ 2
∑
i<j

∫
x∈X (f(x|ti)f(x|tj)c(ti)c(tj)) dx

(3)

From our assumption, ∀i, f(x|ti) follows a Dirichlet distribution.
The expression for probability density function of a Dirichlet dis-

tribution is given by f(x|ti) = 1
B(αi)

(∏K
i=1 x

αij−1

i

)
where αi is

a vector of length K which represents the parameters of Dirichlet
distribution f(x|ti) corresponding to type ti. αij represents the jth
component of the vector αi. By the definition of Dirichlet distri-
bution, we need αij > 0, ∀i,∀j. Note that K represents the length
of the probability vector reported by a node in the network which
is also equal to the number of possible signals that can be observed
by the nodes in the network. B(αi) is the normalizing constant
which is defined to be the multinomial Beta function, which can be

expressed as B(αi) =

( ∏K
j=1 Γ(αij)

Γ(
∑K
j=1 α

i
j)

)
where Γ(·) is the Gamma

function. n is an integer and z is a complex number with a positive
real part. The (complete) gamma function Γ(n) is defined to be an
extension of the factorial to complex and real number arguments.
Substituting in Equation 3,

∫
x∈X q

2(x)dx =
∑T
i=1

((
c2(ti)

B2(αi)

) ∫
x∈X

(∏K
j=1 x

(2×(αij−1))
j

)
dx︸ ︷︷ ︸

(i)

)

+2
∑
i<j

(( c(ti)c(tj)

B(αi)B(αj)

) ∫
x∈X

(∏K
k=1 x

(αik+α
j
k
−2)

k

)
︸ ︷︷ ︸

(ii)

dx
)

So, in order to compute the LHS, we need to evaluate (i) and (ii)
which are basically integrals over a (K − 1) dimensional simplex.
In order to do this, we will use some techniques from complex
analysis to get a closed form expression for (i) and (ii). To keep
the analysis simple, we will consider the case where K = 3 and
evaluate the integral∫

x1

∫
x2

∫
x3

xα1−1
1 xα2−1

2 xα3
3 dx1dx2dx3 (4)

where α1, α2, α3 > 0 and (x1, x2, x3) ∈ X where X is the 2
dimensional simplex i.e., x1, x2, x3 ≥ 0 and x1 + x2 + x3 = 1.
It can been easily seen that (i) and (ii) can be basically reduced to
the above form (i.e., whenK = 3) and hence, evaluating the above
integral will help us to evaluate

∫
x∈X

p2(x)dx which, in turn, solves

the problem of evaluating the quadratic and spherical scoring rules
given in Section 2.2.

4.3.3 Computation of
∫
x1

∫
x2

∫
x3

xα1−1
1 xα2−1

2 xα3
3 dx1dx2dx3

As noticed above, this computation requires an evaluation of an
integral over a simplex. We use some techniques from complex
analysis ([15]) to evaluate this integral. We define a Delta function
as follows δ(1−x1−x2−x3) = 1 if (1− x1 − x2 − x3 = 0), δ(1−
x1 − x2 − x3) = 0 otherwise

(4) =
∞∫

x1=0

∞∫
x2=0

∞∫
x3=0

xα1−1
1 xα2−1

2 xα3
3 δ(1−x1−x2−x3)dx1dx2dx3

We know that the delta function can be expressed as a Fourier trans-
position in the following way

δ(x) =
1

2π

∞∫
−∞

eiaxda where a is the Fourier variable

Applying this and simplifying, we get

(4) =
1

2π

∞∫
−∞

eia
∞∫

x1=0

xα1−1
1 eiax1dx1

∞∫
x2=0

xα2−1
2 eiax2dx2

∞∫
x3=0

xα3
3 eiax3dx3da

Making the substitution ia = −τ and simplifying we get

(4) =
1

2πi

i∞∫
−i∞

eτt
∞∫

x1=0

xα1−1
1 eiax1dx1

∞∫
x2=0

xα2−1
2 eiax2dx2

∞∫
x3=0

xα3
3 eiax3dx3dτ

∣∣∣∣∣
t=1

We know that Laplace Transform (LT) for a function f(t) is

L(f(t)) =
∞∫
0

f(t)e−stdt = F (s) where s is the L.T. variable



By substituting s = −ia where a is the Fourier variable, we get

(4) =
1

2πi

i∞∫
−i∞

eτtL
(
x

(α1−1)
1

)
L
(
x

(α2−1)
2

)
L
(
x

(α3)
3

)
dτ

∣∣∣∣∣
t=1

We know that L
(
pβ
)

= Γ(β+1)

sβ+1 where s is the L.T. variable. Sub-
stituting in the above expression and using the property of Gamma
functions namely Γ(β + 1) = (β × Γ(β)), we get

(4) = α3

∏3
i=1 Γ (αi)

1

2πi

i∞∫
−i∞

eτt
1

τα1+α2+α3+1
dτ

∣∣∣∣∣
t=1︸ ︷︷ ︸

(a)

(a) can be identified as the inverse Laplace Transform of
F (τ) = 1

τ(α1+α2+α3+1) . We know that

L−1 (F (τ)) =
1

2πi

i∞∫
−i∞

eτtF (τ) dτ

By using properties of Laplace Transforms, it can be shown that

L−1

(
1

τ (α1+α2+α3+1)

)
=

1

Γ
(
1 +

∑3
i=1 αi

)
Substituting the above, we get the final expression for (4) as below

(4) =

((
α3∑3
i=1 αi

)
×

(∏3
i=1 Γ (αi)

Γ
(∑3

i=1 αi
)))

Note that the above result can be extended to any finite value of K.

4.4 Rank Order Aggregation of Answers
Our method ensures that every parent will truthfully report its

belief which is formed after aggregating reports from children. So,
a parent is free to use any aggregation method as long as it correctly
captures its true belief. The aggregation method used in our imple-
mentation is the following: While evaluating every child, the parent
assigns a score based on a continuous scoring rule to every child.
If this score is high it in some sense means that this current child’s
report is helping to make consensus among reports (since the ref-
erence of this child is selected randomly from other children). So,
we assign higher weightage to a report with higher score than a re-
port with a low score. One approach is to simply take the weighted
average based on the score values of all the reports. But there is
an issue that needs to be carefully handled. Some of the standard
scoring rules like the logarithmic and quadratic scoring rules can
provide scores which are negative. To circumvent this problem, we
generate a rank order among the children which is induced by the
scores generated. If there are m children whose reports need to
be aggregated, then the highest ranked child gets the highest rank
count of m, the next highest child gets a rank count of m − 1 and
so on. Now, we take a weighted average of the reports generated
by the children based on the squares of the rank counts of the chil-
dren. We do the squaring of the rank count in order to induce a
non-linear importance to the children. In general, any such mono-
tone function can be used for computing the rank counts of the
children. Thus, the resulting weighted average vector is guaranteed
to be a probability distribution as this vector is essentially obtained
by take linear combinations of probability vectors from a M − 1
dimensional simplex where M is the number of possible signals
that a node can observe. Note that the assumption of every node
(including parent nodes) contributing information and every parent
node having a dummy child ensures that every parent node has at
least two children. Hence it is always possible to find a reference
rater for every rater.

5. EXPERIMENTAL RESULTS
5.1 Setup

We assume a social network of size n which is modeled as a ran-
dom network with edge density γ. For all our simulations, we fix
n = 100, γ = 0.2. This means that there is a social network of 100
nodes which has roughly 20% of the possible edges in it. We des-
ignate a root node which acts as the mechanism designer interested
in an accurate answer to a query. The root has a budget amount
which it is willing to pay to its children. This is the total amount
of money distributed throughout the entire network. We call this
amount initialReward. As explained earlier, a tree sub-network is
generated from the social network starting with the root during the
contract signing phase. Basically, this tree consists of all the nodes
who are interested in providing an answer to the query of the root in
return for some payment promised by their corresponding parents.

We also define a quantity called confidence for every node ex-
cept the root node. This confidence denotes how certain a node is
about its answer for the query. We assume confidence is normally
distributed with mean µc and variance σ2

c . There is a threshold for
confidence denoted by tc, such that if a node has confidence greater
than or equal to tc then it prefers to answer by itself instead of for-
warding the query to its children, in which case it does not have
to share any reward with children. In order to simulate contract
signing, we assume every node has an expectation from its parent
which is modeled as a normal random variable with mean equal
to a parameter basicThrFee and variance which is inversely related
to the confidence of the node. We set basicThrFee = 50 in our
simulations. This ensures that the expectation amount of a node
monotonically increases with its confidence. When the amount of-
fered to a child node is greater than or equal to its expected amount
it signs the contract. The excess amount that a node has after sub-
tracting expected reward from reward promised by its parent node,
is, in turn, offered to its children. A node becomes a leaf node when
either it decides not to forward the query further or it does not have
enough excess reward to hire any children.

5.2 Parameters and Metrics
In all our simulations, we used T = 2 i.e., there are two types for

the object say High and Low, and M = 4 i.e S = {s1, s2, s3, s4}.
As explained earlier, S represents the possible signals that a node
can observe. So, every report ā is an element from ∆(S) (sim-
plex of dimension 3). We set p(High) = 0.7 and p(Low) = 0.3
which denotes the prior probabilities on the product type which is
assumed to be common knowledge. We assume there is a mapping
from set S to the set {High, Low}, such that corresponding to ev-
ery element in S there is a unique element in {High, Low}. We
assume, under this mapping, s1 and s2 correspond to High, and s3

and s4 correspond to Low. So, if the true type of the object is High
then the correct answer at the root would be a vector whose first
two components sum up to 1 and other two components are zero.
Similarly, for true type Low, the correct outcome would be a vector
whose last two components sum up to 1 and other two components
are zero.

With respect to report generation by the individual nodes, we
note that nodes in the tree network perceive the object with some
noise and this noise is assumed to follow multivariate normal dis-
tribution with mean [0, 0, 0, 0] and covariance matrix K ∗ nc ∗ I4,
where I4 is the 4× 4 identity matrix, K is a constant denoting the
noise level and nc depends on the confidence of the node (the more
confident a node is the smaller will be the value of its nc).

We define a metric, prediction Accuracy ∈ [0, 1], as the sum
of the components of the final report received by the root node
corresponding to the true type. For example, if the true type is



High and the final answer received at the root is the distribution
[0.3, 0.4, 0.2, 0.1], then accuracy of this answer is 0.7.

In all our simulations, initialReward is increased from 100 to
1000 in steps of 100, next it is increased from 1000 to 10000 in
steps of 1000 and finally, 10000 to 100000 in steps of 10000. Due
to space constraints, we will provide only a selected portion of the
results. The rest of the results exhibit similar trends.

5.3 Contract Signing
We vary initialReward to simulate the process of generation of

a tree keeping other parameters fixed. We set µc = 0.5, σc =
0.5, tc = 0.8. We generate 1000 tree samples for every value of
initialReward and measure the average of these three quantities:
total number of nodes, number of leaf nodes and height of the tree.
We provide 95% confidence interval (CI) guarantees on the plotted
values. The details are shown in Figure 2. As per intuition, we
can observe that all these three parameters are monotonically in-
creasing with initialReward. This is due to the fact that if the root
node has more budget then it can (i) hire more children and/or (ii)
give higher amount of money to each child so that the children in
turn can form larger subtrees. This relationship between the size
of the network and budget (also termed as initialReward in the rest
of the paper) can help the mechanism designer (i.e., the root node)
to get an estimate of the total number of participants who might be
willing to undertake the task. We now examine the important simu-
lation parameters and metrics which are relevant to the information
generation and aggregation process on the generated tree network
of participating nodes.

Figure 2: Growth of the tree with initialReward

5.4 Information and Reward Propagation
First, we increase initialReward keeping other parameters fixed.

We set µc = 0.5,K = 1. We run our simulations for various
values of initialReward as explained earlier. For every value of ini-
tialReward, we simulate the three steps mentioned in Section 2.3.
We run the tree generation (or contract signing), information prop-
agation and reward propagation 1000 times and take the average
of the predictionAccuracy at each run. As we are dealing with ran-
dom processes, we need to compute the confidence interval for each
(initialReward, predictionAccuracy) pair. Figure 3(a) plots the pre-
dictionAccuracy obtained for different values of initialReward (or
budget) for (σc = 0.1). Note that this figure is a double axis plot
with a main outer axis and an inner inset axis. The outer axis plots
values of predictionAccuracy for initialReward from 100 to 10000.
However, as the behavior at lower values is not clearly observable
from this plot, we use the inner inset axis to zoom in to the range
of low initialReward values from 100 to 1000. Figure 3(b) is also
plotted in a similar way but changing the variance (σc = 0.2) pa-
rameter of the confidence random variable. We now make the fol-
lowing some observations based on these figures.

• As observed from the outer axis of the two figures, the predic-
tionAccuracy initially increases with initialReward and saturates
for higher values of initialReward. The saturation can be at-
tributed due to the noise perceived by the nodes of the network
which is representative of the inherent ‘wisdom’ of the social
network of the mechanism designer.
• The predictionAccuracy level is higher for higher value of σc for

some fixed value of initialReward. This is observed clearly for
lower initialReward values as given in the inset figures of Fig-
ure 3(a) and Figure 3(b). This observation can be explained as
follows. We keep the threshold for not hiring children tc fixed.
So, as σc increases, there will be more number of nodes not hav-
ing any children by choice. These nodes will report all by them-
selves and the noise present in their report is less as their con-
fidence high. The predictionAccuracy of the answer is higher
when number of such nodes is higher. Thus, when the crowd is
heterogeneous i.e., there are both experts and laypersons in the
crowd, increasing initialReward causes higher increase in pre-
dictionAccuracy than in case of a homogeneous crowd.
• The rate of increase of predictionAccuracy with initialReward is

high when σc is high for lower initialReward values as shown in
the inset figures of Figure 3(a) and Figure 3(b). We have seen
that number of nodes in the tree is monotonic in initialReward
(Figure 2). So, when the root has low initialReward, the total
number of nodes in the tree is low. Thus, there is an increased
risk for the root and there is a good chance that a fair percentage
of nodes are reporting with high noise and the quality of the final
answer is low. This risk will increase when σc is high. But when
total number of nodes is larger effect of higher σc diminishes
resulting in reduced risk and predictionAccuracy increases.
• It requires more initialReward to saturate predictionAccuracy

when σc is higher. This indicates that more investment is re-
quired on the part of root node to get optimal solution when the
heterogeneity in the crowd is more.
• All the three scoring rules behave similarly in terms of predic-

tionAccuracy. As explained earlier, the aggregation by the par-
ent node depends on the rank orders induced by the scoring rules
and the similarity in performance can be attributed to obtaining
similar rank orders during the aggregation by the parent nodes
after the children send their reports to the parent. The similarity
of rank order observation has also be seen in several empirical
studies (For eg:,Bickel [13]) where it has been reported that all
three scoring rules yielded similar rankings when averaged over
several assessment tasks.

We now provide detailed results for two initialReward values namely
200 (low budget) and 10000 (high budget) in Table 2. We can make
the following observations from the table.
• Lower initialReward value results in lower predictionAccuracy

as there is not enough participation from the nodes.
• Another interesting observation is that for a fixed initialReward

and fixed σc, it can be observed that the three rules behave sim-
ilarly in terms of predictionAccuracy. However, on a closer ob-
servation, we see that the predictionAccuracy of logarithmic and
spherical rules are higher than that of the quadratic rule. Hence,
as a design choice, it may be better to choose spherical scoring
rule since spherical rule has the property that the scores gen-
erated are guaranteed to be non-negative unlike the logarithmic
scoring where the scores can be unbounded below.
• We also observe that the standard deviation of the predictionAc-

curacy is higher for low values of initialReward. At low budgets,
there may be many runs of the simulations where no nodes will
be willing to participate and in such runs, the predictionAccuracy
is given a value of zero. However, due the the underlying random



(a) (b)
Figure 3: Change of predictive accuracy with initialReward with varying degree of skills.

Figure 4: Change of predictive accu-
racy with noise level

Initial Continuous Confidence Pred Acc. Pred. Acc. 95% CI
Reward Scoring Rule (Std. Dev. ) (Mean) (Std. Dev.)

200

Logarithmic
0.10 0.0501 0.1824 [ 0.0388, 0.0614 ]
0.20 0.4748 0.3244 [ 0.4547, 0.4949 ]
0.30 0.6415 0.1968 [ 0.6293, 0.6537 ]

Quadratic
0.10 0.0503 0.1831 [ 0.0390, 0.0617 ]
0.20 0.4731 0.3237 [ 0.4531, 0.4932 ]
0.30 0.6370 0.1996 [ 0.6246, 0.6494 ]

Spherical
0.10 0.0501 0.1824 [ 0.0388, 0.0614 ]
0.20 0.4747 0.3245 [ 0.4546, 0.4948 ]
0.30 0.6414 0.1966 [ 0.6292, 0.6536 ]

Initial Continuous Confidence Pred Acc. Pred. Acc. 95% CI
Reward Scoring Rule (Std. Dev. ) (Mean) (Std. Dev.)

10000

Logarithmic
0.10 0.7004 0.0555 [ 0.6970, 0.7039 ]
0.20 0.7181 0.0696 [ 0.7138, 0.7225 ]
0.30 0.7498 0.0899 [ 0.7442, 0.7553 ]

Quadratic
0.10 0.6923 0.0594 [ 0.6886, 0.6960 ]
0.20 0.7118 0.0725 [ 0.7073, 0.7163 ]
0.30 0.7407 0.0948 [ 0.7348, 0.7466 ]

Spherical
0.10 0.7003 0.0556 [ 0.6968, 0.7037 ]
0.20 0.7180 0.0697 [ 0.7137, 0.7223 ]
0.30 0.7496 0.0899 [ 0.7441, 0.7552 ]

Table 2: Comparison among different scoring rules [ Number of Samples: 1000]

nature of the expectation amount of the nodes, the root node may
be able to hire some nodes even at a low budget in some runs of
the simulations. In such runs, we will get a much better value
of predictionAccuracy which explains the high variance of the
samples. At higher budget value of 10000 (which represents the
saturated region as shown in Figure 3), the standard deviation is
low as the budget is enough to hire enough nodes to achieve a
very good predictionAccuracy in all runs of the simulation.

5.5 Tolerance to Noise
Next, we vary the noise level by changing the value of K, and

study the effect on the predictionAccuracy for fixed value of initial-
Reward. We vary K from 1 to 4 in steps of 0.5 keeping all other
parameters fixed, and we repeat the same experiment with three dif-
ferent values of initialReward. The result is shown in Figure 4. We
observe that increase in the noise level of the environment results
in reducing the predictionAccuracy which is on expected lines.

6. DISCUSSION
The Nash equilibrium discussed in Section 3 is not a unique equi-

librium. Also, in our analysis, the effect of collusion among nodes
was not considered. If the scenario is such that one child does not
know about the identities of other children or their communication
is limited then the chance of collusion is reduced. But in order to
ensure there is no collusion we can either: (a) design a payment
mechanism where honest reporting is the unique Nash equilibrium,
or (b) design a payment scheme where honest reporting is Pareto-
optimal Nash equilibrium, so that some of the colluding agents will
receive less payoff than what he would have received in honest re-
porting equilibrium. So, designing collusion resistant mechanism
is an interesting task. It would also be interesting to study the pro-
posed mechanism using real-world crowdsourcing networks.
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