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Abstract. In this paper, we examine the effect of product variety on inventory costs in a production–
inventory system with finite capacity where products are made to stock and share the same manufacturing
facility. The facility incurs a setup time whenever it switches from producing one product type to another.
The production facility has a finite production rate and stochastic production times. In order to mitigate the
effect of setups, products are produced in batches. In contrast to inventory systems with exogenous lead
times, we show that inventory costs increase almost linearly in the number of products. More importantly,
we show that the rate of increase is sensitive to system parameters including demand and process variability,
demand and capacity levels, and setup times. The effect of these parameters can be counterintuitive. For
example, we show that the relative increase in cost due to higher product variety is decreasing in demand
and process variability. We also show that it is decreasing in expected production time. On the other hand,
we find that the relative cost is increasing in expected setup time, setup time variability and aggregate
demand rate. Furthermore, we show that the effect of product variety on optimal base stock levels is not
monotonic. We use the model to draw several managerial insights regarding the value of variety-reducing
strategies such as product consolidation and delayed differentiation.
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1. Introduction

Determining how much product variety to offer is central to the strategy of most
manufacturing firms. Intuitively, the costs and benefits of product variety are well
understood. Increased product variety allows a closer match between customer
preferences and offered products, which then has the potential of increasing or main-
taining market share and/or yielding higher prices. On the other hand, higher prod-
uct variety could lead to operational inefficiencies incurred whenever the produc-
tion system switches from making one item to another or in increased costs of raw
material, component procurement, and storage and distribution of finished goods.
Additional costs may include higher costs in product development, marketing, and cus-
tomer service. Although the cost–benefits tradeoffs are qualitatively clear, there has
been an ongoing debate, in both industry and academia, regarding the true magni-
tude of these costs and benefits. A sample of recent articles include (Zipkin, 2001;
Agrawal, Kumaresh, and Mercer, 2001; Randall and Ulrich, 2001; Fisher and It-
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tner, 1999; MacDuffie, Sethuraman, and Fisher, 1998; Quelch and Kenny, 1994;
Kekre and Srinivasan, 1990).

In this paper, we contribute to this debate by examining the costs of product variety
in a specific context. We consider an integrated production–inventory system with finite
capacity where products are made to stock and share the same manufacturing facility.
The facility incurs a setup time whenever it switches from producing one product type to
another. The manufacturing facility has a finite production rate and stochastic production
times. In order to mitigate the effect of setups, products are produced in batches. De-
mand for each item occurs one unit a time according to an independent renewal process
with stochastic order inter-arrival times. Finished inventory of each product is managed
according to a continuous review base-stock policy. If available, an order is always sat-
isfied from stock, otherwise it is backlogged with the production system. The system
incurs a holding cost per unit of inventory per unit time and a backordering cost per
backordered unit per unit time. Base-stock levels and batch sizes are chosen to mini-
mize the long run average of the sum of holding and backordering costs. Note that, in
contrast to a conventional inventory system where replenishment lead times are exoge-
nous, inventory replenishment lead times in our system are endogenous and depend on
the current level of congestion in the production system.

In our setting, higher product variety affects cost in two ways. Increasing the num-
ber of products increases batch sizes, which leads to longer supply leadtimes and, con-
sequently, to higher inventory and backorder levels. Increasing the number of products
also leads to an increase in the number of distinct inventoried items which induces, even
when setup times are negligible, higher inventory costs. In contrast to inventory systems
with exogenous lead times, we show that cost increases almost linearly in the number of
products. More importantly, we show that the rate of increase is highly sensitive to vari-
ous system parameters, including demand and process variability, demand and capacity
levels, and setup times. Surprisingly, the effect of these parameters is not always in line
with intuition. In particular, we show that the relative increase in cost due to higher
product variety is decreasing in demand and process variability. It is also decreasing in
expected production time. On the other hand, we find that the relative cost is increasing
in expected setup time, setup time variability and aggregate demand rate. Furthermore,
we show that the effect of product variety on optimal base stock levels is not monotonic.

Literature that is closely related to our work include papers by Thonemann and
Bradley (2002), Federgruen, Gallego, and Katalan (2000), Zipkin (1995), and Benjaa-
far, Cooper, and Kim (2003). Thoneman and Bradley consider a decentralized system
consisting of a manufacturer and several retailers with multiple products. They use an
M/G/1 queueing model to approximate expected manufacturing lead-time, which they
then use to approximate lead-time demand using a normal distribution. By treating lead-
times as i.i.d. random variables, they are able to decouple the analysis of the inventory
and production systems. A related problem is studied by Federgruen, Gallego, and Kata-
lan (2000) who develop upper and lower bounds on the optimal cost. They show that,
under a periodic base stock policy, both the upper and lower bounds grow linearly in the
number of products. The studies of Thonemann and Bradley and Federgruen, Gallego,
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and Katalan are in part motivated by an earlier simulation study by DeGroote, Yucesan,
and Kavadias (1999). Zipkin (1995) considers the case of a perfectly flexible production
system with no setups between items. He shows that the sum of the standard deviations
of lead-time demand for the different items increases proportionally to the square root of
the number of products. He also shows that this sum is increasing in capacity utilization
and production time variability. This analysis is extended in Benjaafar, Cooper, and Kim
(2003) who examine the value of inventory pooling (product consolidation) and show
that the benefits of pooling in a production–inventory setting diminish with increases in
the loading of the production system. Benjaafar and Kim (2001) examine the effect of
demand variability on the benefits of pooling.

The model we present in this paper is distinct from the above studies in that we
do not assume specific distributions for demand, production time and setup times. Also,
in our model, we do not decouple the production and the inventory systems. Instead
we explicitly relate the distribution of inventory and backorder levels to the distribution
of order queue size at the production system. This allows us then to directly estimate
various performance measures of interest, including expected inventory and backorder
levels, order queue size, and supply lead time. More importantly, it allows us to capture
important effects due to characteristics of the distributions of various parameters such as
demand, production times and setup times. Finally, in our model, we jointly optimize
batch size and base-stock levels.

We do, however, share some important assumptions with previous literature. In
particular, we assume that aggregate demand is not affected by our choice of variety
level. Instead, higher variety leads to a segmentation of the existing demand among
a larger number of items. This allows us to more readily isolate the effect of product
variety and does correspond to situations of mature industries, where increasing product
variety is needed to hold on to existing market share. Although pricing decisions are
beyond the scope of our model, our assessment of how variety affects costs can be easily
integrated into a manufacturing–marketing model that trades-off operational costs with
higher prices.

Our work is of course related to the vast literature on product variety that spans the
fields of economics (Lancaster, 1990), marketing science (Green and Krieger, 1985), op-
erations management (Ho and Tang, 1998), and inventory theory (Garg and Lee, 1999).
In the inventory theory literature, the focus has been on systems with exogenous lead
times. An important result from this literature is the statistical economies of scale asso-
ciated with consolidating multiple items into fewer ones, the so-called risk pooling ef-
fect. In particular, for symmetric systems it has been shown that inventory costs increase
proportionally to the square root of the number of items (Eppen, 1979). In this paper,
we show that in a production–inventory system the increase is linear in the number of
items. Recent examples from the inventory literature include (Dobson and Yano, 2001;
Aviv and Federgruen, 1999; Van Ryzin and Mahajan, 1999; Alfaro and Corbett, 1999).

The remainder of the paper is organized as follows. In section 2, we describe our
model and our main analytical results. In section 3, we extend our analysis to asymmetric
systems. In section 4, we provide computational results and various managerial insights.
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In section 5, we include simulation results in support of our analysis. In section 6, we
offer discussion and concluding comments.

2. Model description

We consider a multi-item production–inventory system where a single production facil-
ity produces K items and separate inventory buffers are kept for each item. The demand
for item i occurs one unit at a time according to an independent renewal process with
rate λi . The inter-arrival time between orders is a random variable denoted by Xi , with
E(Xi) = 1/λi and coefficient of variation Cai . Separate inventory buffers are kept for
each item. If available, an order is satisfied from buffer stock. If not, the demand is
backordered. The system incurs a holding cost hi per unit of inventory of type i per unit
time and a backordering cost bi per unit of type i backordered per unit time. The inven-
tory buffer of each item i is managed according to a continuous review base-stock policy
with base-stock level si . This means that the arrival of each new order triggers the place-
ment of a replenishment order with the production facility. Replenishment orders at the
production facility are processed in batches of size Qi on a first-come first-served basis.
This means that replenishment orders for each item are accumulated until the number
of orders reaches Qi . Once the number of orders reaches Qi , the batch is allowed to
queue up for processing at the production facility. The production facility can process
only one order at a time. We assume that unit production times for product i are i.i.d.
generally distributed random variables, denoted Yi , with ti ≡ E(Yi) and ηi ≡ Var(Yi).
The production facility incurs a setup time when two consecutive batches are of different
type. Setup times for product i are i.i.d. generally distributed random variables, denoted
by Zi , with τi ≡ E(Zi) and θi ≡ Var(Zi).

As shown in figure 1, the production facility has two stages: a batching stage and a
processing stage. In the batching stage, customer orders are accumulated until a batch of
size Qi is reached. In the processing stage, batches queue up in front of the production
facility and processed in the order they arrive. Units within a batch are processed one
at a time. Once completed, a batch is delivered to the corresponding inventory buffer.
Since the demand occurs according to a renewal process, the distribution of number of
customers for item i in the batching stage is uniformly distributed with

Pr
(
Nb

i = n
) = 1

Qi

, n = 0, 1, . . . ,Qi − 1, (1)

where Nb
i is the number of orders of type i in the batching stage.

In our model, we assume that a base-stock level si and batch size Qi is chosen so
that the long run expected total cost per unit time is minimized. We denote this expected
total cost by

z(s,Q) =
K∑
i=1

E(hiIi + biBi), (2)
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Figure 1. The production–inventory system.

where Ii and Bi are random variables equal in distribution to, respectively, the steady-
state inventory and backorder levels for item i and s and Q are vectors representing
product base stock levels and batch sizes. The use of a base-stock policy is in part
justified by the fact that in most production–inventory systems, the transaction cost of
communicating an order to the production system is small. Although not always optimal,
base-stock policies are easy to implement and analyze and have well-known properties.
They have been shown to be nearly optimal for a variety of conditions and are useful
as benchmark for the amount of inventory needed if other system parameters are varied.
Similarly, the use of a fixed batch is motivated by the prevalence of batching in practice
and by the ease of implementing batching policies.

In order to streamline the presentation and isolate the effect of product variety,
we shall momentarily assume that we have a symmetric system. In particular, we let
λi = λ/K, si = s,Qi = Q, bi = b and hi = h for i = 1, . . . , K. Similarly, we assume
identical distributions of demand inter-arrival times, setup times and production times
among all products. Therefore we drop the index i from all associated notation i. The
symmetry assumption allows us to explicitly examine the effect of K (the number of
products) on various system characteristics. In section 3, we show how the analysis can
be extended to general systems with asymmetric products.

When viewed in isolation, the processing stage of the production system forms a
GI/G/1 queue with K batch arrival streams with rate λ/Q. Characterizing the proba-
bility distribution of queue size in a GI/G/1 is in general difficult. Therefore, we use a
development described in Buzacott and Shanthikumar (1993) to approximate the proba-
bility distribution of batches in the processing stage using a geometric distribution of the
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following form:

Pr
(
Np = n

) ≈
{

1 − ρ, n = 0,
ρ(1 − σ )σ n−1, n = 1, 2, . . . ,

(3)

where Np is the number of batches in the processing stage, σ = (N̂ − ρ)/N̂, N̂ is
an approximation for the expected number of customers in a GI/G/1 queue, and ρ is
the steady state utilization of the production facility. From Buzacott and Shanthikumar
(1993), we also borrow the following approximation of the GI/G/1 expected waiting
time in queue:

Ŵ =
(
ρ2(1 + C2

s,p)

1 + ρ2C2
s,p

)(
C2
a,p + ρ2C2

s,p

2λ̂(1 − ρ)

)
, (4)

where C2
a,p is the squared coefficient of variation i inter-arrival times for the superposed

arrival process at the processing stage and C2
s,p is the squared coefficient of variation for

the effective service time. Then, by invoking Little’s law, we obtain N̂ = λ̂Ŵ +ρ, where
λ̂ = λ/Q.

The coefficient of variation of the arrival process to the production facility can be
obtained by noting that it consists of the superposition of K renewal processes corre-
sponding to the departure process from each batching stream. Since the departure of a
batch coincides with the arrival of Q orders with i.i.d. inter-arrival times and coefficient
of variation Ca (the coefficient of variation in the inter-arrival time of demand orders of
each type), the distribution of batch inter-departure times for each stream has a coeffi-
cient of variation Ca/Q. Following the asymptotic approach suggested by Whitt (1982),
we approximate the superposition of K identical renewal processes by a renewal process
with the same coefficient variation, which leads to

Ca,p ≈ Ca

Q
. (5)

Note that the superposition of renewal processes is not, in general, itself a renewal
process; therefore, the arrival process of batches at the production stage will typically
not be a renewal process. Nevertheless, we shall provide simulation results that help
validate the above approximation in our production–inventory setting (see section 5 and
tables 1–4).

To obtain C2
s,p, we need to obtain the mean and variance of the effective service

time of a batch. The processing of a batch has two components a setup time component
and a service time component. A setup is incurred only when two consecutive batches
are of a different type. Given the symmetry and the independence assumption with
regard to the arrival process, the probability that the next batch to be processed is of the
same type as the one that preceded it is 1/K (independent of the sequence of batches
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already processed). Let U and W be random variables that denote respectively the setup
time and process time experienced by a batch. Then, it is not difficult to see that

E(U) = (K − 1)τ

K
, Var(U) =

(
K − 1

K

)(
η + τ 2

K

)
(6)

and

E(W) = Qt, Var(W) = Qθ, (7)

where η and θ refer to the variance of production time and setup time, respectively.
Letting S be a random variable that denotes batch service time, then S = U + W , and
both mean and variance can be readily obtained, which can then be used to approximate
the coefficient of variation in batch service time:

C2
s,p ≈ Var(S)

E2(S)
= (K − 1)(Kη + τ 2) + K2Qθ

((K − 1)τ + QtK)2
. (8)

Note that in our treatment, we assume that batch service times are i.i.d., which is clearly
not the case since only a fraction of the batches actually experiences a setup. However,
as we show using simulation, this approximation still yields a reasonable estimate of
steady-state performance measures of interest (see section 4 and tables 1–4).

Equations (6) and (7) can also be used to obtain the steady state utilization of the
production system, which we denote by ρ, as follows

ρ = λ

Q

(
E(U)+ E(W)

) = λ(K − 1)τ

QK
+ λt. (9)

Since for stability, we must have ρ < 1, there is a minimum feasible batch size given by

Q > Qmin = λ(K − 1)τ

K(1 − λt)
. (10)

We are now ready to state our first result.

Result 1. The distribution of the number of orders in the production system (includ-
ing both the batching and processing stages) of product type i can be approximated as
follows:

Pr(Ni = n) ≈




1

Q

(
1 −

(
ρ

σ

)
r

)
, n = 0, 1, . . . ,Q − 1,

1

Q

(
ρ

σ

)
(1 − r)r�n/Q�, n = Q,Q + 1, . . . ,

(11)

where r = σ/(K(1 − σ )+ σ ).

Proof. First, we obtain the probability distribution of the number of batches of type
i in queue. The conditional probability Pr(Np

i = n
p

i |Np = np) ≡ pi(n
p

i |np), where
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Np = N
p

1 + N
p

2 + · · · + N
p

N , has a binomial distribution with parameter 1/K. Hence,
we have

pi

(
n
p

i

∣∣np) = np!
n
p

i !(np − n
p

i )!
(

1

K

)n
p
i
(

1 − 1

K

)np−n
p
i

∀np � n
p

i ,

and

pi

(
n
p

i

) =
∞∑

np=n
p
i

pi

(
n
p

i

∣∣np)p(
np

)

=
∞∑

np=n
p
i

np!
n
p

i !(np − n
p

i )!
(

1

K

)n
p
i
(

1 − 1

K

)np−n
p
i

ρ(1−σ )σ np−1, for npi � 1.

which can be rewritten as

pi

(
n
p

i

) = ρ(1 − σ )

σ

(
1

K

)n
p
i
(

K

K − 1

)n
p
i

∞∑
np=n

p
i

np!
n
p

i !(np − n
p

i )!
(
(K − 1)σ

K

)np

.

Using the fact that
∞∑
n=k

n!
k!(n− k)!a

n = ak

(1 − a)k+1

leads to

pi

(
n
p

i

) =
(
ρ

σ

)(
K(1 − σ )

K(1 − σ )+ σ

)(
σ

K(1 − σ )+ σ

)n
p
i

.

Letting

r = σ

K(1 − σ )+ σ

leads to

pi

(
n
p

i

) =
(
ρ

σ

)
(1 − r)rn

p
i .

For npi = 0, we have

pi

(
n
p

i = 0
) = 1 −

∞∑
n
p
i =1

pi

(
n
p

i

) = 1 −
(
ρ

σ

)
r.

�

In order to relate the total number of orders in the system to the number of units
in the batching and production stages, we note that when there is less than Q orders of
type i in the production system, then these orders are in the batching stage. If there are
Ni > Q orders of type i, then Q�Ni/Q� are in the production stage and the remaining
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are in the batching stage. Assuming independence between the batching and production
stages, we obtain:

Pr(Ni = n)≈ Pr
(
Nb

i = n
)
Pr

(
N

p

i = 0
)

= 1

Q

(
1 −

(
ρ

σ

)
r

)
, n = 0, 1, . . . ,Q − 1,

and

Pr(Ni = n)≈ Pr

(
Nb

i = n −
⌊
n

Q

⌋
Q

)
Pr

(
N

p

i =
⌊
n

Q

⌋)

= 1

Q

(
ρ

σ

)
(1 − r)r�n/Q�, n = Q,Q + 1, . . . .

The independence assumption is appropriate under heavy traffic (ρ → 1) where the
number of orders in the batching stage represents only a small fraction of total number
of orders in the system. Simulation suggests that the amount of error introduced is also
small for low and moderate utilization (see section 5 and tables 1–3).

Using the estimated distribution of number of units in the system, we can now
obtain performance measures of interest including average inventory and average back-
orders for each product type.

Result 2. Expected inventory and backorders levels for each product i, E(Ii) and E(Bi),
can be approximated as follows:

E(Ii) ≈ E
(
Ĩi

) =




s(s + 1)

2Q

(
1 −

(
ρ

σ

)
r

)
, if Q � s,

s − Q − 1

2
−

(
ρ

σ

)(
Qr

1 − r

)

+
(
ρ

σ

)
rk

[
Q

(
k + r

1 − r
+ 1

2

)
−

(
s + 1

2

)

+
(
s2 + s

2Q
+ k2Q − 2ks − k

2

)
(1 − r)

]
, if Q < s,

and

E(Bi) ≈ E
(
B̃i

) =




(Q − s − 1)(Q − s)

2Q
−

(
ρ

σ

)
r

(
s2 + s

2Q
− Q

1 − r

)
, if Q > s,

(
ρ

σ

)
rk

[
((k + 1)Q − 1 − s)((k + 1)Q − s)(1 − r)

2Q

+
(
kQ + Q − 1

2
− s + Q

1 − r

)
r

]
, if Q � s,

where k = �s/Q�.
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Proof. For Q > S,

E(Ii)=
s∑

n=0

(s − n)Pr(Ni = n)

≈ [
s + (s − 1) + (s − 2) + · · · + 1

] 1

Q

(
1 −

(
ρ

σ

)
r

)

= S(S + 1)

2Q

(
1 −

(
ρ

σ

)
r

)
,

and

E(Bi)=
∞∑
n=s

(n − s)Pr(Ni = n)

≈ [
1 + 2 + · · · + (Q − 1 − s)

] 1

Q

(
1 −

(
ρ

σ

)
r

)

+ [
(Q − s) + · · · + (2Q − 1 − s)

] 1

Q

(
ρ

σ

)
(1 − r)r

+ [
(2Q − s) + · · · + (3Q − 1 − s)

] 1

Q

(
ρ

σ

)
(1 − r)r2 + · · ·

= (Q − S − 1)(Q − s)

2Q
−

(
ρ

σ

)
r

(
s2 + s

2Q
− Q

1 − r

)
.

For Q < S, let k = �s/Q�,

E(Ii)=
s∑

n=0

(s − n)Pr(Ni = n)

=
Q−1∑
n=0

(s − n)Pr(Ni = n)+
s∑

n=Q

(s − n)P (Ni = n)

≈ [
s + (s − 1) + · · · + (s − Q + 1)

] 1

Q

(
1 −

(
ρ

σ

)
r

)

+ [
(s − Q) + (s − Q − 1) + · · · + (s − 2Q + 1)

] 1

Q

(
ρ

σ

)
(1 − r)r

+ [
(s − 2Q) + (s − 2Q − 1) + · · · + (s − 3Q + 1)

] 1

Q

(
ρ

σ

)
(1 − r)r2

+ · · ·
+ [

(s − kQ) + (s − kQ − 1) + · · · + 1
] 1

Q

(
ρ

σ

)
(1 − r)rk

=
[
s − Q − 1

2

]
−

(
ρ

σ

)(
Qr

1 − r

)
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+
(
ρ

σ

)
rk

[
Q

(
k + r

1 − r
+ 1

2

)
−

(
s + 1

2

)

+
(
s2 + s

2Q
+ k2Q − 2ks − k

2

)
(1 − r)

]
,

and

E(Bi) =
∞∑
n=s

(n − s)P (Ni = n)≈
(
ρ

σ

)
rk

[
((k + 1)Q − 1 − s)((k + 1)Q − s)(1 − r)

2Q

+
(
kQ + Q − 1

2
− s + Q

1 − r

)
r

]

Finally, for Q = s,

E(Ii)=
s∑

n=0

(s − n)P (Ni = n)

≈ [
s + (s − 1) + (s − 2) + · · · + 1

] 1

Q

(
1 −

(
ρ

σ

)
r

)

= s(s + 1)

2Q

(
1 −

(
ρ

σ

)
r

)
, and

E(Bi)=
∞∑
n=s

(n − s)P (ni = s)

=P(ni = s + 1) + 2P(ni = S + 2) + 3P(ni = S + 3) + · · ·
≈

(
ρ

σ

)
rk

[
((k + 1)Q − 1 − S)((k + 1)Q − S)(1 − r)

2Q

+
(
kQ + Q − 1

2
− S + Q

1 − r

)
r

]
. �

Result 3. Let z̃(s,Q) = ∑K
i=1 {hE(Ii) + bE(Bi)} refer to the estimated expected total

cost, then for fixed Q, z̃ is convex in s.

Proof. For Q > s,

z̃(s + 1,Q) + z̃(s − 1,Q)

2
− z̃(s,Q) = K(h + b)

2Q

(
1 −

(
ρ

σ

)
r

)
� 0.

For Q < s,

z̃(s + 1,Q) + z̃(s − 1,Q)

2
− z̃(s,Q) = K(h + b)

2Q

(
ρ

σ

)
(1 − r)rk � 0.
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For Q = s,

z̃(s + 1,Q) + z̃(s − 1,Q)

2
− z̃(s,Q) = K

Q

[
hs

(
1 − ρr

σ

)
+ b

2

(
ρ

σ

)
(1 − r)rk

]
� 0.

Hence proved. �

Result 3 ensures that a search for the base-stock level that minimizes z̃ is compu-
tationally efficient. In general, a closed form solution for this optimal base stock level is
difficult to obtain. However, this is possible when the condition s < Q applies.

Result 4. For s < Q, a base-stock level that minimizes z̃ is given by

s∗ =




⌊(
Qb

h + b

)(
σ

σ − ρr

)⌋
if γ < 1 −

(
ρ

σ

)
r,

Q − 1 otherwise,

(12)

where γ = b/(b + h).

Proof. Let *z̃ = z̃(s,Q) − z̃(s − 1,Q), then

*z̃=K

[
s(s + 1)

2Q

(
1 −

(
ρ

σ

)
r

)
h + (Q − s − 1)(Q − s)

2Q
b

+
(
ρr

σ

)(
Q

1 − r
− s(s + 1)

2Q

)
b

]

−K

[
s(s − 1)

2Q

(
1 −

(
ρ

σ

)
r

)
h + (Q − s + 1)(Q − s)

2Q
b

+
(
ρr

σ

)(
Q

1 − r
− s(s − 1)

2Q

)
b

]

which can be rewritten as

*z̃ = K

[(
s

Q

)
(h+ b)

(
1 −

(
ρ

σ

)
r

)
− b

]
.

Setting *z̃ = 0, leads to

s∗ =
(

bQ

h + b

)/(
1 −

(
ρ

σ

)
r

)

since the condition s∗ < Q is equivalent to

γ ≡ b

h+ b
< 1 −

(
ρ

σ

)
r

leads to the desired result. �
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Figure 2. The effect of batch size on total cost (h = 1, b = 10, λ = 0.8, t = 1.0, τ = 1.0, K = 10).

The cost function z̃ is generally not convex in Q, although we observe that it con-
sistently assumes the convex-like U-shape of figure 2. As Q → ∞, we can also show
that z̃ → ∞. Given the convexity of z̃ in s, a search, even over a wide range of values
of Q, can be carried out very efficiently.

We should note that in certain environments a separate direct cost may be associ-
ated with each setup. In that case, the cost function should be modified to include an
additional component of the form ν(K − 1)λ/KQ, where ν is the cost per setup. All
of our analysis remains valid, including results 4 and 5. Since the setup cost component
is decreasing and convex in Q with a limiting value of zero, a search for Q can still be
carried out efficiently. Finally, we note that in systems where there is a setup cost but no
setup time, our model captures the dynamics of a production–inventory system where
inventory is managed according to a (Q, r) policy with r = s − Q.

3. The general case

In this section, we show how the analysis can be extended to asymmetric systems. We
allow products to have non-identical distributions of order inter-arrival, setup, and pro-
duction times, and to have non-identical holding and backordering costs. Products may
also have different base-stock levels and batch sizes. The production system can be
viewed as a GI/G/1 queue whose arrival process is now the superposition of K non-
identical renewal processes, each with an arrival rate λi/Qi and squared coefficient of
variation Cai/Qi . Again, following Whitt (1982), we approximate the superposition of
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K renewal processes by a renewal process whose squared coefficient of variation is the
convex combination

C2
a,p =

K∑
i=1

piC
2
ai
, where pi = λi/Qi∑K

i=1 λi/Qi

(13)

represents the probability that an arrival is of type i. The approximation is exact when the
individual renewal processes are Poisson and is asymptotically exact when the utilization
of the queue is close to 1. Alternative approximations are discussed in Albin (1984,
1986) and could be used instead without affecting the subsequent analysis.

Noting that the probability that a batch of type i experiences a setup (a random
variable with mean τi and variance ηi) is 1 − pi , we can obtain the first and second
moments of setup time experienced by an arbitrary batch as

E(U) =
K∑
i=1

pi(1 − pi)τi and E
(
U 2

) =
K∑
i=1

pi(1 − pi)
(
ηi + τ 2

i

)
. (14)

Similarly, we can obtain the first two moments of processing time for an arbitrary batch
as

E(W) =
K∑
i=1

piQiti and E
(
W 2

) =
K∑
i=1

pi

(
Qiθi + Q2

i t
2
i

)
. (15)

From (14) and (15), we can now readily obtain the first two moments of the effective
batch service time S (S = U+W) of an arbitrary batch, from which we can then compute
the corresponding coefficient of variation Cs,p. The utilization of the production system
is given by

ρ =
K∑
i=1

(
λi

Qi

)
E(S).

In order to characterize the distribution of the number of batches in the system,
we retain the geometric approximation in (3), which we use to obtain the marginal dis-
tribution of the number of batches of each type in the system. First we note that the
conditional probability pi(n

p

i |np) (the probability of having n
p

i batches of type i given a
total of np batches in the system), has a binomial distribution with parameters pi . Thus,
we have

pi

(
n
p

i

∣∣np) = np!
n
p

i !(np − n
p

i )!
p
n
p
i

i (1 − pi)
np−n

p
i ∀np � n

p

i (16)

from which, after much algebra, we obtain

pi

(
n
p

i

) =
(
ρ

σ

)
(1 − ri)r

n
p
i

i for npi � 1, (17)
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and

pi(0) = 1 −
(
ρ

σ

)
ri, (18)

where

ri = piσ

1 − σ (1 − pi)
, (19)

and σ is obtained from (4) as in the symmetric case. From (1), (17) and (18), we obtain
the (approximate) distribution of the number of orders in the production system (includ-
ing both the batching and processing stages) of product i as

Pr(Ni = n) ≈




1

Qi

(
1 −

(
ρ

σ

)
ri

)
, n = 0, 1, . . . ,Qi − 1,

1

Qi

(
ρ

σ

)
(1 − ri)r

�n/Q�
i , n = Qi,Qi + 1, . . . .

The rest of the analysis follows as in the symmetric case. Results similar to re-
sults 2–4 can be obtained by simply substituting Qi , si and ri for Q, s and r, respectively.
For brevity the details are omitted.

4. Numerical results and managerial insights

In this section, we generate numerical results to examine the effect of product variety
on system performance and study the relationship between product variety and various
system parameters. We are particularly interested in examining the benefits of variety-
reducing strategies, such as product standardization and delayed product differentiation.
Unless otherwise specified, we shall assume a symmetric system with the following
parameter values: h = 1, b = 10, λ = 0.8, t = 1.0, τ = 15.0, Ca = 1.0, Cprocess = 1.0,
and Csetup = 1.0, where Cprocess is the coefficient of variation in unit processing time and
Csetup is the coefficient of variation in setup time.

Values for the estimated optimal total cost z̃∗ are obtained for different aggregate
demand rates (λ = 0.3, 0.6, 0.8, 0.9), unit production times (t = 0.2, 0.5, 0.8, 1.0),
setup times (τ = 1.0, 5.0, 10.0, 15.0), coefficients of variation in demand inter-arrival
time (Ca = 0, 0.5, 1.0, 1.5, 2.0), coefficients of variation in unit production time
(Cprocess = 0, 0.5, 1.0, 1.5, 2.0), coefficient of variation in setup time (Csetup = 0, 0.5,
1.0, 1.5, 2.0), and number of items (1–50).

Observation 1. z̃∗ is increasing in K. For K � 1, the increase is almost linear in K.
The rate of increase is increasing in λ, t , τ , Ca , Cprocess, and Csetup.

Supporting results are shown in figures 3–8. These results appear to support the
argument that pure inventory models, where cost increases proportionally to the square
root of K, would under-estimate the cost of greater variety. Pure inventory models would
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Figure 3. The impact of product variety on the optimal total cost for different demand rates (h = 1, b = 10,
t = 1.0, τ = 15.0).

Figure 4. The impact of product variety on the optimal cost for different values of production time (h = 1,
b = 10, λ = 0.8, τ = 15.0).

also ignore the sensitivity of the rate of increase to system parameters, particularly those
affecting system utilization and demand and process variability.

In order to assess the cost of variety relative to a strategy of product consolidation,
we examine the ratio of the estimated optimal total cost in a system with K items to
one with a single item while maintaining the same overall demand rate and use the
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Figure 5. The impact of product variety on the optimal cost for different values of setup time (h = 1,
b = 10, λ = 0.8, t = 1.0).

Figure 6. The impact of product variety on the total cost for different levels of demand variability (h = 1,
b = 10, λ = 0.8, t = 1.0, τ = 15.0).

notation δ = z̃∗
(K)/z̃

∗
(1) to denote this ratio. We are especially interested in examining how

different parameters affect the relative cost of offering greater variety; or equivalently the
relative advantage of increasing product consolidation.
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Figure 7. The impact of product variety on the total cost for different levels of processing time variability
(h = 1, b = 10, λ = 0.8, t = 1.0, τ = 15.0).

Figure 8. The impact of product variety on the total cost for different levels of setup variability (h = 1,
b = 10, λ = 0.8, t = 1.0, τ = 15.0).
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Figure 9. The effect of demand rate on the relative advantage of pooling (h = 1, b = 10, τ = 15.0,
t = 1.0).

Observation 2. The ratio δ is not monotonic in λ, although it is generally increasing
with a finite limit when λt → 1.

Sample data illustrating observation 2 are shown in figure 9. Note that for relatively
large λ, δ is relatively insensitive to changes in λ. Observation 2 suggests that, as demand
increases, the relative advantage of product consolidation increases.

Surprisingly, the effect of expected production time t is different from that of the
demand rate λ. In fact, as stated in observation 3 and illustrated in figure 10, δ is gener-
ally decreasing in t .

Observation 3. The ratio δ is not monotonic in t , although it is generally decreasing
with a finite limit when λt → 1.

The above result suggests that increases in process efficiency make it relatively
more desirable to consolidate products and offer less variety. Counter to intuition, this
also means that the relative cost of offering variety is smaller in process-inefficient sys-
tems. The difference in the effect of λ and t can be, in part, explained by the difference
in the way each parameter affects utilization of the production system. If we rewrite
expression (9) as ρ = ρsetup + ρprocess, where ρsetup = λ(K − 1)τ/QK and ρprocess = λt ,
then we can see that an increase in λ affects both components of utilization, the one due
to setups and the one due to processing, while an increase in t affects only the utiliza-
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Figure 10. The effect of production time on the relative advantage of pooling (h = 1, b = 10, λ = 0.8,
τ = 15.0).

tion due to processing, which is independent of K. These results seem to support those
observed in Benjaafar, Cooper, and Kim (2003) who study a perfectly flexible system
with no setups and show that an increase in processing utilization tends to decrease the
relative cost advantage of inventory pooling.

Observation 4. The ratio δ is increasing in τ , with the increase being approximately
linear in τ .

Observation 4 is illustrated with sample data in figure 11. In line with intuition, the
result suggests that variety becomes relatively more expensive as setup time increases.
Together, observations 2–4 highlight the fact that parameters that impact utilization do
not necessarily have the same effect on δ. In particular, the relative increase in cost due
to higher variety is significant when setup times are high but can be relatively small when
production times are long.

Observation 5. The ratio δ is decreasing in the variability of demand and production
time but increasing in the variability of setup time.

Figures 12–14 provide supporting data for the result. The fact that δ is decreasing
in the variability of demand and production time is surprising. It means that offering
more variety is relatively less expensive when demand and process variability is high.
It also means that strategies of product consolidation or delayed differentiation are rel-
atively less valuable when demand variability is high. This is different from results
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Figure 11. The effect of setup time on the relative advantage of pooling (h = 1, b = 10, λ = 0.8, t = 1.0).

Figure 12. The effect of demand variability on the relative advantage of pooling (h = 1, b = 10, λ = 0.8,
t = 1.0, τ = 15.0).

obtained for inventory systems with exogenous lead times where it can be shown that
the value of variety reduction (or demand pooling) increases when either demand or
leadtime variability increases (Eppen, 1979). Interestingly, the effect of setup time vari-
ability is different from that of demand and process variability. Higher variability in this



92 BENJAAFAR, KIM AND VISHWANADHAM

Figure 13. The effect of production time variability on the relative advantage of pooling (h = 1, b = 10,
λ = 0.8, t = 1.0, τ = 15.0).

Figure 14. The effect of setup time variability on the relative advantage of pooling (h = 1, b = 10, λ = 0.8,
t = 1.0, τ = 15.0).

parameter tends to increase the relative cost of increased variety.
An intuitive explanation for these effects is difficult due to the complex relation-

ship between various parameters. However, they appear to be related to the way the
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Figure 15. The impact of product variety on the optimal batch size (h = 1, b = 10, λ = 0.8, t = 1.0).

Figure 16. The impact of product variety on the optimal base stock level (h = 1, b = 10, λ = 0.8, t = 1.0).

distribution of leadtime demand for each product is affected by changes in these para-
meters. (Lead time demand is the amount of demand that arrives from the time an order
is placed with the production system until it is delivered). Higher demand or process
variability induces more congestion in the production system and more correlation in
the lead times experienced by different products. Hence, the advantage of the statis-
tical economies achieved by product consolidation diminishes when this variability is
increased. A discussion of these effects in systems with no setups and no batching can
be found in Benjaafar, Cooper, and Kim (2003).
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Finally, we examine the effect of product variety on the control variables Q and s.
The effect of K on Q and s is shown in figures 15 and 16. As we can see, initial
increases in K, initially lead to an increase in Q. However, this eventually levels off
and Q becomes relatively insensitive to increases in K. This effect can be explained by
recalling that

ρ = λ(K − 1)τ

QK
+ λt.

Clearly, when K is large, ρ becomes mostly independent of K. The effect of K on the
optimal-base-stock level is less predictable and this is due to the complex interaction
between Q and s. However, for sufficiently large K, s∗ is generally decreasing in K.

We should note that the preceding results rely upon the assumption of first-come
first-served (FCFS) sequencing of batches at the production process. Although FCFS
is, in general, not optimal, it is widely used in practice for its simplicity and perceived
fairness. Furthermore, batching is often used as a substitute for dynamic sequencing
when real time control is not feasible or expensive to implement. Characterizing an
optimal policy (especially in asymmetric systems) is a difficult problem that to date
remains unresolved even for the simpler case of zero setup times; see de Vericourt,
Karaesmen, and Dallery (2000) for results and references. Total cost under the FCFS
policy can be viewed as an upper bound for total cost under an optimal policy, while a
lower bound is given by the case of zero setup times and no batching. For the latter case,
we can show that the relative advantage of production consolidation still diminishes with
increases in process utilization and demand and process variability, with the cost ratios
approaching one in the limit cases. Taken together, the behavior of the lower and upper
bound cases seems to suggest that, at least qualitatively, the results presented here would
not be fundamentally different under an optimal policy.

5. Simulation results

The numerical results of the previous section were validated using computer simulation.
A small but representative sample of these simulation results is shown in tables 1–4.
Comparisons with the analytical model are also provided. The simulation model is iden-
tical to the analytical model except that we do away with approximations regarding the
distribution of batch arrivals and batch processing times at the production system. In
particular, we let the arrival process of batches be determined by the arrival of individual
orders. Similarly, we do not assume i.i.d. batch setup and processing times. Instead, we
allow a setup time to be incurred only if the preceding batch on the production system
is of a different type. Similarly, we simulate the individual production times for each
item in the batch. We collect statistics directly on various performance measures includ-
ing inventory and backorder levels. We use Gamma distributions to model inter-arrival,
processing, and setup times. In order to vary the coefficient of variation while maintain-
ing the same mean, we let the parameters of the Gamma distribution be α/m and β/m.
This allows us to fix the mean at α/β and vary its coefficient of variation by varying
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Table 1
Simulation results for systems with Gamma-distributed order inter-arrival times (α = 1, β = λ/10) and

exponentially-distributed processing times and setup times (t = 1, τ = 1).

C2
a Simulated total cost K = 1 Simulated total cost K = 10 Ratio

λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.6 λ = 0.8 λ = 0.9

0.01 2.02 4.98 10.7 21 60.9 140.1 10.40 12.23 13.09
[0.001] [0.02] [0.08] [0.06] [0.51] [1.56] 12.17 13.15 13.42

0.20 2.72 6.01 12.8 23.5 68.7 146.8 8.64 11.43 11.47
[0.006] [0.05] [0.11] [0.05] [0.78] [2.56] 9.67 11.23 11.74

0.40 3.08 7.09 14.9 24.6 71.7 159.3 7.99 10.11 10.69
[0.005] [0.03] [0.10] [0.05] [0.45] [4.88] 8.57 9.96 10.41

0.60 3.6 8.2 17.1 25.6 73.3 166.2 7.11 8.94 9.72
[0.005] [0.03] [0.20] [0.08] [0.43] [2.75] 7.61 9.11 9.41

0.80 4.18 9.6 19.8 27.9 76.8 172.7 6.67 8.00 8.72
[0.008] [0.06] [0.20] [0.19] [1.19] [2.75] 7.05 8.30 8.67

1.00 4.6 10.7 22.4 30 79.7 179.5 6.52 7.45 8.01
[0.010] [0.08] [0.18] [0.15] [1.25] [2.84] 6.67 7.67 8.07

1.20 5.06 11.4 23.8 31.3 82.3 185.4 6.19 7.22 7.79
[0.010] [0.05] [0.34] [0.17] [0.50] [1.70] 6.35 7.12 7.54

1.40 5.48 12.8 27 33.3 86.2 190.1 6.08 6.73 7.04
[0.020] [0.25] [0.41] [0.22] [1.04] [2.25] 6.20 6.69 7.12

1.60 5.89 13.7 28.6 36.2 89.8 201.2 6.15 6.55 7.03
[0.010] [0.06] [0.24] [0.17] [1.21] [3.47] 5.92 6.34 6.77

1.80 6.33 15 30.6 37.3 95.9 205.4 5.89 6.39 6.71
[0.020] [0.14] [0.40] [0.19] [1.65] [1.66] 5.63 6.06 6.46

2.00 6.7 15.9 32.5 38.5 99.6 210.3 5.75 6.26 6.47
[0.020] [0.10] [0.40] [0.12] [0.50] [3.50] 5.35 5.83 6.18

m (since Ca = √
m/α). Each estimate from the simulation is based on simulating the

system in question for 107 time units – 10 replications, each lasting 106 time units (not
including a warm up period of 105 time units). The numbers shown in brackets are the
half-widths of 95% confidence intervals for the corresponding expected total cost. In the
columns under “Ratio”, the first number in each cell is the ratio of the total cost estimates
from the K = 10 and K = 1 columns. The second number in the cell is the value of
the analytical approximation of δ. The simulation was carried out using the commercial
software Arena (Kelton, Sadowski, and Sadowski, 1998).

6. Concluding comments

In this paper, we introduced a model for the analysis of production–inventory systems
with multiple products. We used the model to examine the effect of product variety on
inventory-related costs. We showed that total cost tends to increase linearly with the
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Table 2
Simulation results for systems with Gamma-distributed processing times (α = 1, β = 1), exponentially-

distributed order inter-arrival times for each item and exponentially-distributed setup times (τ = 1).

C2
process Simulated total cost K = 1 Simulated total cost K = 10 Ratio

λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.6 λ = 0.8 λ = 0.9

0.01 2.73 5.79 12.2 26.7 68.6 150.1 9.78 11.85 12.30
[0.004] [0.01] [0.07] [0.09] [0.90] [2.65] 9.56 11.86 12.83

0.20 3.07 6.76 14.5 27.9 71.3 157 9.09 10.55 10.83
[0.005] [0.02] [0.08] [0.08] [0.53] [1.12] 8.79 10.65 11.38

0.40 3.5 7.86 16.8 28.3 75.8 161.7 8.09 9.64 9.63
[0.008] [0.02] [0.08] [0.07] [0.87] [1.02] 8.00 9.73 10.21

0.60 3.92 8.2 17.1 28.8 76.9 166.3 7.35 9.38 9.73
[0.007] [0.03] [0.20] [0.09] [0.16] [2.50] 7.42 8.87 9.33

0.80 4.18 9.6 19.8 29.8 77.8 174.2 7.13 8.10 8.80
[0.008] [0.06] [0.20] [0.09] [0.08] [0.48] 7.04 8.21 8.63

1.00 4.6 10.7 22.4 30 79.7 179.5 6.52 7.45 8.01
[0.010] [0.08] [0.18] [0.15] [1.25] [2.84] 6.67 7.67 8.07

1.20 5.06 11.4 23.8 32.1 84.6 189 6.34 7.42 7.94
[0.010] [0.05] [0.34] [0.14] [0.34] [1.50] 6.30 7.18 7.57

1.40 5.48 12.8 27 33.7 87.8 195.5 6.15 6.86 7.24
[0.020] [0.25] [0.41] [0.31] [0.15] [2.47] 6.09 6.78 7.16

1.60 5.89 13.7 28.6 35 89.2 201.2 5.94 6.51 7.03
[0.010] [0.06] [0.24] [0.04] [0.26] [1.97] 5.88 6.43 6.80

1.80 6.33 15 30.6 36.6 93.8 207.3 5.78 6.25 6.77
[0.020] [0.14] [0.40] [0.05] [1.65] [1.35] 5.67 6.14 6.51

2.00 6.7 15.9 32.5 38.3 95.1 214.7 5.72 5.98 6.61
[0.020] [0.10] [0.40] [0.22] [1.50] [2.51] 5.51 5.89 6.24

number of products. We found that the rate of increase is sensitive to system parameters
such as demand and process variability, demand and capacity levels, and setup times. We
found that the effect of these parameters can be counterintuitive. For example, increas-
ing either demand or process variability decreases the relative cost of offering variety.
A similar effect is observed with respect to expected production time. On the other hand
an increase in either expected setup time, setup time variability, or demand rate increases
the relative cost of offering variety.

These results highlight important differences between inventory systems with ex-
ogenous supply lead times and systems whose lead times are generated by a production
facility with finite capacity and stochastic production times. They also highlight the
impact of variety on manufacturing efficiency (via setups) and the resulting effect on
inventory costs. More importantly, the results point to the need for managers to be
aware that the relative costs of offering variety (or alternatively the relative advantage
of reducing it) are sensitive to system parameters. For example, in industries where
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Table 3
Simulation results for systems with Gamma-distributed setup times (α = 1, β = 1), exponentially-

distributed order inter-arrival times for each item and exponentially-distributed processing times.

C2
setup Simulated total cost K = 1 Simulated total cost K = 10 Ratio

λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.6 λ = 0.8 λ = 0.9

0.01 28.1 75.9 175.2 6.11 7.09 7.82
[0.03] [0.11] [1.22] 6.31 7.53 7.98

0.20 28.6 76.7 176.3 6.22 7.17 7.87
[0.02] [0.08] [1.28] 6.37 7.56 8.00

0.40 28.9 76.9 176.8 6.28 7.19 7.89
[0.02] [0.14] [0.54] 6.44 7.59 8.02

0.60 29.5 77.5 177.7 6.41 7.24 7.93
[0.07] [0.13] [1.25] 6.52 7.62 8.04

0.80 29.8 78.2 178.6 6.48 7.31 7.97
[0.09] [0.59] [1.45] 6.59 7.65 8.05

1.00 4.6 10.7 22.4 30 79.7 179.5 6.52 7.45 8.01
[0.010] [0.08] [0.18] [0.15] [1.25] [2.84] 6.67 7.67 8.07

1.20 31.3 82.1 182.4 6.80 7.67 8.14
[0.11] [0.67] [1.67] 6.74 7.69 8.08

1.40 31.8 83.3 183.5 6.91 7.79 8.19
[0.12] [1.11] [1.24] 6.82 7.71 8.10

1.60 32.3 83.9 185.9 7.02 7.84 8.30
[0.16] [1.32] [1.38] 6.90 7.73 8.11

1.80 33.1 84.9 186.4 7.20 7.93 8.32
[0.09] [1.51] [1.17] 6.98 7.76 8.13

2.00 33.5 85.4 187.1 7.28 7.98 8.35
[0.18] [1.48] [1.55] 7.07 7.78 8.14

either demand or process variability is high, the relative penalty for offering variety is
small. On the hand when expected setup times or setup time variability are high, the
relative cost of variety can be significant. For firms that must offer variety, these results
also suggest areas of improvement that would yield the largest percentage reduction in
cost.

In this paper, we have focused on quantifying inventory-related costs due to in-
creased variety. Clearly, these costs need to be traded off against possible benefits from
potentially higher prices or increased market share. On the other hand, there might be
additional costs associated with variety including higher costs of raw materials, product
development, and marketing. Managers need to be aware of these additional costs and
benefits when deciding when to increase product variety and by how much. Furthermore,
in many applications, increasing product variety beyond a certain range would require
investing in a different process technology. In that case, analyzing the impact of variety
would need to be carried out for discrete ranges and for different choices of technology.
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Table 4
Simulation results for systems with Gamma-distributed order inter-arrival times for each item (α = 1,
β = λ/10, individual arrival rate = λ/10 = ρ/10), exponentially-distributed processing times (t = 1) and

zero setup times (τ = 0).

C2
a Simulated total cost K = 1 Simulated total cost K = 10 Ratio

λ = 0.70 λ = 0.90 λ = 0.95 λ = 0.70 λ = 0.90 λ = 0.95 λ = 0.70 λ = 0.90 λ = 0.95

0.01 3.19 11.5 23.7 9.87 20.6 32.1 3.09 1.79 1.35
[0.009] [0.023] [0.134] [0.002] [0.050] [0.113] 3.09 1.76 1.37

0.20 3.86 13.6 27.9 10.2 21.7 38.1 2.64 1.60 1.37
[0.009] [0.052] [0.467] [0.002] [0.075] [0.484] 2.63 1.59 1.33

0.40 4.59 15.8 35 10.7 23.9 42.9 2.33 1.51 1.23
[0.008] [0.129] [1.000] [0.003] [0.132] [0.716] 2.32 1.50 1.28

0.60 5.25 18.1 38.8 11.2 26.6 47.6 2.13 1.47 1.23
[0.005] [0.051] [0.745] [0.012] [0.213] [0.762] 2.13 1.46 1.25

0.80 6.08 21.3 50.1 12.0 31.6 54.6 1.97 1.48 1.09
[0.012] [0.250] [2.250] [0.013] [0.246] [0.865] 2.04 1.45 1.22

1.00 6.78 23.5 52.0 12.6 32.8 66.4 1.86 1.40 1.28
[0.012] [0.263] [0.496] [0.012] [0.334] [1.650] 1.87 1.39 1.20

1.20 7.29 25.5 52.9 13.2 33.7 62.8 1.81 1.32 1.19
[0.019] [0.287] [0.784] [0.018] [0.16] [0.756] 1.80 1.34 1.19

1.40 8.07 29.4 57.2 14.0 36.3 67.6 1.73 1.23 1.18
[0.017] [0.344] [1.270] [0.011] [0.611] [1.030] 1.74 1.32 1.17

1.60 8.65 29.3 60.3 14.9 39.0 75.0 1.72 1.33 1.24
[0.014] [0.169] [1.470] [0.038] [0.277] [0.857] 1.70 1.31 1.16

1.80 9.44 32.8 73.0 15.7 42.1 78.9 1.66 1.28 1.08
[0.062] [0.450] [1.580] [0.063] [0.234] [0.630] 1.69 1.29 1.15

2.00 10.0 35.5 76.4 16.6 44.8 85.7 1.66 1.26 1.12
[0.043] [0.337] [1.730] [0.072] [0.961] [1.890] 1.66 1.26 1.14
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Appendix. Summary of notation

K: the number of products.
λi: the demand rate for product type i.
λ = ∑K

i=1 λi , the aggregate demand rate.
C2
ai

= Var(Xi)/E(Xi)
2.
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Qi : batch size for product of type i.
pi = λi/Qi/

∑K
i=1(λi/Qi), the probability that a batch in the processing stage is of

type i.
si : base-stock level for product of type i.
Xi : a random variable denoting the inter-arrival time between orders of type i; E(Xi)

= 1/λi .
Yi: a random variable denoting unit production time for product i; E(Yi) = ti ,Var(Yi)
= ηi .
Zi : a random variable denoting setup time for product i; E(Zi) = τi , Var(Zi) = θi .
Ui = Zi if a batch of type i is processed after a batch of type j (j �= i); 0, otherwise.
Wi = QiYi .
Si = Ui + Wi .
U = ∑K

i=1 piUi .
W = ∑K

i=1 piWi .
S = ∑K

i=1 piSi .
ρ = ∑K

i=1 (λi/Qi)E(S), steady state utilization of the production facility.
C2
a,p = ∑K

i=1 piC
2
ai

.
Cs,p = Var(S)/E(S)2.
σ = (N̂ − ρ)/N̂ .
ri = piσ/(1 − σ (1 − pi)).
Nb

i : a random variable denoting the number of orders of type i in the batching stage.
N

p

i : a random variable denoting the number of batches of type i in the processing stage.
Ni = Nb

i + QiN
p

i .
Np = ∑K

i=1 N
p

i .
N̂ : approximated number of customers in a GI/G/1 queue.
Ii: a random variable denoting inventory level for product i.
Bi: a random variable denoting backorder level for product i.
hi: holding cost per unit of inventory of type i per unit time.
bi : backordering cost per order of type i backordered per unit time.
z(s,Q) = ∑K

i=1 E(hiIi + biBi), the long run expected total cost per unit time given s
and Q, where s = (s1, s2, . . . , sK) and Q = (Q1,Q2, . . . ,QK).
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