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Uniqueness of Minimal Partial Realizations 

BRADLEY W. DICKINSON 

Absrfacr-Two methods for determining whether all minimal partial 
realizations of a given finite seqwnce have isomorphic state spaces are 
described In particular, uniqueness of the minimal polynomial of the 
minimnl partial realizations is shown to be an equivalent condition. 

In the minimal partial realization problem, we are given a finite 
sequence of p X m matrices { Ti, 1 < i < N } and we  wish to find a triple of 
matrices (A ( .N) ,B(N) ,  C(N)) ,  where A ( N )  is n, X n,, B ( N )  is n, X m, 
and C is p X n,, with n, as small as possible, so that 

C ( N ) A  ( N ) ’ - ’ B ( N )  = q, 1 < i < N .  

Kalman  introduced this problem [4] and the main existence theorem was 
also given  by Tether [lo]. Rissanen [6],  [7] and Dickinson, Mod, and 
Kailath [3] have studied algorithmic aspects of the  problem, especially its 
importance in efficiently solving the “total” minimal realization problem 
( N  = m). 

In a previous paper [2], a complete set of independent  invariants for 
the minimal partial realization problem was  given, and a corresponding 
set of canonical forms for the triple ( A ( N ) , B ( N ) , C ( N ) )  was derived. 
These  canonical forms have the general structure of the obserwr canoni- 
cal f o r m  of Luenberger [5], which are  a set of canonical forms for 
controllable and observable triples ( A ,  B ,  C )  with isomorphism of state 
spaces being the equivalence relation. In general, solutions to the 
minimal partial realization problem do not have isomorphic state spaces, 
and the  canonical forms for this case are  obtained by looking at the 
observer canonical forms under this more general equivalence relation. 

The  details of this approach  are given in [2], and here we consider the 
problem of determining when the minimal partial realization is unique 
up  to  state-space isomorphism as is the case for  the solution to  the  total 
minimal realization problem. From  the discussion above, we see that in 
this case, the two notions of equivalence coincide and this provides one 
test for this form of uniqueness. 

Proposition I :  The minimal partial realization of a sequence { q, 1 < i 
G N }  is unique up to isomorphism of state spaces if and  only if there is 
precisely one  solution of dimension nN in observer canonical form. 

The proof of this statement follows directly from the preceding discus- 
sion. Anderson, Brasch, and Lopresti [l] have obtained a result that is 
very similar in character to this one. The main problem with the result is 
the difficulty of showing that there is only one observer canonical form 
solution,  although  it is possible by using the constructive method in [2] 
for  obtaining  the  invariants of the problem. 

A much simpler condition  can be obtained by using another complete 
invariant  for state-space isomorphism of controllable and observable 

Manuscript received November 25, 1974. 
The author is with the Department of Electrical Engineering, Princeton University, 

F’rinceton, NJ. 08540. 

systems, namely ~ ( z ) ,  the minimal polynomial of the  state module, with 
degree cp(z)= q, and the terms { T I ,  T2; . . , Tq}. Although this well- 
known complete invariant is not very  useful for  obtaining canonical 
forms, it gives a nice condition or uniqueness for minimal partial 
realizations. 

Proposition 2: The minimal partial realization of a sequence {Ti, 1 < i 
< N }  is unique up to isomorphism of state spaces if and only if every 
minimal partial realization has the same minimal polynomial. 

Before  giving the proof, we point  out  that this test is more in  the spirit 
of Kalman’s main theorem [4]; also see Tether [IO]. In the case of s d a r  
( p  = m = 1) sequences, the result is almost obvious. 

Proof: The minimal polynomial of a  controllable  and observable 
realization gives the linear recurrence relation of least order satisfied by 
the terms of the impulse response. Thus, realizations with isomorphic 
state spaces have the same minimal polynomial. However, the minimal 
polynomial for minimal Nth partial realizations can be unique only if its 
degree is  less than N +  1. If it is unique, then the  entire impulse response 
is uniquely determined  and  all realizations have isomorphic state spaces 
by the usual “total” realization result. 

Proposition 2 reduces the test of uniqueness to checking the  rank of a 
particular  matrix  in  order to guarantee  a unique solution  to  a single 
linear  equation.  Furthermore, this rank is identified with the degree of 
the minimal polynomial, a new observation. 

It is an interesting fact  to  note  that  the minimal polynomial specifies 
the complete set of invariant  factors  for  the unique partial realization, 
but this is to be expected from the well-known recurrence for  the terms 
in  the impulse response. No easy  way of computing  the  other  invariant 
factors is suggested by this result. However, it is easy to extend the result 
to systems defined over some  classes of commutative rings as discussed, 
for example, in Rouchaleau [8, cf. (3.1), (3.4)] and Rouchaleau and 
Wyman [9]. 
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On Invariance of Degree of Controllability 
Under State Feedback 

N. VISWANADHAM AND D. P. ATHERTON 

Abstracz-Attention is given  to  time  varying  multivariable  systems. An 
algebraic proof is presented to show that  the degree of  controllability  and 
certain  indices  useful in developing  canonical  forms for the  stabilization of 
time varying mdtivariable  systems  are  invariant under state variable 
feedback. 
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Consider the linear continuous system 

~ ( t ) = A ( t ) x ( t ) + B ( t ) u ( r )  (1) 

v( t )=C(t )x (r )  (2) 

where x(t ) ,  u(r ) ,  andy(t) are state, input and  output vectors of dimen- 
sion n, m, and p ,  respectively. A(r) ,  B(r) ,  and C( t )  are matrices of 
compatible order and assumed to be differentiable the required number 
of times.  Silverman and Meadows [l] have  defined  three  types of 
controllability  called  uniform,  total, and complete  controllability  in 
terms of the matrix Q J t )  defined  by 

Qk(t)=[Po(t),P~(t),..-,Pk-~(r)l (3) 

where the matrices Pk, k =0, 1. 2; . . are given  by 

PO( t )=B( t ) ;  P k , , ( f ) = A ( r ) P k ( r ) - P k ( t ) .  (4) 

The object of this note is  to  show invariance of the degree of controlla- 
bility for the class of time  varying  systems  described  in (I), under state 
feedback of the  type 

u ( t ) = F ( t ) x ( t ) + c ( t )  (5) 

where u is an ( m  X 1) reference input vector and F(t )  is an rn X n matrix. 
For the  case  when A(r ) ,  B ( t )  are constant matrices.  Brockett  [2] has 
established  the  invariance of controllability  under state feedback.  Sil- 
verman and Anderson [3]  have  proved that uniform  complete  controlla- 
bility [4] which  is  different  from  the above three  types  is  preserved under 
feedback of type (5). Recently Chandrasekharan [ 5 ]  considered the case 
when A ( t )  and B ( t )  are analytic and proved  the  invariance of uniform 
controllability. 

Here, we present an algebraic  proof  showing the invariance of the 
degree of controllability under state feedback (5). The method of proof 
seems to be  new  even  for  time invariant systems. Also. the procedure 
explicitly  shows the invariance of certain indices  which are useful  in 
developing canonical forms for multivariable  systems [6H8]. 

Substituting (5) into (1) we get 

i ( t ) = [ A ( t ) + B ( t ) F ( t ) ] x ( t ) + B ( t ) c ( r )  

v(r)= C ( l ) X ( Z ) .  (6) 

Now define the matrices PL and QL for the closed-loop  system  (6) in a 
similar manner as in (3) and (4). Our aim  here  is to show that 

Q;(t)= Qk(f)Hk(r).  k=O, 1,2,. ' .  (7) 

where H k .  k =0, 1, 2; . . is an upper  triangular  block  matrix,  nonsingu- 
lar for all t ,  defined by 

H,= I ,  

H k ( r ) =  

and 

0 

J k - l , k - l  

- 

(8) 

k > i .  (9) 
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In other words, the following  theorem will be  proved. 
Theorem 1: RankQt ( f )=rankQj ( t )  4(t), j a 0 .  

Pro08 First observe that by direct  calculation and use of (9) the 
following  identities are true where the time dependence notation is 
omitted for notational convenience. 

P;= Po= B 

P,L=(A+BF)P;-Pf=A(P,+PO(FP;))-i',--(P&P;)+P&Pf d 

P;=AP,C-P,C+BFP,e=A P 2 + P l ( F P 6 ) + P o ( F P ; - B ( F P 6 ) ) ]  d 

- $ { P2+  P,(FP,C)+ Po FPf-   dt(FP;)  [ I) 

From (IO), (1 I), and (8) we note that (7)  holds for all k > 0. Since Hk is 
nonsingular  for all k and t. it can be concluded that rank  Q,E=rank 
Qk = dk( t )  for all r and k .  Q.E.D. 

I t  is  known that [I], system  (1)  is  uniformily  (totally) controllable if 
and only if Qn(t )  has rank n for aU t (for  almost  all 2). Also it  is 
completely controllable if Qn has rank n for some r .  In view of Theorem 
1 the  following  corrollary  follows. 

Corollary 1: (A( t ) ,B ( t ) )  i s  uniformily  (totally)  (completely)  control- 
lable if and only if ( A ( t ) + B ( r ) F ( t ) , B ( r ) )  is  uniformily  (totally) (com- 
pletely)  controllable. 

Observe that the indices d,( t ) ,  j = O ,  1;. . .n may  be functions of time. 
Systems for which  these  indices are constant integers  for  all t are termed 
index invariant systems 161, [7]. One  can observe from Theorem 1 that 
the following  corrollary  is  true. 

Corollnry 2: System (1) is  index invariant if and only if the closed- 
loop system  (6)  is  index invariant. Furthermore, the indices 4, j 
= 0,1,. . . , n are identical for both the systems. 

Brunovsky [6], Morse and Silverman  [7]  developed canonical forms to 
stabilize  system (1) which  is  index invariant and the indices 4, j 
=0,1; . . ,n play an important role  in  determining the structure of the 
canonical form. A similar  analysis  was carried out for  time invariant 
systems  in  [6] and [SI. 

Finally  it  may  be noted that a similar  analysis can  be carried out  to 
show the invariance of the degree of observability under output feedback 
in a straightforward manner. 
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I - 
similar to R ,  eigenvalues are  all  in right- or left-half plane according as 
b,  is positive or negative. 

The following lemma plays the main role in the proof of Theorem 1. 
Lemma I :  R is either a stability matrix or else has all its eigenvalues 

The proof of this lemma is based upon a recent inertia theorem due  to 
in right-half plane if and only if b,,  b2, . . . , bn are all nonzero. 

Chen and Wimmer. 

111. AN INERTIA THEOREM 

The inertia of an arbitrary matrix A is defined to be a  triplet ( v ( A ) ,  
p.(A),  S(A)), where a(A) ,   v (A) ,  and S(A) are, respectively, number of 
eigenvalues of A with positive, negative, and zero  real  parts.  Inertia of A 
is denoted by IN(A) .  The following inertia theorem has been recently 
proved by Chen [ l ]  and independently by  Wimmer [7]. 

On the Similarity Between a Matrix and its Routh Theorem 2; Let A be a n X n matrix and let there exist a Hermitian 

Canonical Form matrix H so that  the matrix N given by 

B. N. DA’ITA A H + H A * = N  

necessary sulfi,.ient for a nondemgatory where  is positive semidefinite and the  rank of [ A ,  N ]  be n. 
matrix A to be similar to its Routh canonical form R is established in this Then and lN(A)=zAr(H). 
note. 

IV. PROOF OF THE LEMMA 
I. INTRODUCTION Let b,, 6,;. -,bn be all nonzero. Then  it is easy to see that  the 

= dg(2b:, 0,. . . ,0) is positive semidefinite. Also, the  rank of [ R ,  PI is n, 
because the n X n matrix formed by taking the 1st to (n - 1)th column of 

?2b;b2b,.-. bn. So, by Theorem 2, S(R)=O and  furthermore, M ( R )  

Thus, when b, is positive, R has all  its eigenvalues in right-half plane 

Conversely, if any of bi, i = 2,3,. . . , n - 1 is zero, then 

It was  shown by Schwm [6] that every nonderogatory matrix A can diagonal matrix D=dg(bl, b l ,  bi.’ ‘ ‘ > b I )  such that RD+ DRT=P 
be  transformed by similarity to the form 

I f -:-1 A ‘ i ’  !\ = I N ( D ) .  

0 ... R and the first column of P is clearly nonsingular having determinant 

S =  and when 6 ,  is negative, R is a stability matrix. 

The matrix S is called Schwarz matrix. It is also known [4] that  a 
nonderogatory  stability matrix A is similar to  the  real  Routh matrix 

where b,, b,, . . . , b, are nonzero and 

b,=-slandbf=si ,  i = 2 , 3 ; . - , n .  

The aim of this correspondence is to present a more general result that 
follows. 

11. STATEhIENT OF THE RESULT 

Theorem I :  Let A be a  nonderogatory matrix. Then  a necessary and 
sufficient condition  for A to be similar to R is that either A is a stability 

where A , is a (i- 1 )  X ( i -  1) matrix and A ,  is a real skew symmetric 
matrix of order (n - i + 1). Also, if b, = 0, R is singular and b,  = 0 makes 
the whole matrix R real skew  symmetric. Thus, vanishing any of b,, 
b,, * . . , b,, implies that S(R)#O contradicting  the assumption that R has 
all its eigenvalues either in  left- or right-half  plane. 

V. PROOF OF THE MAIN RESULT 

Necessiwv: Since  two similar matrices have same eigenvalues, necessity 

Sufficienry: Since A is nonderogatory, there exists a nonsingular T 
follows immediately from the Lemma 1. 

such that 

1 

0 

a 2  

0 
1 

... ... 

where C is the companion form of A .  Let A,, A2;. . .An be the Hurwitz 
determinants of det(hl- C )  and let us choose 

Ar - 3 4  2- ~ ( r = 4 , 5 ; .  . ,n). 
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