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Abstract
In this investigation, we analyze a network formation game in a strategic setting 
where pay-offs of individuals depend only on their immediate neighbourhood. 
These localized pay-offs incorporate the social capital emanating from bridging 
positions that nodes hold in the network. Using this simple and novel model of 
network formation, our study explores the structure of networks that form, sat-
isfying pairwise stability or efficiency or both. We derive sufficient conditions for 
the pairwise stability of several interesting network structures. We characterize 
topologies of efficient networks by drawing upon classical results from extremal 
graph theory and discover that the Turan graph (or the complete equi-bipartite 
network) emerges as the unique efficient network under many configurations of 
parameters. We examine the trade-offs between topologies of pairwise stable 
networks and efficient networks using the notion of price of stability. Interestingly, 
we find that price of stability is equal to 1 for almost all configurations of param-
eters in the proposed model; and for the rest of the configurations, we obtain a 
lower bound of 0.5. This leads to another key insight of this article: under mild 
conditions, efficient networks will form when strategic individuals choose to add 
or delete links based on only localized pay-offs. We study the dynamics of the 

Article

Studies in Microeconomics
2(1) 63–119

©2014 SAGE Publications  
India Pvt. Ltd

SAGE Publications 
Los Angeles, London, 

New Delhi, Singapore, 
Washington DC 

DOI: 10.1177/2321022214522732 
http://mic.sagepub.com

Rohith D. Vallam (corresponding author), Department of Computer Science and 
Automation, Indian Institute of Science, Bengaluru, India. Email: rohithdv@gmail.com
C.A. Subramanian, Orca Radio Systems, Bengaluru, India. Email: subbu.ca@gmail.com
Ramasuri Narayanam, IBM India Research Labs, Bengaluru, India. Email: ramasurn@
in.ibm.com
Y. Narahari, Department of Computer Science and Automation, Indian Institute of 
Science, Bengaluru, India. Email: hari@csa.iisc.ernet.in
N. Srinath, Department of Electronic Systems Engineering, Indian Institute of Science, 
Bengaluru, India. Email: srinathnarasimha@gmail.com 



NOT FOR C
OMMERCIA

L U
SE

Studies in Microeconomics, 2, 1 (2014): 63–119

64 Rohith D. Vallam et al.

proposed model by designing a simple myopic best response updating rule and 
implementing it on a customized network formation testbed.

Keywords 
Network formation, localized pay-offs, social networks, pairwise stability, 
efficiency (social-welfare maximization), price of stability, myopic best response 
dynamics

Introduction

Several real-world networks such as the Internet, social networks, organizational 
networks, biological networks, food webs, co-authorship networks, citation net-
works and many more exhibit complex network structures. Complex networks, 
generally modelled as graphs in most of the mathematical literature, have been 
extensively studied in recent years and they are pervasive in today’s science and 
technology (Barrat et al., 2008; Newman, 2003; Newman et al., 2006; Strogatz, 
2001). Studying the properties of the complex network structures helps to under-
stand the underlying phenomena and developing new insights into the system 
such as small-world phenomena, scale-free topology and structural holes (Burt, 
1992, 2004; Newman, 2003; Reka and Barabási, 2002; Song et al., 2005; Watts 
and Strogatz, 1998).

Complex networks have also been studied extensively in the social sciences 
(Brandes and Erlebach, 2005; Easley and Kleinberg, 2010; Newman, 2003; 
Wasserman and Faust, 1994) (and the references therein). These studies reveal 
that complex social networks play an important role in spreading information 
(Boorman, 1975; Cooper, 1982; Rogers, 2003; Schelling, 1978; Strang and Soule, 
1998; Valente, 1995). Individuals that participate in the process of information 
dissemination in such networks receive various kinds of social and economic 
incentives and at the same time they also incur costs in forming and maintaining 
the contacts (i.e., links) with other individuals in terms of time, money and effort. 
For this reason, individuals do act strategically while selecting their neighbours. 
Thus, in several contexts, the behaviour of the system is driven by the strategic 
actions of a large number of individuals, each motivated by self-interest and 
optimizing an individual objective function. Thus, it is important to study the 
dynamics of strategic interaction among the individuals in complex social net-
works in order to understand how such networks form and this is one of the pri-
mary motivations for this article.

Many recent studies on network formation have used game theoretic 
approaches (Borgs et al., 2011; Brautbar and Kearns, 2011; Demange and 
Wooders, 2005; Dutta et al., 1998; Goyal, 2007; Jackson, 2008; Jackson and 
Dutta, 2000; Myerson, 1991; Slikker and Nouweland, 2001) based on the 
observation that individuals are strategic and are interested in maximizing their 
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pay-offs from the social interactions. These models capture the strategic 
interactions among individuals and the analysis of these models satisfactorily 
deduces the topologies of equilibrium networks. In this domain, networks that 
are enforced by a central authority are known as efficient networks. Understanding 
the compatibility between equilibrium networks and efficient networks has been 
the primary focus of research in network formation (Corbo and Parkes, 2005; 
Doreian, 2006; Elias et al., 2011; Galeotti et al., 2006; Goyal, 2007; Hummon, 
2000; Jackson, 2008; Jackson and Watts, 2002).

The crux of most of the models for network formation in the literature 
(Anshelevich et al., 2003; Anshelevich et al., 2008; Corbo and Parkes, 2005; Elias 
et al., 2011; Fabrikant et al., 2003; Galeotti et al., 2006; Jackson and Wolinsky, 
1996) is that the underlying strategic form game where the players, strategies and 
pay-offs are defined as follows: (i) the individual agents in the complex network 
are the players, (ii) the strategy of each agent is a subset of other agents with 
which it wishes to form links and (iii) the pay-off of each agent depends on the 
structure of the network. Another key aspect of most of the existing work in the 
literature is that the process of network formation is modelled in a decentralized 
fashion where the individuals in the network take autonomous decisions regard-
ing whether to form or delete links with other agents.

Importance of Local Benefits

However, most of these models require the agents to know the complete global 
structure (that is, information about all nodes as well as all the links between the 
nodes) of the network to compute their respective pay-offs. This, in effect, tries 
to capture the philosophy that an individual is benefited not only by his immedi-
ate friends/contacts but also by his/her friends’s friends, friends’ friends’ friends, 
etc. Naturally, this approach leads to complicated pay-off calculations for the 
nodes which can potentially be very tedious and intractable task. In fact, we can 
observe such computational constraints in several real-world examples like dis-
tributed sensor networks and real-world social networks. In distributed sensor 
networks, coalitions of sensors can work together to track targets of interest and 
each sensor is constrained on its energy and will typically be aware of only its 
immediate neighbourhood. Real-world online social networks like Facebook, 
Twitter, etc., are typically large in size and it may not be practical for an indi-
vidual to know the entire topology to compute his/her pay-off. Further, most of 
the benefits an individual experiences will be primarily dominated by his/her 
immediate contacts. This observation has also justified by empirical evidence 
such as (Burt, 1992, 2004, 2007) which has clearly shown that a significant 
fraction of the perceived social and economic benefits for the individuals is 
derived from their 1-hop neighbourhood. This occurs because the benefits 
between nodes which are more than one hop away are in general too ‘long-
range’ to confer significant benefits.
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Importance of Structural Holes

Further, in many scenarios, it may be beneficial for individuals to form links with 
others who are not connected among themselves. This is counter-intuitive in sce-
narios like friendship networks, etc., which exhibit a large number of triads. In 
such friendship networks, it is very often that an individual’s friend’s friend is also 
a direct friend of the individual. However, in many other networks, this may not 
necessarily represent the true observations. Let us examine the following observa-
tion from (Burt, 2004):

Opinion and behavior are more homogeneous within than between groups, so people con-
nected across groups are more familiar with alternative ways of thinking and behaving. 
Brokerage across the structural holes between groups provides a vision of options other-
wise unseen, which is the mechanism by which brokerage becomes social capital.

Basically, (Burt, 2004) came to the conclusion that in organizational networks, 
people who bridge multiple unconnected nodes are in a more advantageous posi-
tion than others who are closely knit within a group. Such positions are termed 
‘structural holes’ as they bridge the gap between multiple, diverse groups. Thus, 
people whose networks span structural holes have early access to diverse, often 
contradictory, information and interpretations, which gives them a competitive 
advantage in seeing good ideas.

Mehra et al. (2001) studied the influence of structural positions on promotions 
and performance evaluation in organizations. They argue that the differences in 
structural location of individuals, in particular, whether they bridge structural holes 
in the social network, explains a significant part of the variation in promotion tim-
ing of otherwise similar people. Similar studies on the importance of structurally 
advantageous network positions in the context of intra-organizational mobility 
have been mentioned in Podolny and Baron (1997) while Ahuja (2000) considered 
a detailed study on the influence of a firm’s position in inter-organizational net-
works on its innovativeness and overall performance.

Thus, it may be worthwhile to develop a ‘localized’ model of network formation 
wherein there are benefits and costs for each link formed along with a need for 
individuals to be part of structural holes in the network. To the best of our knowl-
edge, very few works have tried to capture these aspects in modelling strategic 
network formation. We briefly review these works in the literature review section-
and put forth the key differences between these models and our proposed model.

Overview

In our work, we model network formation wherein a rational individual’s benefits 
are determined only by its immediate neighbourhood or 1-hop neighbourhood 
information. Beyond the benefits of having a direct links to other individuals, 
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there is also a form of synergy. This synergy occurs due to the bridging benefits 
that the individual experiences due to his/her sparse neighbourhood. A sparse 
neighbourhood leads to higher synergistic benefits due to structural holes. We 
refer to this setting as ‘Network Formation with Localized Pay-offs (NFLP)’. 
We will go through the model in detail in Section 3.

An example scenario where this model can be applicable is in the context of 
interaction networks. These interaction networks can be among researchers in 
an university, interactions among employees in an organization, etc., wherein an 
undirected connection exists between two individuals if they interact for a 
period of time on some subject of mutual interest. Here, there is a benefit that is 
obtained from the interaction when individuals interact with another individual. 
At the same time, there is a cost accrued to both the individuals in the form of 
time or effort spent on the interaction. An individual can also synergistically 
benefit from having interaction with persons from diverse areas which poten-
tially may lead to ‘good’, unbiased, creative ideas being developed by the indi-
vidual which falls back to Burt’s hypothesis about the importance of structural 
holes in the network. These ideas will be more ‘biased’ if there is more connec-
tivity among the contacts of an individual. Also, in these scenarios, the pay-off 
to an individual will be typically due to the immediate contacts of the individual 
with whom he/she has an interaction even though the individual may be ‘aware’ 
of the existence of other individuals outside his 1-hop neighbourhood. Our 
model, thus, assumes that the individuals are aware of the presence of other 
individuals in the network even though they might not be directly connected 
with them. However, our model does not assume that individuals know the link 
structure of the entire network.

We also note that our model assumes that a link forms with the consent of both 
the individuals (refer to Section 3), as social contacts usually emerge in this man-
ner. This assumption is widely considered in several models of network formation 
in the literature (Doreian, 2006; Hummon, 2000; Jackson, 2003; Jackson and 
Wolinsky, 1996; Xie and Cui, 2008a, 2008b). In such situations, an appropriate 
choice for the notion of equilibrium is ‘pairwise stability’ (Jackson and Wolinsky, 
1996). Informally, we call a network pairwise stable if no agent can improve its 
pay-off by deleting any link and no two unconnected individuals can form a link 
to improve their respective pay-offs. We call a network ‘efficient’ if the sum of 
pay-offs of the individuals is maximal. In this framework, our objective is to 
investigate the trade-off between topologies of pairwise stable and efficient 
networks.

The primary contribution of our work is to come up with a game theoretic 
model in the above setting and study the topologies of the equilibrium networks 
and efficient networks that emerge in such a network formation process. We next 
examine the trade-offs between topologies of equilibrium networks and efficient 
networks using the notion of price of stability (Anshelevich et al., 2008). 
Informally, price of stability is the ratio of the sum of pay-offs of the players in an 
optimal (in terms of sum of pay-offs of the players) pairwise stable network to that 
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of an efficient network. Interestingly, we find that price of stability is 1 for almost 
all configurations of the parameters in the proposed model; and for the rest of the 
configurations of the parameters in the proposed model, we obtain a lower bound 
of 0.5 on price of stability. This indicates that, when some mild conditions are 
satisfied, efficient networks will form when strategic individuals choose to add or 
delete links based on localized pay-offs. Further, we propose a simple best 
response updating rule in order to understand the dynamics of the network forma-
tion process under the proposed model. Through extensive simulations, we inves-
tigate various effects on the network formation based on varying initial conditions, 
parameter configurations, etc. One of the primary observations that we make is 
that many of the theoretically proven efficient and pairwise stable networks do, in 
fact, emerge as a result of this dynamic process which indicates the practicality of 
the results obtained in the article.

In the rest of the article, we use the terms ‘graph’ and ‘network’ interchangea-
bly. We thus use the terms ‘nodes’ and ‘individuals’ interchangeably throughout 
the article. As a game-theoretic approach is used, we sometimes use the terms 
‘players’ and ‘individuals’ interchangeably throughout the article.

Literature Review

The field of network formation has been extensively studied in diverse fields 
such as sociology, physics, computer science, economics, mathematics and 
biology (Bloch and Jackson, 2007; Borgs et al., 2011; Brautbar and Kearns, 
2011; Buskens and Van De Rijt, 2008; Calvo-Armengol, 2004; Demange and 
Wooders, 2005; Doreian, 2006; Doreian, 2008a, 2008b; Dutta et al., 1998; 
Galeotti et al., 2006; Gilles and Johnson, 2000; Goyal, 2007; Goyal and Vega-
Redondo, 2007; Hummon, 2000; Jackson, 2003, 2005, 2008; Jackson and Dutta, 
2000; Jackson and van den Nouweland, 2005; Jackson and Watts, 2002; Jackson 
and Wolinsky, 1996; Kleinberg et al., 2008; Slikker and Nouweland, 2001). In 
this section, we have included a discussion of the models that are most relevant 
to our work.

The modelling of strategic formation in a general network setting was first 
studied in the seminal work of (Jackson and Wolinsky, 1996). They basically con-
sider a value function and an allocation rule model where the value function 
defines a value to each network and the allocation rule distributes this value to the 
nodes in the network. They investigate whether efficient networks will form when 
self-interested individuals can choose to form links and/or break links. The authors 
define two stylized models. For these models, the authors observe that for high 
and low costs the efficient networks are pairwise stable, but not always for medium 
level costs. They also examine the tension between efficiency and stability and 
derive various conditions and allocation rules for which efficiency and pairwise 
stability are compatible. An important feature their model does not capture is that 
of the intermediary benefits that nodes gain by being intermediaries lying on the 
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paths between non-neighbour nodes. In particular, they do not capture the benefits 
due to structural holes.

Hummon (2000) carries out several interesting investigations to unravel more 
specific topologies using a particular model proposed by Jackson and Wolinsky 
(1996). Two different agent-based simulation approaches, the multi-thread model 
and the discrete event simulation model, are used in the analysis done by Hummon 
(2000) to explore the dynamics of network evolution based on a model proposed 
in Jackson and Wolinsky (1996). Hummon identifies certain pairwise stable struc-
tures that are more specific than those anticipated by the formal analysis of 
Jackson and Wolinsky (1996). Doreian (2006) explores the same issue in a sys-
tematic manner and establishes the conditions under which different pairwise 
structures are generated. Some gaps in the analysis of Doreian (2006) are addressed 
by Xie and Cui (2008a, 2008b).

Jackson (2003) reviews several models of network formation in the literature 
with an emphasis on the trade-offs between efficiency with stability. This work 
also studies the relationship between pairwise stable and efficient networks in a 
variety of contexts and under three different definitions of efficiency. A later paper 
by Jackson (2005) presents a family of allocation rules (for example, networkolus) 
that incorporate information about alternative network structures when allocating 
the network value to the individual nodes. The author provides a general method 
of defining allocation rules in network formation games.

Goyal and Vega-Redondo (2007) propose a non-cooperative game model in 
which a node i can benefit from serving as an intermediary between a pair of 
nodes x and y. In their model, a node i could lie on an arbitrarily long path between 
x and y. The authors assume, however, that the benefits from farther nodes are not 
subject to decay. They also assume that the benefit of communication between 
any pair of nodes is always one unit. This unit is distributed to the two 
communicating nodes and only to certain so called essential nodes (Goyal and 
Vega-Redondo, 2007) on the paths between the two communicating nodes. In this 
setting, the authors show that a star graph is the only non-empty robust equilibrium 
graph. The authors also study the implications of capacity constraints in the ability 
of individual nodes to form links to other nodes and show that a cycle network 
emerges.

Narayanam and Narahari (2011) propose a generic model of network forma-
tion that essentially builds on the model of Jackson and Wolinsky (1996). This 
model simultaneously captures four key determinants of network formation: (i) 
benefits from immediate neighbours through links, (ii) costs of maintaining the 
links, (iii) benefits from non-neighbouring nodes and decay of these benefits with 
distance and (iv) intermediary benefits that arise from multi-step paths. Narayanam 
and Narahari (2011) analyze the proposed model to determine the topologies of 
stable and efficient networks.

The aforementioned models of network formation have the limitation that each 
individual (or node) needs to know global information about the structure of the 
network in order to compute its pay-off. A few recent models (Arcaute et al., 2008; 
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Buskens and Van De Rijt, 2008; Kleinberg et al., 2008) in the literature make an 
attempt to overcome the above limitation. 

1. Buskens and Van De Rijt (2008) propose a model that requires each indi-
vidual agent to know just its immediate neighbours (or 1-hop neighbour-
hood) to optimize its own pay-off. However, the model captures only the cost 
to nodes and ignores various benefits that nodes can derive from the network 
such as direct benefits from the neighbours and the bridging benefits.

2. Arcaute et al. (2008) study the myopic dynamics in network formation 
games. A key aspect of the dynamics studied in this model is the local 
information and the authors show that these dynamics converge to efficient 
or near efficient outcomes. However, the model does not identify the topol-
ogies of equilibrium and efficient networks. Moreover, the model works 
with Pareto efficiency whereas we work with a more natural notion of 
efficiency, namely social-welfare maximization.

3. Kleinberg et al. (2008) propose a game-theoretic network formation model 
where the pay-off of each node is based on local neighbourhood informa-
tion. This model captures direct link benefits along with intermediary ben-
efits that nodes accrue by being on the 2-hop path between two unconnected 
nodes (say v and w). This model assumes that the intermediary benefits 
decreases in the number of other length-2 paths between v and w. Also, they 
assume that the benefits a node accrues due to bridging activity is additive in 
the number of pairs it bridges. Also, they consider a model wherein the link 
cost is borne only by one of the endpoints of the link. Kleinberg et al. (2008) 
also characterize the structure of stable networks with ‘Nash equilibrium’ as 
the notion of stability. The authors propose a polynomial time algorithm for 
a node to determine its best response in a given graph as nodes can choose to 
link to any subset of other nodes. They also show that stable networks have 
a rich combinatorial structure. Also, the model in Kleinberg et al. (2008) 
works with Nash equilibrium, while our proposed model works with the 
more natural notion of pairwise stability as the notion of equilibrium. 
Pairwise stability incorporates the effects of both unilateral and bilateral 
deviations unlike the notion of Nash stability which considers robustness 
due to only unilateral deviations. Our model additionally investigates the 
trade-off between the topologies of stable networks and the topologies of 
efficient networks through the natural notion of price of stability as well as 
through the result of myopic best response updating rules.

Our Contributions

To the best of our knowledge, our current study is the first one to comprehensively 
explore the trade-off between pairwise stability and efficiency using the notion of 
price of stability in the context of strategic localized network formation, while 
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accounting for several key factors such as link costs, link benefits and bridging 
benefits. The following are the specific contributions of our article: 

1. Section 3: An Elegant Model for Network Formation with Localized Pay-
offs: We propose a strategic form game to model the process of network 
formation with localized pay-offs and we term the game as network forma-
tion (game) with localized pay-offs (NFLP). The pay-off of each player in 
the proposed game takes into account not only the benefits (d) that arise 
from routing information to and from its neighbours but also the cost (c) to 
maintain a link to each of its neighbours.

2. Section 4: Sufficient Conditions for Pairwise Stability of Network Topologies: 
We derive sufficient conditions for pairwise stability of certain standard 
network topologies using the NFLP model. Some of the networks that we 
consider for analysis include the cycle, star, complete and null networks. In 
addition, we also derive pairwise stability conditions for certain classes of 
k-partite networks namely bipartite complete networks, complete equi-
tripartite networks and complete equi-k-partite networks. We note that our 
findings extend the possible topologies for pairwise stable networks com-
pared to that of other models in the literature.

3. Section 5: Characterization of Topologies of Efficient Networks: Next, we 
analytically characterize topologies of efficient networks by drawing upon 
classical results from extremal graph theory. Our work leads to sharp 
deductions about the efficient networks in NFLP. A striking discovery of 
our study here is that the equi-bipartite graph (popularly known as the 
Turan graph) emerges as the unique efficient network under many regions 
of values of d and c.

4. Section 6: Price of Stability Investigations: The quality of optimal (in 
terms of the sum of pay-offs of the individuals in the network) pairwise 
stable networks is best understood through the notion of price of stability 
(PoS). PoS allows us to explore the middle ground between centrally 
enforced solution and completely unregulated anarchy (Anshelevich et al., 
2008). In most real-world applications, the nodes are not completely unre-
stricted in their strategic behaviour but rather agree upon a prescribed equi-
librium solution. In such scenarios, the prescription can be chosen to be the 
best equilibrium thus making the price of stability an important issue to 
study. We study the PoS in NFLP to reveal trade-offs between pairwise 
stable networks and efficient networks. Intriguingly, we find that PoS is 1 
for almost all configurations of d and c. For the remaining configurations 

of d and c, we obtain a lower bound of 
1
2  on PoS. This implies, under mild 

conditions on d and c, that the proposed NFLP model produces pairwise 
stable networks that are efficient.

5. Section 7: Convergence of Pairwise Stable/Efficient Networks Through 
Best Response Dynamics: Next, we investigate, through simulations, about 
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the existence of any non-trivial dynamic process of network formation that 
yields the theoretically proven pairwise stable and efficient networks in the 
article. We propose a simple best response updating rule and simulate stra-
tegic dynamics in NFLP to understand how pairwise stable networks 
evolve over time. Our simulation results support our analytical deduc-
tions and also reveal additional interesting insights on the topologies of 
pairwise stable networks. We observe that there are under suitable con-
figurations, many of the pairwise stable and efficient networks are indeed 
emergent which highlights the practicality of our theoretical results. In 
addition, we study the evolution of pairwise stable network and its prop-
erties like the clustering co-efficient, convergence time, etc., over different 
configuration parameters. 

We now begin our investigation by proposing the details of NFLP model in the 
next section. In order to enhance readability, we delegate most of the proofs of the 
results in the different sections to the appendices.

A Model for Network Formation with Localized  
Pay-offs (NFLP)

We model network formation using a strategic form game as proposed by Myerson 
(1991). We consider a network setup with n players denoted by N = {1, 2,..., n}. 
A strategy si ⊆ N \ {i} of a player i is any subset of players with which the player 
would like to establish links. Assume that Si is the set of all possible strategies of 
player i. Let s = (s1, s2,..., sn) be a profile of strategies of the players. Also let 
S = ×n

i=1Si be the set of all such strategy profiles. For notational convenience, we 
represent s ∈ S as s = (si, s–i) given a player i ∈ N. We also represent s ∈ S as 
s = (si, sj, s–i j) given a player i, j ∈ N. Here s–i is the strategy profile of all players 
except player i. Similarly, s–i j is the strategy profile of all players except player i 
and player j. Note that each strategy profile s ∈ S induces a corresponding under-
lying network which we denote by G(s). If there is no confusion about the under-
lying strategy profile s, we just use G to represent G(s). We also say that the 
profile s supports G. Note that G represents the outcome of a strategic game where 
nodes play the strategy profile s. We denote the vertex and edge sets of the graph 
G by V and E respectively.

Let (i, j) represent an ordered pair of vertices i and j. We assume that the forma-
tion of a link requires the consent of both the players i.e., given a strategy profile 
s = (s1, s2,... sn), the outcome of the game is the undirected network G defined by 
(i, j) ∈ E if and only if i ∈ sj and j ∈ si. Also, an edge between i and j in G is either 
represented by (i, j) or ( j, i) as all edges in G are undirected. Every node in the 
game derives a pay-off from the outcome of the game. We represent the pay-off of 
a node i by the real-valued function ui: G → R where G is the set of all possible 
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undirected graphs with n nodes and R is the set of real numbers. Note that if play-
ers x and y form a link (x, y) in a graph G, then we represent the new graph by 
G + (x, y). If players x and y delete an existing link (x, y) in a graph G, then we 
represent the new graph by G – (x, y). Also we use the terms graph or network 
interchangeably throughout the article. We also use the terms players and nodes 
interchangeably throughout the article.

Definition 1 (wolinsky: 96): We call an undirected graph G = (V, E) pairwise 
stable if 

 (i) ∀(i, j) ∈ E, ui(G) ≥ ui (G – (i, j)) and uj(G) ≥ uj (G – (i,j)) (1)

 (ii) ∀(i, j) ∉ E if ui(G) < ui (G + (i, j)) then uj(G) > uj (G + (i, j)) (2)

Note that Equation (1) represents the condition for stability under deletion of 
an existing link and Equation (2) represents the condition for stability under 
addition of a new link. Thus, Equation (1) represents the scenario where a node 
is not better off by unilaterally deleting one of its existing links. The condition 
specified by Equation (2) represents a scenario where no new link can be formed 
in a pairwise stable network. This condition uses the fact that link addition 
requires mutual consent and in a pairwise stable network, even if one of the 
nodes has consented to establish a link (as forming the link will strictly benefit 
the node), the link will not be formed as the other node will be strictly worse-off 
forming the link.1

In network formation scenarios, link formation is inherently bilateral: the con-
sent of two nodes is required to form a single link. This is the reason we use 
pairwise-stability as the equilibrium concept in this work as it is robust to both 
unilateral and bilateral deviations. We now describe some of the basic parameters 
of the network formation game.

Degree of Node: The degree di(G) of node i in the graph G represents the number 
of neighbours of node i in G. Node j is a neighbour of node i in G if there exists an 
undirected link (i, j) in G. For simplicity of notation, we denote the degree of node 
i by di whenever the underlying graph is implied by the context.

Costs: If nodes i and j are connected by a link in G, then we assume that each 
node incurs a cost c ∈ (0, 1) for maintaining that link i.e., if the degree of node i 
is di, then node i incurs a cost of cdi.

Benefits from Immediate Neighbours: Assume that d ∈ (0, 1). If node i is con-
nected to a node j by a direct link, then we assume that both node i and node j 
accrue a benefit of d from this link i.e., if the degree of node i is di, then node i 
gains a benefit of ddi from its immediate neighbours.

Bridging Benefits: Consider a node i. Assume that nodes j and k are two neigh-
bours of node i such that j and k are not connected by a direct link. Suppose that 
nodes j and k communicate using the length 2 path through node i, then (i) we 
assume that a benefit of d2 arises due to this communication, and (ii) we also 
assume that the benefit d2 entirely goes to node i. We refer to d2 as the bridging 
benefit2 to node i. The main motivation for this kind of bridging benefits is by 
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sociological studies suggesting that in practice most of the benefits arise from 
bridging the communication between pairs of non-neighbour nodes in the network 
(Burt, 2007). We assume that players in the network communicate using shortest 
paths—this is a standard assumption used in the literature for ease of modelling.

Pay-off Model

In this strategic form game described above, we define the pay-off of node i such 
that it depends on the benefits from immediate neighbours, the costs to maintain 
links to these immediate neighbours and the bridging benefits. Let si be the number 
of links among the neighbours of node i in G. In the graph G

d
i

i
,

s

2










 represents the 

clustering co-efficient of the node i in G. Basically, the clustering co-efficient of 
node i represents the fraction of pairs of neighbours of node i that are neighbours 
and thus it is a measure of the density of the neighbourhood of node i. Formally, for 
any i ∈ N, the pay-off ui of node i in an undirected graph G is defined as follows: 
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There are two terms in this pay-off function. The first term (represented by (a) 
in Equation (3) specifies the net benefit to node i from its immediate neighbours. 
The second term (represented by (b) in Equation (3) specifies the bridging bene-
fits to node i. We elaborate this below.

As described in the introduction, players obtain lower pay-off for bridging 
nodes in a densely connected neighbourhood than in a sparsely connected neigh-
bourhood. We use degree-weighted inverse clustering coefficient (given by (c) in 
Equation (3) for this purpose. Basically, the intuition behind this expression is the 
following. If a node has contacts who are themselves unconnected, then the node 
accrues a bridging benefit of did

2. On the other extreme, if all the neighbours of 
node i are completely connected among themselves, then the node accrues a 
bridging benefit of 0 as the clustering coefficient will be 1 in this scenario. For 
example, in the context of interaction networks, a node with a densely connected 
neighbourhood will suffer a reduction in bridging benefits as a result of lower 
quality of ideas generated. The low quality of ideas can be attributed to the pres-
ence of biased and redundant opinions in the neighbourhood of node i. Also, note 
that di weight in (c) of Equation (3) normalizes the level of bridging benefits that 
node i gains in the network. It enables more bridging benefits to nodes who have 
more contacts and vice versa. 
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For example, consider Figure 1. The fraction of pairs of neighbours of node 1 
that are non-neighbours in both G1 and G3 in Figure 1is 1.0. However the degree of 
node 1 in G1 is di = 5 and the degree of node 1 in G3 is d1 = 2. The normalization 
term di ensures that the bridging benefit for node 1 is higher in G1 than in G3.

NFLP – An Example

The above framework defines a strategic form game G = (N, (Si)i∈N, (ui)i∈N) that 
models network formation with localized pay-offs. We refer to this as network 
formation game with localized pay-offs (NFLP). The following example 
illustrates NFLP.

Example 1: Assume that N = {1, 2, 3, 4, 5, 6}. If s1 = {2, 3, 4, 5, 6}, s2 = {1}, 
s3 = {1}, s4 = {1}, s5 = {1}, s6 = {1}, then the resultant graph G1 is the star graph 
as shown in Figure 1(i). Note that an edge forms with the consent of both the 
nodes.

Following the NFLP model, the pay-offs of the players in the star graph are as 
follows: u1(G1) = 5(d – c) + 5d2 and u2(G1) = u3(G1) = u4(G1) = u5(G1) = u6(G1) 
= (d – c).

If s1 = {2, 3, 4, 5, 6}, s2 = {1, 3, 6}, s3 = {1, 2, 4}, s4 = {1, 3, 5}, s5 = {1, 4, 6}, 
s6 = {1, 2, 5}, then the resultant graph G2 is the wheel graph as shown in Figure 
1(ii). Following the NFLP model, the pay-offs of the players in the wheel graph 

are as follows: u G c1

2

2 5
5
2

( ) ( )=  d
d

 and u2(G2) = u3(G2) = u4(G2) = u5(G2) = 
u6(G2) = 3(d – c) + d2.

On similar lines, if s1 = {2, 6}, s2 = {1, 3}, s3 = {2, 4}, s4 = {3, 5}, s5 = {4, 6}, 
s6 = {1, 5}, then the resultant graph G3 is the cycle graph as shown in 
Figure 1(iii). Following the NFLP model, the pay-offs of the players in the 
cycle graph are as follows: u1(G3) = u2(G3) = u3(G3) = u4(G3) = u5(G3) = 
u6(G3) = 2(d – c) + 2d2. 

Figure 1. An Illustrative Example

Source: Developed by the Authors.
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After having discussed the network formation model in detail, we now proceed 
to understand the equilibrium concept of pairwise stability. Specifically, we exam-
ine ways to derive sufficient conditions for pairwise stability of certain interesting 
network structures under the NFLP model.

Sufficient Conditions for Pairwise Stability of  
Network Topologies

In this section, we first recall the notion of pairwise stability. We derive sufficient 
conditions for pairwise stability for certain standard network topologies consid-
ered in the literature. Note that we set forth to derive only sufficient conditions for 
certain network topologies to be pairwise stable. This is due to the fact that under 
certain parameter configurations, there may be multiple network structures which 
may be simulataneouly stable and hence, due to combinatorial size of possible 
network structures, it is tractable to only derive sufficient conditions for certain 
standard and interesting network structures to be pairwise stable. Further, in our 
article, we discover new pairwise stable structures through extensive simulations. 
These results will be presented in Section 7. However, one of the interesting 
observations that emerges out of the analysis in this section is that the complete 
network emerges as the unique pairwise stable network under certain parameter 
configuration i.e., this configuration serves as both necessary and sufficient con-
dition for the complete network to be pairwise stable.

Examining Pairwise Stability of Network Topologies

We now focus on examining the pairwise stability of the certain standard topolo-
gies in the framework in NFLP. Pairwise stability under various network forma-
tion models has been addressed in the literature Jackson (2008), Goyal (2007), 
Galeotti et al. (2006) Buskens and Van De Rijt (2008), Goyal and Vega-Redondo 
(2007), Kleinberg et al. (2008), Fabrikant et al. (2003), Corbo and Parkes (2005), 
Jackson and Wolinsky (1996), Doreian (2006), Doreian (2008a, 2008b). In our 
approach, we consider the topologies of certain standard networks (such as com-
plete network, cycle network, star network, multi-partite networks) and then study 
whether such topologies are pairwise stable following the framework of NFLP. 
We now present few results to establish certain standard networks are pairwise 
stable in the framework of NFLP.

Proposition 1: The cycle network is pairwise stable under the following 
conditions: 

1. For cycle of length 3, (d – c) ≥ 0 
2. For cycle of length 4, –2d2 ≤ (d – c) ≤ d2 
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3. For cycle of length 5, –2d2 ≤ (d – c) ≤ d2 
4. For cycle of length 6 or greater, –2d2 ≤ (d – c) ≤ –d2 

Proposition 2: If –d2 ≤ (d – c) ≤ d2, then the complete bipartite network is 
pairwise stable. 

Proposition 3: The null (empty) network is pairwise stable if (d – c) ≤ 0. 
Proposition 4: The complete network is pairwise stable if (c – d) ≤ 0.
Proposition 5: When (d – c) > d2, the complete network is the unique pairwise 

stable network. 
Proposition 6: The star network is pairwise stable only when d = c.
Proposition 7: Consider a tripartite complete graph denoted by G. Let ai, 

∀i∈{1, 2, 3} denote the sizes of the three partitions of G. The condition for G to 
be pairwise stable is given below. 
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Further, asymptotically as the number of nodes increases, the pairwise stability 
condition reduces to 
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(4)

when all the partitions in G are of equal size.
Proposition 8: For k ≥ 3, the complete k-partite network is pairwise stable if 

(i) d = c, and (ii) ai = a,∀i∈{1, 2, ..., k} where ai is the number of nodes in parti-
tion i in k-partite network and a is any positive integer. 

We list the pairwise stability results under the NFLP model in Table 1 and 
graphically illustrate the parameter regions in Figure 2.

Characterization of Topologies of Efficient Networks

In this section, we study the structure of efficient networks, i.e., networks that 
maximize the overall pay-off, under various conditions of d and c. First, we begin 
by introducing a few useful classical results in extremal graph theory and we use 
these results later in our analysis.

Triangles in a Graph

If three nodes i, j and k in G(V, E) are such that i and j,  j and k, k and i are connected 
by edges, then we say that nodes i, j, k form a triangle in G. The number of triangles 
in a simple graph G plays a crucial role in the computation of pay-offs to the nodes 
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Table 1. Sufficient Conditions for Pairwise Stable Network Topologies in the Proposed 
Pay-off Model

Parameter  
Region Additional Conditions

Pairwise Stable 
Topologies Implied by

(1) d > c (1a) (d – c) ≥ d2 Complete (Unique) Proposition 4, Proposition 5

(1b) (d – c) < d2 Complete 
C.B.P1

Proposition 4  
Proposition 2

(1c) (d – c) < (1/2)d2 C.E.T.P3 
Complete 

C.B.P

Proposition 7
Proposition 4
Proposition 2 

(2) d = c Complete, Null, 
C.B.P, Star, 

C.E.K.P2

Proposition 4, Proposition 3 
Proposition 2, Proposition 6 

Proposition 8

(3) d < c (3a) (c – d) > 2d2 Null Proposition 3

(3b) (c – d) ≤ d2 C.B.P 
Null

Proposition 2
Proposition 3

(3c) d2 ≤ (c – d) ≤ 2d2 Cycle 
Null

Proposition 1 
Proposition 3

(3d) (c – d) < (1/2)d2 C.E.T.P 
Null 
C.B.P

Proposition 7
Proposition 3
Proposition 2

Source: Developed by the Authors.
Notes: 1C.B.P: Complete BiPartitie 2C.E.K.P: Complete Equi K-Partite 3C.E.T.P: Complete Equi 

Tri-Partite

Figure 2. Graphical Illustration of Pairwise Stability Results for the NFLP Model 

Source: Developed by the Authors.
Note: The legends in the figure correspond to the numbering specified in Table 1.
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and we state here some classical results. We know from Turan’s theorem (Turan, 
1941), that it is possible to have a triangle free graph if the following holds: 

 
e

n












2

4  
(5)

Here e denotes the number of edges and n the number of vertices of the graph. 
Moreover, from Nordhaus and Stewart (1963), we know that the number of trian-
gles, T, can be lower bounded, if the number of edges exceed the above value 
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In what follows, we refer to the graph having maximum number of edges with 
no triangles as the Turan Graph and we represent it by GTuran. It is easy to verify 
that such a graph is a complete bipartite graph, and the the number of vertices in 
each partition differs at most by 1.

Definitions

Let GN be the set of all undirected graphs that are possible with N = {1, ..., n} play-
ers. Note that | GN | = 2n(n–1)/2. We now proceed to define two notions of efficiency 
of networks commonly used in literature namely social-welfare maximization and 
Pareto-optimality. 

Definition 2 (Social-Welfare Maximizing Network): A network G* is said to 
be social-welfare maximizing if it maximizes the sum of pay-offs of all players 
when compared to any other network G i.e., 

G u G u G u G
G G

i
i

n

N

 = =
 =

arg Wheremax ( ) ( ) ( )
1

Definition 3 (Pareto-Optimal Network): A network G* is said to be Pareto-
optimal if there does not exist any G′ ∈ GN such that 

ui(G
*) ≤ ui(G′), ∀ i ∈ N and ∃j ∈ N, uj(G

*) < uj(G′)

Lemma 1: Let G* be a social-welfare maximizing network. Then G* is Pareto-
optimal. 

Proof: Suppose G* is not Pareto-optimal. Then, we can find a G′ and j ∈ N such 
that ui(G

*) ≤ ui(G′), ∀ i ∈ N and uj(G
*) < uj(G′). Thus, 

u G u G u G u Gi
i
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i
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which contradicts the social-welfare maximizing property of G*. Hence, G* is a 
Pareto-optimal network. 

By Lemma 1, we can observe that social-welfare maximizing property is a 
stronger condition than Pareto-optimality. We will henceforth use the notion of 
social-welfare maximization to characterize efficient networks in NFLP under 
different configurations of values of d and c.

Finding the Efficient Graph

Proposition 9: When d < c and d2 < (c – d), the null graph is the unique efficient 
graph. 

Proof: For any node i, di > 0 implies that the pay-off of that node is negative 
thus reducing the overall network pay-off. This follows from (d – c + d2) being 
negative. 

Proposition 10: When d = c, the Turan graph is the unique efficient graph. 
Proposition 11: When d < c and d2 > (c – d), the Turan graph is the unique 

efficient graph. 
Proposition 12: When d > c and d2 ≥ 3(d – c), the Turan graph is the unique 

efficient graph. 
Proposition 13: When d > c and (d – c) > 2d2, the complete graph is the effi-

cient graph. 
Conjecture 1: When d > c and (d – c) ≤ d2 < 3(d – c), the Turan graph is the 

efficient graph. 
Conjecture 2: When d > c and (d – c) ≤ 2d2:

(i) if ( ) ,d d 


c
n

n 2
2  then the complete graph is the efficient graph.

(ii) if ( ) ,d d 


c
n

n 2
2  then the Turan graph is the efficient graph. 

We summarize the above results on efficiency in Table 2.

Table 2. Characterization of Topologies of Efficient Networks in NFLP

Parameter Range Efficient Topologies Implied By

d < c and d2 < (c – d) Null network Proposition 9

d < c and d2 > (c – d) Turan network Proposition 11 

d = c Turan network Proposition 10 

d > c and d2 > 3(d – c) Turan network Proposition 12 

d > c and (d – c) > 2 d2 Complete network Proposition 13 

Source: Developed by the Authors.
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Price of Stability (PoS) of the NFLP Game

Recall that PoS (Anshelevich et al., 2008) is the ratio of the sum of pay-offs of the 
players in a best pairwise stable network to that of an efficient network. In NFLP, 
a best pairwise stable network means a pairwise stable network with a maximum 
value of the sum of pay-offs of the players. By invoking the results derived in the 
previous sections, we now present our results on PoS for the proposed model. 

Theorem 1: The price of stability (PoS) is 1 in each of the following scenarios: 

(i) d > c and (d – c) > 2d2, 
(ii) d > c, d2 > (d – c) and d2 ≥ 3(d – c), 
(iii) d = c, 
(iv) d < c and d2 > (c – d). 

This theorem can be proved easily using the results summarized in Table 1 and 
Table 2.

Note: Since the null network is the only efficient network when d < c and d2 < 
(c – d), PoS is not defined in this region.

In view of Conjecture 1, the following result presents bounds on PoS.

Proposition 14: When d > c and (d – c) ≤ d2 < 3 (d – c), PoS > 
1
2

. 

Proof: We know that, under the conditions d > c and (d – c) < d2 < 3(d – c), the 
pairwise stable graph with the highest pay-off is the Turan graph (as seen from 
Table 1). Let Conjecture 1 be false. In this scenario, let us denote the efficient 
graph by Ḡ. We will now evaluate an upper bound on the maximum efficiency of 
Ḡ. Ḡ has to have more direct links than the Turan graph (as d > c) to be a candidate 

for efficient graph. Let Ḡ have 
n

x
2

4


















 edges where x > 0. 

u G u G c d d
di

i

n

i
i

n

i
i

n
i

i
( ) ( ) ( )= =   




















= = =

  
1 1 1

2 1

2

d d
s










=   












=

( )d d d
s

c d
di

i

n
i

i

2

1

2 2
1

Since di can be at most (n – 1), 

u G c n n
n

u G c n n

i
i

n

( ) ( ) ( )

( ) ( ) ( )

    












   

=

d d
d

s

d d

2
2

1

2

1
2

2

1 












2
2

2

3
d

n
T G( )



NOT FOR C
OMMERCIA

L U
SE

Studies in Microeconomics, 2, 1 (2014): 63–119

82 Rohith D. Vallam et al.

By Equation (6), we have, 
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 , we have, 

 u(Ḡ ) ≤ (d – c + d2)n(n – 1)

As mentioned before, the Turan graph is pairwise stable under these conditions 
(refer Table 1). Hence we get the following:
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This implies that PoS > 
1
2

.

Remark: In view of Conjecture 2, it can be noted that a similar bound can be 
obtained in the region d > c and (d – c) ≤ 2d2.

From Theorem 1 and Proposition 14 along with the simulation results, we con-
clude that, under mild conditions, the proposed NFLP produces efficient networks 
that are pairwise stable. This is desirable from the view of system design.

Convergence to Pairwise Stable/Efficient Networks 
through Myopic Best Response Dynamics

So far, we have examined various networks which satisfy properties of pairwise 
stability and/or efficiency. Our results show that, under many configurations, the 
set of pairwise stable networks need not be unique, so even converging to a par-
ticular pairwise stable equilibrium network is in itself non-trivial task. Further, 
this hints at the difficulty of designing dynamics that select a ‘good’ equilibrium. 
Further, as shown in the studies on Price of Stability in Section 6, there is no rea-
son to expect equilibria to be also efficient.

Instead of focussing on one of the standard static equilibrium concept of pair-
wise stability discussed in earlier sections, we investigate, through simulations, 
whether there is some non-trivial network formation process that yields the pair-
wise stable and efficient networks discussed so far in the article. We propose a 
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natural dynamic process of network formation which applies the proposed NFLP 
model. These dynamics describe the myopic behaviour of a strategic agent, should 
it be allowed to deviate within a particular set of allowable deviations.

We design a simple, localized best response updating rule for network forma-
tion and understand the convergence of such a dynamic updating rule through 
extensive simulations. The main purpose of this exercise is to get a better under-
standing of the actual network formation process as theoretical analysis has lim-
ited scope in enabling the understanding of the cumulative effects of many of the 
parameters occurring in real-world scenarios like the initial network, updating 
order of the nodes, etc., that influence the network formation process.

Starting from some initial configuration of a network, we examine whether it 
is possible to converge to any of the pairwise stable networks (discussed in Section 
4) if self-optimizing nodes of the network follow some simple myopic updating 
rule. However, since we provided only sufficient conditions for certain network 
topologies to be pairwise stable (in Section 4), we can deduce that the convergent 
topology of the proposed myopic best response dynamic process may not be any 
of the standard networks considered in Section 4. Studies on the convergence of 
this dynamic process have the potential to reveal certain other topologies that 
satisfy pairwise stability apart from these standard networks.

Outline of the Section

The outline of the section is as follows: 

1. We explain the simulation setup and describe the myopic best response 
dynamics used in the simulation. 

2. We put forth some important metrics which are recorded during the simu-
lations and describe classification criteria of pairwise stable networks. 

3. We investigate whether the network topologies considered so far in Section 
4 and Section 5 do emerge in our simulations as convergent networks. 

4. We investigate whether our simulation process discovers new pairwise sta-
ble topologies not considered so far in the article. 

5. We investigate a single simulation run in closer detail to gather additional 
insights about the network formation process. 

6. We study the behaviour of convergence time under various parameter con-
figurations of the simulations. 

Simulation Setup

We built a custom network formation simulator using the C++ programming lan-
guage in order to model the network formation process under our proposed net-
work model. To implement the standard graph routines, we used the BOOST C++ 
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libraries (Boost-C++-Libraries, 2012) which has efficient implementations of 
fundamental graph data structures and routines. We start with a random initial 
network consisting of n nodes. The number of edges between these nodes is deter-
mined by the parameter density(g). For example, if g = 0, we start with an empty 

network; if g = 0.35, we start with a network that contains .35% of the possible 
n
2









 

edges. These edges are chosen uniformly at random. As noted in Section 3, a node 
obtains a benefit of d (0 ≤ d ≤ 1) and incurs a cost (c (0 ≤ c ≤ 1)) for maintaining 
a direct relationship (represented by an edge) with another node. In addition, 
each node reaps additional indirect benefit because of its potential to bridge 
its unconnected neighbours (determined by sparsity of relationships among 
his neighbours).

The Simulation Process: Myopic Best Response Dynamics

A single simulation run starts off with an existing initial network (maybe a null 
network) among the nodes in the network in the custom network formation simu-
lator. We fix a particular value of d and c for a single simulation run. We now 
describe the details of a single simulation run below.

In a particular simulation run, each node is given an opportunity to act, based 
on a random schedule. Each node, when scheduled, considers three actions—
namely, add an edge to a node that it is not directly connected to, delete an exist-
ing edge to a node or do nothing. Each node chooses the action that maximizes its 
individual pay-off (which is based on the parameters d and c), breaking ties ran-
domly. Node i, when adding an edge to node j, may be allowed to do so only if it 
is beneficial to both or if node j is at least not worse off (mutual add (MA)). 
Similarly, node i, when deleting an existing edge to node j, may be allowed to do 
so unilaterally (unilateral delete). Note that these design of this dynamics follow 
very naturally from the definition of pairwise stability.

Table 3 lists the various simulation parameters. At some stage in the simula-
tion, the network could evolve into a stable state where no node has any incentive 
to modify the network. One iteration in which no node modifies the network is an 
‘idle iteration’, and the parameter ‘Num-Idle-Terminate’ indicates the number of 
idle iterations before we conclude that the network has reached a stable state. This 
is the case of normal termination of a simulation run. However, there may be cases 
where the network does not emerge into a stable state and cycles through previ-
ously visited states even after many iterations (the case of ‘dynamic-equilibrium’ 
as noted in Hummon (2000). The parameter ‘Max-Iterations’ indicates the number 
of iterations before we forcibly terminate the simulation run. However, we have 
observed that all the simulation runs achieved convergence much before the maxi-
mum iterations allowed indicating that the formation of dynamic equilibrium is 
not possible in our pay-off model. However, we leave the formal proof of this 
observation as a future work.



NOT FOR C
OMMERCIA

L U
SE

Studies in Microeconomics, 2, 1 (2014): 63–119

Strategic Network Formation with Localized Pay-offs  85

We run the simulations for each combination of possible values of d and c as 
shown in Table 3. Further, each simulation run is repeated multiple times as per 
the ‘Num-Repetitions’ parameter. The simulations were averaged out over differ-
ent initial networks and random schedules.

Dynamic Process Evolution: Emergence of Known Pairwise  
Stable Networks

We now proceed to understand some of the results of our simulations. First, in this 
section, we focus only on the networks considered in Section 4 and Section 5. 
Specifically, we are interested in knowing the following aspects in the simulations:

1. Do the pairwise stable networks identified in Table 1 actually emerge in 
the simulation process which uses the myopic best response updating 
rule? 

2. If so, under what values of d and c do they emerge? 
3. Do these conditions match with the theoretical results proved in Table 1? 

We present the results in Figure 3 and Figure 4.
Figure 3(a)–Figure 3(i) and Figure 4(a)–Figure 4(i) presents the relevant 

results. The vertical axis of each plot in Figure 3 and Figure 4 is the benefit value 
(d), ranging from 0 to 1 (discretized as {0, 0.05, 0.1, 0.15, ..., 1}), and the horizon-
tal axis represents the cost parameter (c), ranging from 0 to 1, which is also dis-
cretized as {0, 0.05, 0.1, 0.15, ..., 1}).

In general, given a particular value of d and c, the simulation process may 
converge to different pairwise stable network structures. The type of network 
structure emerging in the network formation process depends on a number of fac-
tors like the initial network, the scheduling order of the nodes along with the 

Table 3. Simulation Parameters

Parameters Values

N 3, 4, 5, 10, 20

Cost (c) 0.05 to 1, in steps of 0.05

Benefit (d) 0.05 to 1, in steps of 0.05

Density (g) 0, 0.35, 0.7

Experiment Mutual-Add, Unilateral-Delete

Num-Iterations 1000

Num-Repetitions 100

Num-Idle-Terminate 30

Source: Developed by the Authors.
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parameters of d and c. In particular, we start with three different initial networks 
with densities (0, 0.35, 0.7) respectively.

Figure 3(a)–(d) plot the pairwise stable regions as proved theoretically (given 
in Table 1) for three networks namely bipartite complete network, null network 
and complete network. Figure 3(e)–Figure 3(i) and Figure 4(a)–Figure 4(l) 
show the simulation results. Now, we will describe these plots in more detail. 
Note in Figure 3(a)–(d), the region shaded in black corresponds to the values of 
d and c for which the corresponding network has been proved to be pairwise-
stable theoretically (as given in Table 1). Similarly, the region shaded in black 
in the plots given in Figure 3(e)–Figure 3(i) and Figure 4(a)–Figure 4(l) (which 
represent the results of the simulation process) corresponds to the values of d 
and c for which the simulation process converged to the corresponding pairwise 
stable network.

Figure 3(e) shows the regions where the Bipartite Complete (BPC) network 
emerged as one of the pairwise stable network when the simulation run was 
started with number of nodes (N = 10) and initial network with density(g = 0). 
Clearly, we can see that BPC does not emerge as pairwise stable in the regions 
where d < c as the null network (which coincides with the initial network) is also 
pairwise stable and the nodes prefer not to add any links to the initial network. 
However, Figure 3(f) and Figure 3(g) show that if the starting network is already 
having some existing links then nodes try to form BPC network even in the 
regions where d < c. This shows the importance of the initial network in the net-
work formation process.

Figure 3(h) is obtained by merging all the regions of Figure 3(e)–(g) and this 
closely corresponds to the theoretical regions of BPC stability shown in Figure 
3(a). Figure 3(i) and Figure 4(a)–(c) similarly show results for N =20. In this 
case, however, we observe that Figure 4(c) is not as close to Figure 3(a) which 
is due to the fact that there may be many more pairwise stable topologies that 
may emerge as the number of nodes increase which illustrates a fundamental 
difficulty in identifying all pairwise stable networks for every possible value of 
number of nodes (N).

Another observation is that the complete network is theoretically proven to be 
the unique pairwise stable network in the region shown in Figure 3(c). We can 
clearly see the simulation results in Figure 3(h) and Figure 4(c) that this region is 
clearly excluded from the BPC stable region as starting with any initial network, 
only the complete graph emerges as unique the pairwise stable network in the 
region specified by Figure 3(c).

We similarly show the stability regions for complete and null networks in 
Figure 4(d) and Figure 4(f) respectively which corresponds to the theoretical 
results of Figure 3(b) and Figure 3(d) respectively. As explained earlier, Figure 
4(e) again illustrates the importance of initial network in making the null network 
as the pairwise stable network.

As shown in Proposition 8, the equi-k-partite network is stable when d = c and 
Figure 4(j) shows that indeed in this region, the equi-k-partite network does 
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emerge as the pairwise stable network when N = 20. Proposition 8 was only a suf-
ficient condition, we observe from the figure that there are other regions of d and 
c (which we have not analytically studied) at which equi-k-partite network 
emerges as the pairwise stable network.

As explained earlier, the pairwise stable network structures as shown in 
Table 1 is not exhaustive and hence, we used simulations to depict the region 
of stability for important types of network structures namely the near-shared 
network and k-partite complete network. We show the results in Figure 4(k) 
and Figure 4(l).

Dynamic Process Evolution: Discovery of New Pairwise Stable Networks

Figure 5 shows the simulation results for 10-node and 20-node networks. The 
exact parameter configurations and the initial network densities are marked within 
the individual plots in the figure. The vertical axis of each plot in Figure 5 is the 
benefit value (d), ranging from 0 to 1, and the horizontal axis represents the cost 
parameter (c), ranging from 0 to 1. As noted earlier, for a <c, d> pair, we repeat 
the simulation for Num-Repetitions. Each repetition for the simulation results in a 
network that can be classified as one of the structures mentioned in the theoretical 
analysis. We plot the most frequent (modal) network structure as determined by 
the frequency with which each of the network structures resulted in Num-
Repetitions simulation runs. The experiment was repeated starting with different 
network densities, g = 0,0.3 and 0.7. We list some of the abbreviations used in the 
legends of the plots in Table 4. 

In each of the plots in Figure 5, we observe that the complete graph is the 
resultant pairwise stable network (when d > c, (d – c) ≥ d2) which concurs with the 
theoretical deductions that the complete graph is the unique pairwise stable net-
work in this region (Table 1 and Figure 3(c)).

We can also infer there is an overlap in the stability regions among complete 
and complete bipartite (see Figure 3(a) and Figure 3(b)) and also between null and 
complete bipartite networks (see Figure 3(a) and Figure 3(d)). However, as 
observed through simulations (Figure 5), we see that the complete bipartite net-
work emerges as the modal pairwise stable network in its regions of overlap with 
the aforementioned networks. This can be attributed to the fact there are a large 
number of possible bipartite graphs whereas there is only one null network and 
one complete network. Hence, the likelihood of the null and complete emerging 
in a region where the bipartite network is also pairwise stable, is small.

We also observe from some of the plots in Figure 5 that near-shared and k-partite 
complete networks emerge as pairwise stable networks under some regions of the 
parameters. As explained in earlier sections, this can be attributed to the fact that 
our analytical results (as shown in Table 1) is not exhaustive and there exist some 
new topologies (which we identify as near-shared or k-partite complete networks) 
which are also pairwise stable.
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Table 4. Some Abbreviations used in Figure 5

TUR_GRA Turan Graph BIPARCOMP BiPartite Complete

NRSHARED Near-Shared KPARCOMP KPartite Complete

Source: Developed by the Authors.

Figure 5. Network Topologies Obtained during Simulations 

Source: Developed by the Authors.
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Dynamic Process Evolution: Examining a Single Simulation Run

Having studied the macroscopic behaviour of our simulations, we investigate the 
network formation process from a microscopic viewpoint. We examine various 
snapshots during the network formation process of a single simulation run which 
is repeated just once for a fixed parameter of d and c. We consider d = c = 0.5 as 
our parameter configuration. We can observe from the our proposed pay-off model 
(Equation (3)) that for this configuration the benefits from direct links is 0 and so, 
nodes try to maximize the benefits due to bridging behaviour. The nodes form/
delete links such that they emerge as a bridge in connecting their unconnected 
neighbours. Hence, we would expect the final pairwise stable network to be con-
sisting of nodes who are filling the positions of structural holes in the network and 
hence, the emergent pairwise stable graph should be a ‘triangle-free’ as nodes 
form links with nodes who are themselves are not connected with each other.

We depict the snapshots of network formation process at different instances of 
time in Figure 6. We can see that initially the nodes are forming links in such a 
way that triangles are not present but eventually triangles eventually do form due 
to the cumulative action of other nodes in the network. When triangles emerge in 
the neighbourhood of a node, it leads to deletion of links from that node (as the 
node will benefit strictly from deletion) and the final emergent network (Figure 
6(l)) is a equi-bipartite complete network (which is triangle-free), also known as 
the Turan network). A better visualization of the bipartite structure of the emer-
gent Turan network (given in Figure 6(l)) is provided through Figure 7(b).

In complex network literature, the number of triangles in the network is a 
important parameter which was first studied by (Watts and Strogatz, 1998) by 
definition the notion of ‘clustering’, sometimes also known as network transitivity. 
Clustering refers to the increased propensity of pairs of people to be acquainted 
with one another if they have another acquaintance in common. Watts and Strogatz 
(1998) define a ‘clustering coefficient’ (denoted by C) that measures the degree of 
clustering in a undirected unweighted graph. 

C =
3 Number of triangleson thegraph

Number of connected triples of veertices

The factor three accounts for the fact that each triangle can be seen as consist-
ing of three different connected triples, one with each of the vertices as central 
vertex, and assures that 0 ≤ C ≤ 1. A triangle is a set of three vertices with edges 
between each pair of vertices; a connected triple is a set of three vertices where 
each vertex can be reached from each other (directly or indirectly), i.e., two verti-
ces must be adjacent to another vertex (the central vertex).

It can be observed from the pay-off model proposed in equation (3) in Section 3 
that s i

id
2











 component in the pay-off model corresponds to the clustering coefficient 

of node i. Thus, in our pay-off model, nodes benefit from having lesser clustering 
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Figure 7. Isomorphic Representation of the Unique Efficient and Pairwise Stable Network 
known as the Turan Network (i.e., Complete Equi-Bipartite Network) when N = 20, 
d = 0.5, c = 0.5. 

Source: Developed by the Authors.
Note: Figure 7(a) is the same network as the evolved network from the single simulation run 

given in Figure 6(l) and Figure 7(b) is its isomorphic representation.

coefficient as this will lead to the formation of structural holes, which in turn leads 
to increase in the pay-off for the node.

We now study how the clustering coefficient changes as the network evolves 
through the different phases shown in Figure 6. We plot this result in Figure 8(a). 
We see that upto time epoch 50 clustering coefficient is 0. Later there is a increase 
in the value which is followed by the reduction in the clustering coefficient back 
to 0 (at time epoch 150) when the pairwise stable network emerges. As explained 
before, this is indeed the expected behaviour during the network formation proc-
ess for the parameters d = c = 0.5.

We also study the average clustering co-efficient in all the pairwise stable net-
works that emerge for different values of d and c. We take the average over run-
ning ‘Num-repetitions’ number of times. The result is shown in the 3d plot in 
Figure 8(b). We can see that the clustering coefficient assumes value of 1 in the 
regions where the complete network is stable and 0 when the null network is stable. 
In other regions, the clustering coefficient value is between 0 and 1 which indi-
cates a trade-off between the benefits from direct links and the benefits from 
bridging benefits to the nodes in the network.
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Dynamic Process Evolution: Studying Convergence Time

In this section, we will study the effect the initial network density has on the effort 
needed by the nodes to achieve convergence to a pairwise stable network. A single 
addition of an edge or a single deletion of an edge by a node is considered to be a 
single ‘act’ by that player. We now study the mean number of acts performed by 
the players to converge to a pairwise stable network starting from various initial 
random networks. We can see from Figure 9(a) that the number of changes to the 
network is more when the d > c region and this is because the initial network is a 
null network and the players need to perform a lot more additions/deletions to the 
network before reaching the final stable network which is the complete network. 
When d < c, the players need not perform any change to the network as the initial 
null network is already pairwise stable. In fact, we can observe from the Figure 9 
that the number of acts needed to reach the complete network is maximum (about 
180) when starting with null network than when compared to other scenarios of 
g = 0.35 and g = 0.7 (mean acts is about 130).

We observe a reversal of the work needed to reach null network in Figure 9(c) 
where more number of changes is needed to reach null network than reaching the 
complete network. This can be attributed to the fact that the initial network is already 
a dense network to start with and it takes relatively less effort to reach the complete 
network than the null network under appropriate configurations of d and c.

Initial network density of 0.35 corresponds to a medium-dense network (Figure 
9(b)) and hence there is a non-zero effort to reach any of the pairwise stable net-
work under any parameter configuration. However, as in Figure 9(a), it takes more 
effort for players to reach the complete network than the null network.

Summary

Recent studies have indicated that social structure has an important role in impact-
ing economic outcomes. In our investigation, we have pursued this observation in 
more detail in the context of network formation problem. Typically, nodes in a 
social structure tend to undertake decisions based on the local information avail-
able to them. We investigate the effect of local information that strategic agents 
possess on the eventual equilibrium network formed among the nodes.

We proposed a model for network formation game in which strategic agents 
use their local neighbourhood information to links they want to form or delete. 
Following the justification of Burt, (1992, 2004, 2007) regarding the hypothesis 
that people/nodes who stand near the holes of a social structure have a higher chance 
of having good ideas which result in higher social capital, we incorporate brokerage 
into the pay-off model of strategic agents. Nodes, thus, obtain a higher pay-off if 
they are able to bridge disconnnected pairs of nodes. Having formulated the model, 
we examine equilibrium properties in the model. It has been observed in recent 
literature that pairwise stability is a natural way to think about link formation in a 
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number of social and economic contexts such as the formation of friendship ties, 
co-authorships (Jackson and Wolinsky, 1996), collaboration between firms, trad-
ing links between buyers and sellers and free trade agreements between nations 
(Goyal and Joshi, 2003). Hence, in our work, we used the notion of pairwise sta-
bility as the relevant equilibrium concept as it incorporates the effects of both 
unilateral and bilateral deviations unlike the notion of Nash stability which con-
siders robustness due to only unilateral deviations.

We derived sufficient conditions for pairwise stability for various network topol-
ogies exploiting the symmetry of the corresponding network topologies. Some of 
the networks considered for pairwise stability included the following networks: 
complete, complete bipartite, complete tripartite, complete equi-k-partite, null, star 
and cycle.

Next, using the notion of social-welfare maximization for identifying efficient 
networks, we characterized efficient networks in the NFLP model using techniques 
from the area of extremal graph theory. We also studied the trade-off between pair-
wise stability and efficiency using the notion of Price of Stability (PoS). In particu-
lar, we computed the PoS of the proposed NFLP model. Except for a few 
configurations of d and c, we have shown that PoS is 1. This means that, under 
mild conditions, that NFLP produces efficient networks that are pairwise stable.

We then investigated whether the pairwise stable and efficient networks could 
actually emerge through a non-trivial network formation process which starts 
from a random initial network. We studied the outcome of myopic best response 
dynamics by developing a custom network formation simulator to capture the 
network formation process. We varied the simulation process under different val-
ues of parameters of the simulation namely initial network density, scheduling 
order among the nodes of the network and various values of d and c. We observed 
that the simulation process converged to the theoretically proven pairwise stable 
networks under many parameter settings. Further, it also led to discovery of new 
pairwise stable networks which were not considered under the theoretical investi-
gations. This discovery reinforced the importance of the two approaches followed 
in our investigation namely theoretical analysis and simulation studies. We also 
gained additional insights regarding convergence time and network evolution pat-
tern in the network formation process.

Summarizing, our work investigated the strategic network formation problem 
in detail and highlighted the attracting and drawing forces that exists between 
equilibrium networks and efficient networks where the network formation model 
is based on realistic assumptions of local information and brokerage benefits.

Discussion

In the pay-off function we defined in Section 3; the pay-off of any node had two 
components, benefit from direct links and benefit from bridging. The pairwise stable 
network topologies of our model, Section 4, shows that there are no bridges in the 
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equilibrium networks. Bridges can also be considered as bottlenecks of information 
flow. Since every node is striving to obtain a bridging position there are no bridges 
in the equilibrium networks, this suggests that the proposed pay-off model avoids 
bottlenecks in decentralized network formation. Here are a few pointers for future 
work. First, the framework in this article can be extended to the case of directed 
graphs and weighed graphs. This involves certain challenges such as defining the 
pay-off model appropriately. Second, the setting in this article can be extended by 
varying the notions of stability and efficiency. We note that there are several possible 
notions of stability and efficiency that exist in the literature. The choice of an appro-
priate notion of stability as well as efficiency is a topic of debate.

Further, our model gives us some valuable hints at the networks formed in real-
world as well. Some noted work in complex network literature has observed the 
emergence of bipartite graphs in real-world scenarios (Reka and Barabási, 2002; 
Newman et al., 2001). An important example has been the class of collaboration 
networks. It has been observed that the network of actors basically is a uni-mode 
bipartite graph (Newman et al., 2001). Other important examples of real-world 
bipartite networks include boards of directors of companies, co-ownership networks 
of companies and collaboration networks of scientists and movie actors. In the anal-
ysis of our proposed model in this article, we have seen the emergence of important 
graph structures like the Turan graph and in general, bipartite graphs and k-partite 
graphs during the network formation process under many configurations. Though 
our model does not precisely solve the difficult problem of identification of all 
parameters affecting network formation, it nevertheless offers valuable hints about 
some of the important parameters affecting real-world network formation. The stud-
ies on our pay-off model of network formation also offers strong evidence that 
incorporation of important game theoretic concepts like pairwise stability is vital to 
the understanding of complex network formation behaviour.
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IEEE International Conference on Automation Science and Engineering (IEEE CASE 
2013), Madison, WI, USA.

Notes
1. Note that the notion of pairwise stability can also be equivalently defined in terms of the 

strategy vectors of the underlying network formation game. Since we are primarily inter-
ested in the pairwise stability of different network topologies in this article, we will focus 
on the pairwise stability definition with respect to the induced undirected network.

2. Assume that node i bridges the communication between j and k; and a benefit of d2 is 
generated. In the literature, there are three well known ways of distributing the benefit 
d2 to nodes i, j and k: (i) only node i gets entire d2, (ii) node i gets 0 and (iii) nodes i, j 
and k get equal share of d2. In this article, we work with scenario (i). A similar approach 
is utilized in Kleinberg et al. (2008) as well. We note that the analysis that we perform 
using scenario (i) can also be extended in a similar way to other two scenarios.
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Appendix

Proofs For Pairwise Stability

Proposition 1: The cycle network is pairwise stable under the following conditions: 

1. For cycle of length 3, (d – c) ≥ 0 
2. For cycle of length 4, –2d2 ≤ (d – c) ≤ d2 
3. For cycle of length 5, –2d2 ≤ (d – c) ≤ d2 
4. For cycle of length 6 or greater, –2d2 ≤ (d – c) ≤ –d2 

Proof: 

(b)

(e)

(c)

(f)(d)

(a)

i

i

i

i

i

i

k k

j

j

j

j

j

j

Figure 10. Cycle graph Pairwise Stability - Various Cases

Source: Developed by the Authors.

We will use a common notation throughout this proof. Let g be the graph under consid-
eration. Let g′ be the graph obtained from g after either an addition of a link or deletion of 
an existing link as the case may be. Let ui(g) and (ui(g′) be the corresponding pay-offs of i 
is graphs g and g′.

Case 1: Consider a cycle of length =3 as shown in Figure 10(a). We will analyze pair-
wise stability under addition and deletion of links. 

• Addition of new link: This is meaningless as all possible links are already present. 
• Deletion of link: Consider a node i which wants to delete its link to node j. We compute 

the pay-offs of the node i before and after deletion of the link (i, j). 

ui(g) = 2(d – c) + 2 × d2 × 0 = 2(d – c)

ui(g′) = (d – c) + 2 × d2 × 0 = (d – c)
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For pairwise stability, we need, 

 ui(g) ≥ ui(g′) ⇒ (d – c) ≥ 0 (7)

Case 2: Consider a cycle of length = 4 as shown in Figure 10(b). We will analyze pair-
wise stability under addition and deletion of links. 

• Addition of new link: Consider a node i which wants to add a link to node j as shown 
in Figure 10(b). We compute the pay-offs of the node i before and after addition of 
the link (i, j). 

u g c c

u g c
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For pairwise stability, we need, 

 ui(g) ≥ ui(g′) 

 ⇒ 2(d – c) + 2 × d2 ≥ 2(d – c) + 2 × d2

 ⇒ (d – c) ≤ d2 (8)

• Deletion of link: Consider a node i which wants to delete its link to node k as shown 
in Figure 10(b). We compute the pay-offs of the node i before and after deletion of 
the link (i, k). 

ui(g) = 2(d – c) + 2 × d2 = 2(d – c) + 2d2

 ui(g′) = (d – c) + 2 × d2 × 0 = (d – c)

For pairwise stability, we need, 

 ui(g) ≥ ui(g′) ⇒ (d – c) ≥ –2d2 (9)

Combining Equation (8) and Equation (9), we get the following pairwise stability condi-
tions for cycle of length 4. 

 –2d2 ≤ (d – c) ≤ d2 (10)

Case 3: Consider a cycle of length = 5 as shown in Figure 10(b). We will analyze pair-
wise stability under addition and deletion of links. 

• Addition of new link: Consider a node i which wants to add a link to node j as shown 
in Figure 10(c). We compute the pay-offs of the node i before and after addition of 
the link (i, j). 
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For pairwise stability, we need, 

 ui(g) ≥ ui(g′) ⇒ (d – c) ≤ d2 (11)

• Deletion of link: Consider a node i which wants to delete its link to node k as shown 
in Figure 10(c). We compute the pay-offs of the node i before and after deletion of 
the link (i, k). 

ui(g) = 2(d – c) + 2d2ui(g′) = (d – c)

For pairwise stability, we thus need, 

 (d – c) + 2d2 ≥ 0 (12)

Thus, the pairwise stability conditions for a cycle of length 5 is the intersection of the 
conditions specified in Equation (11) and Equation (12) which is given below 

 –2d2 ≤ (d – c) ≤ d2 (13)

Case 4: Consider a cycle of length ≥ 6 as shown in Figure 10(d)–Figure 10(f). We will 
analyze pairwise stability under addition and deletion of links. 

• Addition of new link: Unlike the above cases, we can study stability under addition 
of links for a cycle of length ≥ 6 by considering two types of addition operations. 

• Addition of link to a non-two-hop neighbour: Consider a node i which wants to add 
a link to node j as shown in Figure 10(d). We compute the pay-offs of the node i 
before and after addition of the link (i, j). 

ui(g) = 2(d – c) + 2d2ui(g′) = 3(d – c) + 3d2

For pairwise stability, we thus need, 

 ui(g) ≥ ui(g′) ⇒ (d – c + d2) ≤ 0 (14)

• Addition of link to a two hop neighbour: Consider a node i which wants to add a link 
to node j as shown in Figure 10(e). We compute the pay-offs of the node i before and 
after addition of the link (i, j). 

ui(g) = 2(d – c) + 2d2ui(g′) = 3(d – c) + 2d2

For pairwise stability, we thus need, 

 ui(g) ≥ ui(g′) ⇒ (d – c) ≤ 0 (15)

Combining Equation (14) and Equations (15), we get the following condition for pair-
wise stability under addition of links for a cycle of length ≥ 6. 

 (d – c + d2) ≤ 0 (16)

• Deletion of link: Consider a node i which wants to delete its link to node j as shown 
in Figure 10(f). We compute the pay-offs of the node i before and after deletion of 
the link (i, j). 

ui(g) = 2(d – c) + 2d2ui(g′) = (d – c)

For pairwise stability under deletion, we thus need 

 d – c + 2d2 ≥ 0 (17)
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Thus, the pairwise stability conditions for a cycle of length ≥ 6 is the intersection of the 
conditions specified in Equation (16) and Equation (17) which is given below 

 –2d2 ≤ (d – c) ≤ –d2 (18)

Proposition 2: If –d2 ≤ (d – c) ≤ d2, then the complete bipartite network is pairwise 
stable.

Proof: As usual, we will use a common notation throughout this proof. Let g be a com-
plete bipartite network, with a1 and a2 nodes respectively in the two partitions. Let g′ be the 
graph obtained from g after either an addition of a link or deletion of an existing link as the 
case may be. Let ui(g) and ui(g′) be the corresponding pay-offs of i is graphs g and g′. 

• Addition of new link: Consider a node i which wants to add a link to node j. We 
compute the pay-offs of the node i before and after addition of the link (i, j). 

u g a c a

u g d c d
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i i i
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For pairwise stability under addition, we have, 

 ui(g) ≥ ui(g′) 

 a2(d – c) + a2d
2 ≥ (a2 + 1)(d – c) + (a2 – 1)d2

 d2 ≥ (d – c) (19)

• Deletion of link: Consider a node i which wants to delete its link to node j as shown. 
We compute the pay-offs of the node i before and after deletion of the link (i, j). 

 ui(g) = a2(d – c) + a2d
2

 ui(g′) = (di – 1)(d – c) + (di – 1)d2

 = (a2 – 1)(d – c) + (a2 – 1)d2

For pairwise stability under deletion, we have, 

 ui(g) ≥ ui(g′)

 a2(d – c) + a2d
2 ≥ (a2 – 1)(d – c) + (a2 – 1)d2

 d2 ≥ (c – d)  (20)

Combining Equation (19) and Equation (20), we get the pairwise stability conditions 
for bipartite complete network and is given below. 

 –d2 ≤ (d – c) ≤ d2 (21)

Proposition 3: The null (empty) network is pairwise stable if (d – c) ≤ 0. 
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Proof: As usual, We will use a common notation throughout this proof. Let g be the 
graph under consideration. Let g′ be the graph obtained from g after either an addition of a 
link or deletion of an existing link as the case may be. Let ui(g) and ui(g′) be the corre-
sponding pay-offs of i is graphs g and g′.

• Addition of new link: Consider a node i which wants to add a link to node j. We 
compute the pay-offs of the node i before and after addition of the link (i, j). 

ui(g) = 0

ui(g′) = (d – c)

For pairwise stability under addition, we have, 

 0 ≥ (d – c) (22)

• Deletion of link: This does not make sense as the graph is already a null network.
Thus, by Equation (22), we have the following condition for pairwise stability for null 

network. 

0 ≥ (d – c)

Proposition 4: The complete network is pairwise stable if (c – d) ≤ 0
Proof: As usual, We will use a common notation throughout this proof. Let g be the 

graph under consideration. Let g′ be the graph obtained from g after either an addition of a 
link or deletion of an existing link as the case may be. Let ui(g) and ui(g′) be the corre-
sponding pay-offs of i is graphs g and g′. 

• Addition of new link: This does not make sense as the graph is already complete.
• Deletion of link: Consider a node i which wants to delete its link to node j. We com-

pute the pay-offs of the node i before and after deletion of the link (i, j). 

ui(g) = di(d – c)

ui (g′) = (di = 1)(d – c)

For pairwise stability, we need, 

 ui(g) ≥ ui(g′) ⇒ (c – d) ≤ 0 (23)

Proposition 5: When (d – c) > d2, the complete network is the unique pairwise stable 
network. 

Proof: Consider any graph G which is not a complete network. We will show that it is benefi-
cial for an arbitrary node i (who has less than (n – 1) links) to add a link under the above condi-
tions. Once this is proved, it naturally implies that the complete graph is the unique pairwise 
stable network under the conditions given above. Consider any node i with di < (n – 1). Let si be 
the number of links among its neighbours. Let s′i be the number of links among its neighbours 
after it has added a new link to node j. Similarly, let ui be the pay-off of node i before addition 
of a new link and let ui′ be the pay-off of node i after addition of a new link. We know that 

ui = di × (d – c) + di × d2 × si

where s
di

i

i
= 











( )1

2

s
 is the sparsity in the neighbourhood of node i. Note that, when node 

i adds a link to node j, the number of links among its neighbours can, at most, increase by 
di i.e., si′ = si + di. Thus, the new pay-off of node i, ui′, is, at least, given by, 
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=        











u d c d
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s

We now examine under what conditions will ui < ui′ and this will suffice for proving the 
complete graph is unique pairwise stable graph under these conditions. 

ui < ui′
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Simplifying, we get, 
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i
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 (24)

We know that si ∈[0, 1] and hence, si is upper bounded by 1. Thus, if we have the follow-
ing stronger condition, then Equation (24) will automatically be satisfied. 

d2 < (d – c)

Thus, when d2 < (d – c) holds, node i has an incentive to add a new link irrespective of its 
neighbourhood and connections among its neighbours. Applying this argument repeatedly, 
we can conclude that any network except the complete network is not pairwise stable.

Proposition 6: The star network is pairwise stable only when d = c. 
Proof: 

2
2

1

3
3

1

n
n

i

i

j

j

n-node star graph Bipartite representation of n-node star graph

Figure 11. Examining Pairwise Stability of the Star Graph

Source: Developed by the Authors.
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Let us consider the n node star graph as given in Figure 11. We can see from the figure that 
the star graph is isomorphic to the complete bipartite graph where there the central node is in 
one partition and all the peripheral nodes is in the other partition. Let us consider the central 
node to be Node 1. We will examine the conditions for pairwise stability of the star graph. We 
will consider three cases independently: 

1. Case 1: Node 1 deletes any one of its link to the peripheral nodes, say Node 1. 
2. Case 2: Peripheral Node i adds a new link to another peripheral node j. 
3. Case 3: Peripheral Node i deletes the link to the central Node 1. 

In Case 1, let u1 be the pay-off of Node 1 before it deletes a link to a peripheral node. 
Let u1′ be the pay-off of Node 1 after deleting the link to Node i (shown in Figure 11). 

 u1 = (n – 1) × (d – c) + (n – 1)d2

 u1′ = (n – 2) × (d – c) + (n – 2)d2

 ui = (d – c)

 ui′ = 0

By pairwise stability conditions, we require that ui ≥ ui′ and u1 ≥ u1′ 

 u1 ≥ u1′ ⇒ (d – c) + d2 ≥ 0 (25)

 ui ≥ ui′ ⇒ (d – c) ≥ 0 (26)

In Case 2, let the peripheral Node i adds a new link to another peripheral Node j. 
Let ui and uj be the pay-offs of Node i and Node j before adding the link. Let ui′ and uj′ 
be the pay-offs of Node i and Node j after adding the link.

 ui = uj = (d – c)

 ui′ = uj′ = (2 × (d – c))

By pairwise stability conditions, we require that ui ≥ ui′. Hence, we get, 

 d – c ≤ 0 (27)

The scenario in Case 3 is symmetric to Case 2.
We take the intersection of conditions given in Equation (25), Equation (26) and 

Equation (27) and thus, we get, 

(d – c) ≥ 0 AND (d – c + d2 ≥ 0) AND (d – c) ≤ 0

 ⇒ d = c  (28)

Thus, the star network is pairwise stable only under the condition d = c. 
Proposition 7: Consider a tripartite complete graph denoted by G. Let ai, ∀i ∈ {1, 2, 3} 

denote the sizes of the three partitions of G. The condition for G to be pairwise stable is 
given below. 
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Further, asymptotically as the number of nodes increases, the pairwise stability condi-
tion reduces to 

 
 




1
2

1
22

d

d

c

 
(29)

when all the partitions in G are of equal size.
Proof: We consider a completely connected tripartite network with each partition 

having a1, a2, a3 nodes respectively. We derive conditions for pairwise stability of such 
a network. Consider a node t in partition i where i can be 1, 2, or 3. Its pay-off is 
dependent on the number of nodes in the other partitions j and k. 
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Substituting and simplifying, we get, 

 
u c a a

a a a a
a at j k

j j k k

j k

=   
  

 
( )( )

( ( ) ( ))
( )

d d2
1 1

1
 

(30)

The network can grow from this state if a node in partition i forms a link with a node in 
the same partition and, if this happens, the number of links among the neighbours of node 
t, denoted by st′, will be given by st′ = (st + dt) where dt is the degree of node t in the modi-
fied network given by dt = (aj + ak + 1). Substituting and simplifying, the new pay-off of 
the node t (denoted by ut′) is given by: 

 
=    
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(31)

The network is definitely Pairwise stable under link addition if ut ≥ ut′ for all t in the 
network. Thus, the tripartite network is pairwise stable under addition if: ut – ut′ ≥ 0, which 
implies, 
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which implies,
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(32)

One can verify that the RHS is upper bounded by 1 and also lower bounded by 1
3

 

when nodes in any partition exceed 1. This has to be true for all nodes t in all partitions 
1, 2, 3.
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Pairwise Stability under deletion of a link: The network can shrink from this state if a 
node t in partition i deletes a link with a node in either partition j, or k. Lets assume without 
loss of generality that it deletes a node in partition j. When this happens the pay-off of the 
node t would be ut′ given by: 

 
=    
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(33)

The network is definitely Pairwise stable under link deletion if ut ≥ ut′ for all t in the 
network. Thus, the complete tripartite network is pairwise stable under link deletion if: 
ut – ut′ ≥ 0, which implies, 
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which implies, 
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Again the RHS can be lower bounded by –1 and upper bounded by –1
3

 when all parti-
tions have more than a single node.

Special Case: All partitions are of equal size
By setting a1 = a2 = a3 = a the condition for the network to be pairwise stable, 
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Asymptotically when the number of nodes increase w.l.g., we can state the condition for 
pairwise stability as: 
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(35)

Proposition 8: For k ≥ 3, the complete k-partite network is pairwise stable if (i) d = c, 
and (ii) ai = a, ∀i ∈ {1, 2, ..., k} where ai is the number of nodes in partition i in k-partite 
network and a is any positive integer. 

Proof: We start with a k-partite graph, G, satisfying condition (ii) given in the statement 
of this proposition. Consider a node i in the pth partition of G where 1 ≤ p ≤ k. We construct 
the proof in two steps.

Step 1 (edge addition): We can see that, in G, the only link that can be added from node 
i is to a node j in the pth partition. Let Ḡ be the network obtained after a new link (i, j) is 
added to G. For pairwise stability, we need ui(Ḡ) – ui(G) ≤ 0. This implies,
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where si′ is the number of links among the neighbours of node i in Ḡ and si is the 
number of links among the neighbours of node i in G. Note that di = dj since nodes i 
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and j belong to the same partition in G. Now we get that si′ = si + dj = si + di. 
Simplifying, we get,

 
u G u G c

d di i
i

i i

( ) ( ) ( ) (
( )

) =   


d d d
s2 2 2

1  
(36)

Since the term 2
1

s i

i id d( )
 lies in the interval [0, 1] and the fact that d = c (given in the state-

ment of this proposition), we get that expression (36) is non-positive. This implies that no pair 
of nodes can form a link to improve their respective pay-offs.

Step 2 (edge deletion): In G, consider that node i deletes a link to a node j in the qth parti-
tion where 1 ≤ q ≤ k and p ≠ q. Let Ḡ be the network obtained after the link (i, j) has been 
deleted from G. For pairwise stability, we need ui(Ḡ ) – ui(G) ≤ 0. This implies, 
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where si′ denotes the number of links among the neighbours of node i in Ḡ. We can see that 
si′ = si – dj + ai. Simplifying, 
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Claim: expr1 ≤ 1. 
Proof of the Claim: We know that di = ∑j≠iaj. Now, we derive an expression for si.
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Now, we show that expr1 ≤ 1. The proof is by contradiction. Suppose expr1 > 1. 
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From condition (2) in Proposition 8, we have ai = 1, ∀i and di = dj = (k – 1)a. Also, using 
Equation (38) in Equation (39) and simplifying, we have, 

 

( ) ( )
( ) ( ) ( )

( )

k a k a
k a k a k a

a
k
k

   

      

 




1 1 2
1 2 1 1

1
1

2

2 2

 
(40)

Let y k
k
k

( ) ( ).=




1
1

 As we know that the function y(k) is a decreasing function of k (as 

derivative of y(k) with respect to k is < 0), we can write, 
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a < y(2) ⇒ a < 3

So, clearly we can conclude that expr1 > 1 for 0 < a < 3 (i.e., a = 2 and a = 1) and expr1 
≤ 1 for a ≥ 3.

Now we will examine what happens when a = 1 and a = 2. Substituting a = 1 in 
Equation (40) and simplifying, we get 2 > 2 which is absurd. Substituting a = 2 in 
Equation (40) and simplifying, we get k < 2 which violates the hypothesis that k ≥ 3. 
Hence, by the above arguments, expr1 ≤ 1, ∀a ∈ {1, 2,...}, ∀k ≥ 3. This completes the 
proof of the claim.

Note that we are given that d = c. Thus, from Equation (37), 
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Thus, node i does not have any incentive to add an edge to G or delete an edge from G 
when the conditions given in the statement of the proposition are satisfied. As node i is 
chosen arbitrarily from G, we have that G is pairwise stable. 

Proofs on Efficient Networks

Proposition 10: When d = c, the Turan graph is the unique efficient graph.
Proof: We will analyze the efficiency of an arbitrary graph (denoted by G) as 

follows: 
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(41)

where, T3(G) is the number of triangles in the graph G. The last step of the above simplifi-
cation is due to the fact that the number of links among the neighbours of a node i is the 
number of triangles in the graph in which node i is one of the vertices of the triangle. The 
factor 3 in the last step is due to the fact that every triangle contributes to the si of 3 nodes. 
We know that, for an efficient graph, Equation (41) should be maximized and that happens 
when the number of triangles in a graph is minimized while simultaneously maximizing 
the number of edges in the graph.
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The Turan graph (refer Equation (5)) is a graph with maximum edges that has no trian-
gles. So an efficient graph must have an efficiency greater than or equal to that of a Turan 
graph. Thus, it is clear that there is no need to consider graphs with edges lesser than that 
of a Turan graph. Let us consider the case when a graph (denoted by Ḡ) has more edges 

than the Turan graph. Let Ḡ have n
x

2

4








  edges where x > 0. From Equation (41), we 

know that, 
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where T3(Ḡ ) is the number of triangles in Ḡ. From Equation (6), we have, 
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(43)

Since T3(GTuran) = 0, the efficiency of the Turan graph is: 
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The change in efficiency (Du) between the two graphs is, 
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(45)

which is clearly negative for any x > 0. This implies that the Turan graph is the unique 
efficient graph. 

Proposition 11: When d < c and d2 > (c – d), the Turan graph is the unique efficient 
graph. 

Proof: We prove this by contradiction. Assume that Ḡ is any graph other than the Turan 
graph and Ḡ is efficient. We show below that Ḡ cannot have lesser number of edges than 
Gturan,

u G u G c d d
di

i

n

i
i

n

i
i

n
i

i
( ) ( ) ( )= =   




















= = =

  
1 1

2

1

1

2

d d
s










  
=

( )d dc di
i

n
2

1

 










=

u G whenever d
n

turan i
i

n

( ) ,
1

2

2
4



NOT FOR C
OMMERCIA

L U
SE

Studies in Microeconomics, 2, 1 (2014): 63–119

Strategic Network Formation with Localized Pay-offs  113

And observe, if Ḡ has same number of edges as Gturan and is different from it, it can 
contain triangles and will have an pay-off less than that of Gturan, as the benefit from bridg-
ing would go down and the benefit from direct links would remain unchanged.

Thus Ḡ contains more edges than Gturan. Observe, that the benefit from direct links is 
negative (d – c)∑n

i=0di < 0, and Ḡ has an higher pay-off compared to that of Gturan. It has to 
be that the bridging benefits in Ḡ has to be greater than that of the Turan graph, as the pay-
off due to direct links term has become more negative compared to its value in Gturan

u G u G c d d
di

i

n

i
i

n

i
i

n
i

i
( ) ( ) ( )= =   

= = =

  
1 1 1

2 1

2

d d
s

negative
  





























payoff more than GTuran

  

This implies that this graph would give a higher pay-off for the d = c case, as the first 
term is 0 there. This contradicts Theorem 10 and so our assumption must be wrong. Hence 
the Turan graph is efficient. 

Proposition 12: When d > c and d2 ≥ 3(d – c), the Turan graph is the unique efficient 
graph. 

Proof: Let Ḡ be the efficient graph. Using a similar analysis that lead to Equation (43), 
we can see that, 
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For the Turan graph, it can also be seen by simple analysis that 
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(47)

Thus, when d2 ≥ 3(d – c), the Turan graph is the unique efficient graph. 
Proposition 13: When d > c and (d – c) > 2d2, the complete graph is the efficient 

graph. 
Proof: It can be shown that starting with an arbitrary graph Ḡ  (which is not a com-

plete graph), adding an edge between two nodes i and j (with smallest degree) increases 
the cumulative pay-off of these two nodes by at least 2d2. At the same time, there is a 
decrease in pay-off of a common neighbour of nodes i and j, say node k, as there is a 
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decrease in the bridging benefits of node k. It can be shown that the cumulative decrease 

in pay-off of all such common neighbours formed is 2
1

2d

d
d d

k
i j

min( , ) which is less than 

equal to 2d2. Repeating the above process, we obtain the complete network. 

Notes on Convergence using Myopic Best  
Response Dynamics

Metrics Recorded

At the end of Num-Repetitions number of repetitions, a number of metrics were recorded. 

1. The network structure (shape) for each repetition 
2. The frequency with which each of the network structures in Section 12.2 resulted 

(across all repetitions) 
3. The mean pay-off of the final network (across all repetitions) 
4. The mean time to reach the final network (across all repetitions) 
5. The mean number of acts to reach the final network (across all repetitions) 

Before we present the results, we briefly describe the classification criteria used to 
identify pairwise stable networks.

Classification of Pairwise Stable Network Structures

Once the network reaches a stable state, we classify the network structure as one of the 
network structures shown in Table 4. As in (Hummon, 2000), we use the sorted (descend-
ing order) degree vector to identify the structure of the stable network. For example, the 
Null network has a sorted degree vector of (0, 0, ..., 0), the Star network (n–1, 1, 1, ..., 1) 
and the Complete network (n–1, n–1, ..., n–1). We refer to a network structure a shared 
network if it is a regular network (i.e., all nodes have same degree) of some uniform degree. 
For example, a cycle is a 2-regular graph and hence is a shared network.

Also as in Hummon (2000), we use total mean squared deviation (MSD) to classify the 
resultant stable network as near-‘standard network’ (for example, near-complete network). 
Further, if the mean squared deviation is above a certain threshold (t) then we know its not 

Table 5. Possible Network Structures Considered in the Simulations

NULL STAR SHARED COMPLETE

NEAR-NULL NEAR-STAR NEAR-SHARED NEAR-COMPLETE

BI-PARTITE-COMPLETE TURAN EQUI-K-PARTITE-
COMPLETE

EQUI-K-PARTITE

K-PARTITE-COMPLETE K-PARTITE

Source: Developed by the Authors.
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close to any of the above topologies, we then colour the graph using a greedy colouring 
algorithm (Boost-C++-Libraries, 2012) and then classify it either as a general k-partite 
graph (where k equals the number of colours required to colour the graph) or any of the 
other network structures shown in Table 12. In our simulations, we use the maximum 
deviation ((n – 1)2) for calculating the t, i.e., t = 0.1 × (n – 1)2.

Note that whenever we classify a network as any type of k-partite network, we implic-
itly mean that K ≥ 3. The case of K = 2 is the same as bipartite network and is handled as a 
separately as shown in Table 12. Turan network refers to a complete bipartite network with 
the sizes of the two partitions to be as equal as possible. If N is even, then the Turan net-
work has equal sized partitions whereas if N is odd, the size of one partition is one less than 
the other partition.

For classification of a sorted degree network as a near-shared network, we first need to 
calculate the order of the regular network with which this degree vector needs to be com-
pared. As in Hummon (2000), to compute the total mean squared deviation for the shared 
structure, the ideal order is defined by average number of ties in the in-out degree vector, 
rounded to the nearest whole tie. In this example, if the degree vector is (3, 2, 1, 1, 1), the 
average is 1.6, and the ideal type shared structure is (2, 2, 2, 2, 2). However, note that a 
cycle network is necessarily a shared network but a shared network need not always be a 
cycle network.

The following example clarifies this procedure: Consider the 5-node network as shown 
in Figure 12. Suppose that we would like to classify this network as one of the following 
standard networks: null, star, shared, complete, near-null, near-star, near-shared or near-
complete. This is done as follows. Note that the given network does not classify as any of 
the first four networks in the list given above. Hence, we try to classify the given network 
as one of the remaining four networks (i.e., the ‘near’ type networks).

We know that the sorted degree vector is (4, 3, 3, 2, 2) for the given network. The ideal 
order for the shared network comparison is calculated by taking the average degree (which 
is 2.8) and rounding to the nearest integer (which gives 3). This means we have to compare 
the network to a 3 regular network. The total MSD from the shared network is thus ((4 – 3)2 
+ (3 – 3)2 + (3 – 3)2 + (2 – 3)2 + (2 – 3)2))/5 = 0.6. The total MSD of this network from star 
network is ((4 – 4)2 + (3 – 1)2 + (3 – 1)2 + (2 – 1)2 + (2 – 1)2))/5 = 2. Similarly, the total MSD 

3

4

0

1

2

Figure 12. A Stylized 5-node Network 

Source: Developed by the Authors.
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from null network is 8.4, and the total MSD from the complete network is 2. The value 0.6 
being the least among these and less than 10% of maximum deviation 16, we classify the 
above network structure as near-shared.

Multiple Classification of Pairwise Stable Structures

We note that the classification of pairwise stable network structures according to Table 4 
is not mutually exclusive. There can exist networks which can be classified as more than 
one of the types described in Figure 13. We illustrate a couple of interesting network 
structures that we encountered during our simulations here. Figure 13(a) refers to a pair-
wise stable network that emerged when we ran the simulation with random_seed = 6875, 
d = 0.7, c = 0.55. We observed that this network is both a near-shared network as well as 
a tripartite complete network whose partitions are (0, 6, 7, 8), (1, 2, 5), (3, 4, 9). In such 
cases, we classify the network structure as a k-partite complete network.

1

6

(a)

9

3

8

2

7

4 5

0

5

9

(b)

1

8

2

4

6

3 7

0

Figure 13. Possibility of Multiple Classifications for a given Network Structure

Source: Developed by the Authors.

Another example is shown in Figure 13(b) which is obtained when running simulations 
with ‘random_seed’ = 15256, d = 0.5, c = 0.5. We observe that this graph can be classified 
as a regular (or Shared) network with degree = 5. However, it turns out that this graph is 
also an equi-partitioned bipartite network with partitions (0, 3, 4, 8, 9), (1, 2, 5, 6, 7). In 
such cases, we classify the graph as equi-bipartite network (or the Turan network).

Interpretation of Pairwise Stability

In a pairwise stable network, if a node adds a link to another node and gains strictly from 
it, the other node should lose strictly. Hence, the addition of the link becomes infeasible in 
this case. However, nodes in a pairwise stable network can still add links if adding these 
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links does not change the pay-offs of either of the nodes. In this case, the nodes are indif-
ferent about adding the link. In the case of deletion, a node will delete a link from the cur-
rent network unilaterally if it strictly benefits from doing so. We use this interpretation of 
pairwise stability during the course of our simulations.
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