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Decentralized  Control of Interconnected  Dynamical 
Systems 

A. RAMAKRISHNA AND N. VISWANADHA?? 

A bstruct--In this paper we consider  the  decentralized  stabdization 
problem  for  a  class of large  systems  formed by the dynamic interconnec- 
tion of several multivariable  systems. For this  structured  class of systems, 
we establish the conditions  under which the  interconnected system is 
controllable and observable. We then simplify  and interpret  these  condi- 
tions  to obtain  simple  sufficient  conditions  that  guarantee  controllability 
and  observability  in terms of the subsystem and interconnection  subsystem 
coefficient matrices. Also, the  conditions  under wrhich stabilization using 
decentralized  feedback is possible are explicitly  stated.  We  then simplify 
these  to obtain  sufficient  conditions at  the subsystem level. These  condi- 
tions imply that if the  interaction  subsystems are stable and,  in addition, 
certain mild restrictions  on  the  subsystems and the  interconnections hold, 
then  the  large  system is stabilizable  with  decentralized  feedback.  Finally, 
we state the  sufficient  conditions  for  stabilizing this class of qstems via 
local  state  feedback. 

I. INTRODUCTION 

There  has  been  a  great  deal of interest  in  the  area of decentralized 
control of large  scale  interconnected  systems [I]-[4]. This is a  direct 
result of the  need  to analye large  scale  technological  systems  like  power 
systems [5], computer  communication  networks [6], transportation sys- 
tems  and  process  control  systems [I], for  stabilizability  under  constrained 
feedback. This paper  examines  the  stabilizability  under  local  feedback of 
a  specially  structured  class of interconnected  systems which appear  natu- 
rally in many  practical  situations.  These  systems  are those formed  by  a 
dynamic  interconnection of several subsystems. 

Previous  results  in  the  literature on stabilization and regulation via 
decentralized  feedback were mainly  concerned  with  either  interconnected 
systems  with  constant  (static)  interconnections or with  large  multivariable 
systems.  For  systems  with  constant  interactions, Sezer and  Hussein [4], 
Davison [IO],  Saeks [ I  I], deal  with the question of decentralized  stabiliza- 
tion. We may mention  the excellent development of the  corresponding 
results for large  multivariable  systems given  by Corfmat  and  Morse [7] 
and  Wang  and  Davison [E]. Chan  and  Desoer  consider  a  class of dynami- 
cally interacting  interconnected  systems  for  certain  stability  studies using 
summing  node  and  column  subsystem  notions [3], [9]. 

Our aim here is to  develop  simple  sufficient  conditions  under which a 
class of large  systems  with  dynamic  interactions is jointly  controllable  and 
observable and is also  stabilizable by means of decentralized  feedback. 
These  conditions  are given  in terms of the  subsystem  coefficient  matrices 
and  are  easy  to  check.  This  paper is organized as follows. In Section 11. we 
describe two interconnected  system  structures  dealt  with in this  paper  and 
formulate  the  main  problems of interest. Some preliminary  results re- 
quired  in the later  development  are  stated in Section 111. In  Section IV  we 
develop  the  necessary  and  sufficient  conditions  under which  the large 
system is controllable.  and weaken these to obtain  simpler  sufficient 
conditions \vhich require less computational  effort.  The  corresponding 
results on decentralized  stabilization  are  presented  in  Section V. Section 
VI deals  with  the  design of stabilizing  controllers  based on local  state 
feedback. 

Xorution 

A ( s )  denotes  a  polynomial  matrix. Le., a  matrix with polynomial 
entries. M ( s )  - , N ( s )  denotes  that M ( s )  is Smith  (form)  equivalent to 
W ( s ) ,  M ( s ) -  N ( s )  denotes M(s) and ,V(s) are  equivalent  up  to  elemen- 
tary  operations.  With  a  set K g  { 1.2,. . . . k ) ,  we have K5 pow-er set of K 
(modulo K), i.e., the  set of al l  proper  subsets of K .  K ( i )  denotes  the  set of 
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Fig. 1. The ith subsystem  of  Structure I 

all proper  subsets of K containing i. q denotes any proper  subset 
{ n l .  n2.. . . , n4} of K .  Le., qE K .  Given  any  matrix M ,  M q  denotes the 
submatrix of ,M associated  with qE K .  ,yK-q denotes  the  submatrix of IM 
associated with the  proper  subset K / q =  { n , _ , , n , + z , ~ ~ ~ . n J , ; ~ ~ , n k ;  n, 
@ 4}> also  called  the  complement of 4. o ( A )  denotes  the  set of eigenvalues 
of a  matrix A .  Block diag. ( E )  denotes  a  matrix  with block diagonal 
elements 4 .  

11. PROBLEM FORMULATION 

In this  section. we present two interconnected  system  structures.  wherein 
the  subsystems  interact with each  other  through  dynamic  output  feed- 
back. We also  state  the  decentralized  control  problems  treated  in  this 
paper  relating  to these structures. 

Srrucrure I: 

Consider  the  large  system  formed by  the interconnection of the k 
subsystems  described by 

and  the  interaction  subsystems given  by 

k 
H , :  I-, = M , Z i  + 2 LIJ.YJ ( IC)  

, = I  

k 

w , = X , z j +  2 P,Jy,, i = 1 . 2 ; . . , k  ( Id) 
, = I  

according to  the interconnection rule 

u, = v ,  + w,. (le) 

We  assume  that (C,, A , ,  B , )  is a  controllable  and  observable  triple. 
i = 1,2:. . . k .  where x ,  E R",  are  the  states of the subsystems, u ,  E R"1. 
?;E RP4 are  the  corresponding  inputs and outputs. z ,  E Ran, w, E Rml are 
the  states  and  outputs of the ith interaction  subsystem,  respectively. 
e, E R"', is the  external  input  to the i th  subsystem, and the  coefficient 
matrices  are of compatible  dimensions. 

Schematically  the i th  subsystem  would look as shown  in Fig. 1. Such 
structures  arise in practical  systems  such as a  countercurrent  heat  ex- 
changer [ I]. 

Sirucrure I I :  

Another  large  system, with a more detailed  dynamic  interconnection 
structure,  consists of k subsystems  having  the  state-space  description 

with  interaction  subsystems given by 

and  interconnected  according  to 
k 

u, = v ,  + 2 w,,. 
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Flg. 2 The rth subsytem of Structure I 1  

Here also.  we assume  that each (C,.  A, .  B;) ,  i = 1 . 2 : . - . k ,  is a control- 
lable.  obsenlable triple. Fig. 2 shows a schematic for the i th subsystem of 
this  structure. 

The follorving questions  concerning the above systems are of interest. 
i)  Under what  conditions are the composite systems described by ( I )  

and (2) controllable  and observable? 
ii) What are the conditions on  the subsystem  and  interconnection 

parameters to guarantee  stable fked modes. Le.. stabilization using  de- 
centralized dynamic output feedback? 

iii) Under ahat  conditions  can local state feedback of the type u,  = 
<-x, + c, stabilize the composite system? 
We shall provide answers to these questions in the following sections. We 
note that ii) and iii) are distinct problems. Even in the centralized case. 
there are stronger  conditions required for stabilization with dynamic 
output feedback (controllability  and observability of the system) than  for 
stabilization with state feedback (controllability of the system). As we 
shall see later,  the  conditions  corresponding  to cases ii) and iii). in the 
decentralized context,  are also different. 

111. PRELIMINARY RESULTS 

In this section. we summarize the definitions  and results that are 
needed in the development  to folloLv. Here we consider large multivariable 
systems a.hich are strongly  connected [7 ] .  The results obtained  can be 
easily extended to  include nonstrongly connected systems. A strongly 
connected system  is one  in which. after local feedback. a transfer path 
exists from every input channel to everq output channel. That is. even; 
node  is  connected to every other  node in the  graph of (1). This  has been 
shown [7] equivalent to the requirement that all the  complementary 
subsystems (see Definition 2 belos,) have nonzero  transfer  function 
matrices. 

We now define  the  remnant polynomial  which  is  closely related to the 
fixed  modes. and which  we  use frequently in the  ensuing discussions. 

Defirztrzotz 1 (Renz~urrfpu/~/ron~iul/: The remnant polynomial r(C. A .  B )  
of the triple (C. A .  B )  is defined as the  product of the first ) I  invariant 
polynomials of the  system matrix 

[. ,*,A ;]. 

Definirim .? /Conplenzentun suhsysrenzs): The triples ( C K - q .  .4. B,) 
with q E  K .  are called the complementary subsyems of the  system 
( C . . 4 . B ) .  Here B,=(B,,:..,B, ) and  CK-q=(CJ,.....Cli-q) with i l E q  
and], E K - q. 

Definirfor7 3: A triple (C. A .  B )  is called complete if its transfer matrix 
C(s1-A)-'Bisnonzero.andr(C.A.B)=l. 

Now. we state the following results due  to Corfmat  and Morse.  Pro- 
position 1 establishes conditions  under which a multivariable system can 
be  made single channel  controllable whereas Proposition 2 deals with the 
decentralized stabilization problem. 

Propos~riot~ I [7]: Consider the k-channel multivariable system 
h 

5 :  . i -=k .r+  2 B p ,  
r = l  

.';=C,s. I = 1 * 2 . - . ' . k  

%-ith the decentralized feedback 

U , = < J , .  i = l  1 I  2 . . .  I 

i) (2 T hFdc. 3 )  is a controllable pair if and only if (2, h )  is a 
controllable  pair  and  each complementq subsystem ( ( ' K - q .  2. h,) con- 
taining  input  channel J is complete. i.e.. CK-,(sI-  A ) - ' h , E O  and r(e,-,. k. h4)= I .  for all q E  ~ ( 1 ) .  

ii) Further. (A BF,?. h,)* is stablizable if and  only if ( A .  h )  is 
stabilizable  and if eK- , ( s l -  A)-'6qj,E0 and r(eKps. A. B q )  is  stable for 
a l l q ~ K ( ~ ) . ~ ~ h e r e ~ = [ 8 , . h ~ , ~ ~ ~ . h , ] ; ~ = [ ~ ~ , ~ ~ ' ; , ~ ~ - , ~ ~ ] ' : F , = B l o c k  
diag.(F,;.F, :... F k ) .  

Proposition 2 [7]: Consider  the strongly connected  system 5 in Pro- 
position 1 under decentralized feedback u ,  = 61,. i = 1.2:. . . k .  Then  the 
following hold. 

i) The eigenspectrum of (c.  .i -C Bcdc. 6,) is  freely assignable, if and 
only if (2. h )  is a controllable pair. ( C .  A )  is  an observable  pair, and the 
remnant polynomials corresponding to each of the complementary sub- 
systems are unity. i.e.. r(CK- ,~ a. &,)= I .  for a11 q~ K .  

ii) The triple (G. 2 + BFJC. 8,) is stabilizable if and  only if (A. k )  is 
stabilizable, (e. A )  is  detectable and r(cK-q. A .  By) is stable. for all 
q E  K .  

Renwrk 1: Proposition 2 indicates clearl>- the role of the  remnant 
polynomials of the  complementary  subsystems in proving  the stability 
under decentralized feedback. It is evidently sufficient to prove that  each 
of the remnant polynomials  is stable, to prove  the stabilizability under 
decentralized dynamic output feedback of the sb-stem. 

. .  

^ ^  

IV. COSTROLLABILITY AND OBSERVAB~LITY 

.4. Cotlrrolluhill[~~ 

Here. we develop  the  conditions  under which the large interconnected 
system  (Structure I) described by (la)-(le) is controllable.  The corre- 
sponding results for  Structure I1 follow similarly and  are  summarized 
towards the end of the section. 

To proceed. we rewrite ( I )  as 

= X.? + Bc 

y = [ C  O][-l]=C, 

hcre 

and for i.1 = 1.2: . , k  
.-I = Block diag. ( . A ,  ). B =Block diag.( B,). 
C = Block diag. (C,  ). (3b) 
P = [ P,, 1. X = Block diag. ( A', ). L = [ L,, 1. 
1 f  = Block diag. ( .M,). 

A l s o . l e t n = Z 1 1 , . u = r u , . p = Z p , . n 2 = Z m , .  (4c) 
In what follows. we  use the te? joint controllability of Structure I to 

imply  controllability of the pair ( A .  E). Le..  the interconnected system ( I )  
is Jointly  controllable if and only if [I21 

More explicitll-. using (3). ( 5 )  can be lvritten as 

We then haw the folloning. 

and onl! if 
1 , e w w  I ;  The  slbtcm described by (3)  and (4) is jointly controllable if 

i )  ( -4 ,  B )  is a controllable  pair 

Then. for  almost  any F,, and for anyj=1.2:. ..X.. where u( TU) is the set of eigenvalues of M .  
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Proofi It can be  easily seen  that C(s) is column  equivalent to V ( s ) .  
and thus, rankC'(r)=rankV(s), for all s. 

Suj'icienc);; Suppose ( A ,  E )  is a  controllable  pair,  then rank( S I  - A 
B ) =  n, for all s. For s u( M ) ,  ( S I  - M )  is nonsingular and hence 
rankV(s)=n + a .  Thus, if rank- (/(s)= n i - a  for all sE  ~(IM), then 
rank U(s)= n + a for all s, Le., ( A ,  B )  is a  controllable  pair. 

Necessiy: The  necessity of condition ii), i.e.. rank U(s)= n + a for 
s E u( M )  is obvious and  that of i) is clear  from the fact  that if i) does  not 
hold,  then ii) cannot be true. 0 

The  necessary  and  sufficient conhtions given in  Lemma 1 are  computa- 
tionally  burdensome.  The followring theorem  provides  elegant  sufficient 
conditions, whle its corollary  (Corollary 1) provides  simple  sufficient 
conditions which require  computations  on  the  subsystem  matrices  only. 

Theorem 1: The  interconnected  system  described by (3) and (4) (Struc- 
ture  I) is controllable if 

i) (A. B )  is a  controllable  pair 

ii) ( M .  L )  is a  controllable  pair 

Proof: In view  of Lemma I .  the theorem is proved if  we can  show 
that ii) and iii) together  imply  that rank V( s)= n + a ,  s E  u( M ) .  

To this  end.  note  that V ( s )  can  be  rewritten as 

%l,(s)L'z(s) .  

For s E (r( M ) .  conditions ii) and iii) imply rank L',(s) = n + a ,  rank L$(s)  
= n + p + a ,  respectively. 

Using  Sylvester's  inequality, we now have 

n i a r r a n k V ( s ) a n i a + ( n + p i a ) - ( n + p + a ) ,  

1.e., 

rankL ' (s )=n+a.  fora l l sEu(M).  0 

We can easily obtain the following  corollary, by making use  of the 
block  diagonal  structure of A ,  B ,  and C given in  (4b).  Note  that  this 
corollaq provides  conditions which are given  in terms  of  the  subsystem 
matrices.  thus  providing  computational  advantage. 

CoroNaty I :  The  interconnected  system  described by (3)  and  (4) 
(Structure I) is jointly  controllable if 

i) (A,, B , )  is a  controllable  pair.  i = 1.2; . . , k 

ii) (/Mi. L , . t )  is a  controllable  pair. i = 1,2:. ..k 

The  sufficient  conditions  provided by Theorem 1 and  Corollary 1 are 
interesting. In addition to controllability of the  subsystems,  joint  control- 
lability of (3) requires  that the eigenvalues of the interaction  subsystems 
H, [(IC)-( Id)]  should  not  coincide with the  invariant  zeros of  the subsys- 
tems ( la)  and (Ib). If. howvever. all the  eigenvalues of u ( M )  are  stable. 
then we see that  any  uncontrollable  modes  that may be present.  are  stable. 
We have  thus  obtained  a  sufficient  condition  for  stabilizability. which  is 
given in  the  following  corollary. 

Corollurf 2; The  interconnected  system  in Corollaq I is stabilizable, 
if, for i = 1.2, . ' ,  k .  (A , .  B,) is a  controllable  pair,  and (I( M )  is stable. 

The results  for  observability  can  be  obtained easily  by dualizing  the 
above  results. 

We summarize the joint controllability  results  for  Structure I1 belo\v. 
Theorem 2: The  joint  controllability of (2). i.e.. Structure 11. holds if, 

with ii [ L',,. L;,;  ., Li i ] ' .  IG, e Block diag.( M , , ,  M 2 , ;  . . , !MA,). for 
i 1 1 . 2  . . . k :  

7 1  

i) ( A , ,  B , )  is a  controllable  pair 

ii) ( ki, i i )  is  a controllable  pair 

B. Structural Extemiom 

The results  in  Section IV-A on the controllability  and  stabilizability of 
Structure  I were derived  assuming  that the coefficient  matrices  in  (1)  are 
all fixed. It is possible  to  derive  an  alternate set of necessary  and  sufficient 
conditions  for joint controllability  and  to weaken them to provide  simpler 
sufficient  conditions, by using  Proposition 1. These  results  are valid for 
almost any (arbitrarily  structured) L ,  whereas  those  presented  earlier 
(Theorem I and  Corollaries 1 and 2) are valid for  a given L.  The  special 
case when L is  block diagonal is also  treated. Specifically. w'e prove the 
following  results. 

Tlzeorenz 3: Consider the system  described by (3) and (4) (Structure I). 
Let ( A .  B )  be contfpllable  and let C(sI - A ) - ' B  E O .  For almost  any L,  
( 5 )  holds, i.e.. (A. B )  is controllable if and only if 

S I - A  B l  0 
C 0 I 0 1 - - - - - - - - 
0 01  S I - M  

r n + a .  foralls. 

Proof: We first note  that V ( s )  can be written as 

Also, the  pair [ [ [ : y ]] is controllable.(Note  that ( A .  8) 
is controllable by assumphon.)  The  transfer  function  matrix  correspond- 
ing to the triple [C 01, -[: ,$I. [: Y ]  is C ( s I -  A ) - ' B  which  by 
assumption is E O .  Further L is an  unconstrained  matrix. Now applying 
Proposition 1 to our problem  with k =2 and  with the identifications 

we get the  result  that rank V ( s ) =  n + a .  for all s, if and  only if condition 
(8) of Theorem 3 holds. 0 

We now state  a  theorem which  gives a  condition which is equivalent to 
that of Theorem 3. but is easier  to test. 

Tlzeoretrz 4: The  system  considered in Theorem 3 is controllable for 
almost  any L .  if and  only if 

ProoJ Suppose  (9)  holds:  then  it  can be  easily  seen that  for all 
s E U( M). 

r d [  c 
0 1an.u.  0 0 s l - M  

Again,  for s 4 u( M ) .  (10) still holds  since ( S I  - M )  is nonsingular,  and 
rank [ ' I s  A :] a n ,  for all s. due to the  controllability of ( A .  B ) .  
Thus. we have  rank T ( s ) 2  n + a, for all s. This  proves  that  (9)  implies 
(8). 

We prove  the  converse by contradiction.  Suppose  (9)  does  not  hold. i.e., 
rank [" A :] < n i a - rank(s1- M )  for  some s E u( M). then. 
from the  block diagonal  structure of T(s ) .  we get, rankT(s)< n + a, for 
some sE u[ M). which contradicts (8). 0 

As before, i t  would  be of interest  to  investigate  whether (9) could  be 
simplified  to  provide  simple  conditions at the  subsystem level. The 
folloning  corollary  provides precisely  these conditions  utilizing the  block 
diagonal  structure of the matrices A .  B ,  C, and M .  

Corolhty 3: The  joint  controllability of (7, E) holds  for  almost  any L 
of Structure  I if for i=1,2:-..k 

S I - A  B 
( 10) 
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i) ( A , ,  B , )  is a  controllable  pair 

for all s E o( IM,). 

Remark 2: Note  that  in  checking  for  joint  controllability in Theorem 4 
and C o r o l l q  3. it is sufficient  to check  the conditions  therein  only  at 
sE a(,+,'). ie.,  at a  finite  number of points. 

Remark 3: For each i. we check the  conditions of Corol lw I at all 
s E o( 144). whereas  the  conditions of Corollary 3 needs to be  checked  only 
at s E  u( M 8 ) .  Furthermore, even at sE  o( M,). the condition of Corollaries 
I and 3 are identical  only when a ,  -rank(sI - M , ) =  p , .  

Corolla? 4: (z, B) of Structure I is a  stabilizable  pair for almost  any 
(arbitrarilystructured) L .  if fori = 1.2:' ..k. conditions ( i )  of Corollarl; 3 
holds  and a( M i )  is stable. 

It is important to note  that  Theorems 3 and 4 and  Corollaries 3 and 4 
are valid only  for  an L that is arbitrarily  structured. Le.. no element of L is 
constrained  to  have  a fmed  value.  However. for  the  special case  rvhere L is 
constrained to be block  diagonal,  with  the block diagonal  elements  being 
(arbitrary  and) unconstrained.  necessary and sufficient  conditions  can  be 
obtained.  using  Proposition 1. We then  have the following. 

Theorem 5: The system described by (3) and (4) (Structure I) is jointly 
controllable, Le.. (6) holds,  for  almost  any L with a  block  diagonal 
structure if and only if, for i = I ,  2.. . . . k :  

i) ( A , .  B i )  is a  controllable  pair 
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Proof: We prove  this  theorem  using  Proposition I for  the  case of 
( k  + I )  channels. We also need to make the  identifications: 

Bk+,=[;]. 

B F  [ ;,I. 
Now, applying  Proposition 1 I with j = k + 1. we have  the  following 

necessary and  sufficient  conditions  for joint controllability to hold, i.e.. 
for (5) to  hold. 

Simplif$ng these conditions.  using  the  diagonal  structure of A. B. C. 
and !ci, gives the result. 

In addition to being  interesting in its own right.  Theorem 5 is useful as 
its direct  dual gives us the  conditions for  joint obsewability.  In  contrast. 
the  block  diagonal  structure of 3' makes  impossible  a  direct  dualization of 
Theorems 3 and 4. 

- - 

Finally. we have the following corollar?;  to Theorem 5 .  
C o r o l l u ~  5: The system described by (3) and (4) (Structure I) is 

stabilizahle  for  almost  any block diagonal 1.. if condition i) of Theorem 5 

v. DECENTRALIZED STAEXLIZATION OF IPUTERCONNECTED 
SYSTEMS 

A .  Decentralced Srabili-ation 

In  this  section. we obtain the main  results of t t us  paper  concerning  the 
decentralized  stabilization of the  interconnected sy-stem (Structure I). 
Proposition 2, applied to Structure I. described by (3) and (4). helps us 
obtain the conditions which guarantee  the  stabilizability  of  the  dynami- 
cally  interconnected  system  under  decentralized  feedback. We then sim- 
plify  and  interpret these conditions  to  obtain  simple  sufficient  conditions 
lvhich are easy  to test. 

In the  light of Remark 1. it is enough  to  investigate  whether  the 
remnant  polynomials of the complementary  subsystems of the intercon- 
nected system (3) and (4) are  stable. To this  end. we identify the ith 
channel of our dynamically  interconnected  system  with  the  input  and 
output  groups of the ith local  subsystem. To use Proposition 2. we 
partition the vectors  and  matrices of (3) and (4) for  Structure I. in  the 
complementary  subsystem  format: 

We also make the  identifications from (3). 

so that the remnant  polynomial t(?K-y. .z. gq) ( q E  K )  of the  intercon- 
nected  system (3)  can be computed  and  simplified in terms of the 
parameters of the subsptems  (la)-(  Id). More  specifically,  for all q E  K .  r(cK-,. .i. Zq) now equals the product of the first ( t ~  + u )  invariant 
polgomials of R,(s )  defined belorv. Now. 

I 1  + (1 t?lY 

holds  and a( M i )  is stable,  for i =  1.2:' . , X - .  R - h e r e n l q - Z , , q r l l , , p h . - y ~ . , E K - q p , .  - 

The  results for Structure I1 follow similarly. If. for  a given q. rank R o ( s ) 3 ~ ~ A a ,  

- 

B, 
0 

0 

0 

0 - 

for all s. i.e.. the remnant 



polynomial  equals  unity,  there  are no fiwed modes  due to R,(r) (i.e.: due ii) Also from the diagonal  structure of N, and IW,, we see  that  the 
to r ( C , _ , .  A. Eq)). If the  remnant  polynomial r ( C K - q ,  A, B , )  is stable, observability of (.v,. M,);  i =  1.2,. . . ,k. implies  that (,vq.Mq) is an 
then it  contributes  only  stable  fixed  modes.  Starting  with (13), we simplify observable  Pair. 
R , ( s )  to obtain  convenient  conditions  guaranteeing  stable fiwed modes. Now,  using  the  above  facts  along  with Corollav  2  and its dual, we 

n 4  

u, 

R q ( S )  ' - n K - q  
S 

P K - q  

' K - q  

" 4  m 9  ' 4  n K - q  a K - q  

S I - A ,  B, 0 '  0 

0 I -  O 

'K-q ,qCq I SI  - MK-,  
nq + u, + m, n K - ,  + uK-, obtain  the following  elegant  result.  which gives sufficient  conditions  under 

We can now use  the triangular  structure of the  above  matrix  to obtain 
our main  result. If Tlq( s )  has rank n,+ u, (for all s) and T2Js )=  
ranknK-,+uK~,(foralls),thenrankR,(s)=n+u(foralls)andthere 
will be no contribution to the fixed modes  from Z ( F ~ - ~ .  2, Eq). for  this 
particular q. If either T l q ( s )  or T2,(s) drops rank, u( M,) and/or u( M K - , )  

are  the only modes at which the  ranks  could  drop.  for q E K (assuming 
( A , .  Bq)  controllable  and (CK-,, AK-,) observable, which is true  from 
the  controllability  and  observability of the  subsystems).  Hence.  the set of 
fixed modes  can  only  be  a  subset of the set of eigenvalues of M .  We now 
use  Theorem I and  its  dual to establish  the  conditions  under which T,,(s) 
and T,,(s) have the requisite ranks or have  stable  invariant  polynomials. 
The  preceding  arguments  constructively  establish  the  following  theorem. 

Theorem 6: Let the  large  system  described  by ( 3 )  and  (4) be strongly 
connected.  Then  complete  eigenvalue  assignment  can be  achieved through 
decentralized  dynamic  feedback if, for aU q E  K ,  

i) ( !Wq, L,. ,) is a controllable pair 

ii) ( ArK-, .  MK-,) is an  observable  pair 

for all s E u( M~-,). 
Note  that  conditions iii) and  iv) of Theorem 6 imply  that m ,  = p , .  for 
i = 1.2.. .. k .  To see this. use the  diagonal  structure of A,, B,. and C, in 
iii)  and  note  that iii) holds if and only if 

f o r a l l s E u ( M ) ,   i = 1 . 2 , - . . . k  . (14a) 

Similarly,  condition iv) holds if and  only if, 

r a n k t q ( s ) = n , + m , .  fora l l sEo(M);   i=1 ,2 ; . . ,k  (14b) 

(14a)  and  (14b)  together  require  the  strong  structural  conditions m i  = p , .  
i = I ,  2,. . . , k. In general. this  would not  hold, i.e.. one of the  conditions 
(14a) or (l4bl would not be  satisfied.  The  unassignable  part of the 
spectrum of (3) under  decentralized  feedback will then  consist of a  subset 
ofu(M,) , i=1,2; . . ,k .  
In view  of the above  discussion. we shall  be  concerned  in  the  further 

analysis only with the  stabilization of (3) and  (4).  using  decentralized 
feedback.  and t r y  to provide  simpler  sufficient  conditions to achieve this 
goal. We note the following  simplifications. 

i)  From  the  structure of hf, and Lq, ,  ( !Mq is block diagonal), it  is easy 
to see  that ( M , .  L, , , )  being  a  controllable  pair  for i = 1.1,. . ., k, implies 
( M q .  Lq,9)  is controllable. 

which decentralized  stabilization is possible. 
Theorem 7: The  strongly  connected  dynamically  interconnected  Struc- 

ture  I of ( I )  is stabilizable by decentralized  dynamic  feedback  if? for all 
; = I  . . .  

I , k .  
i) (C, ,  A,? B , )  is a  controllable,  observable triple. 
ii) (Xt, M , .  L , , , )  is a  controllable,  observable triple. 
iii) a( M,)  is stable. 

Intuitively.  Theorem 7 is an interesting  result. as only controllability and 
observability of the  subsystems as also of the interconnection  subsystems 
are  being  assumed,  together  with the requirement  that  the  interconnection 
systems  must  have  stable  modes.  Theorem 6 and the related  simplifica- 
tions  imply  that the transmission  zeros of the  subsystems  must  not 
coincide with  the modes of the  interconnections, if complete  eigenvalue 
assignment is desired. 

Before we conclude  this  subsection, we summarize  the  sufficient  condi- 
tions  for  Structure I1 to be  stabilizable  with  decentralized  feedback. 

T k m m  8: The  strongly  connected  dynamically  interconnected  Struc- 
ture I1 of (2) is stabilizable by decentralized  dynamic  feedback  around  the 
subsystems  under the following  sufficient  conditions. 

i) (C,, A , ,  B,) is a  controllable  and  observable  triple. i = I: . . . k .  
ii) (:Mj, L,) is a  controllable pair.j=l.2:..,k. 
iii) ( N J ,  M I )  is an observable  pair, j = I ,  2; . . , k. 
iv) u (M, , ) a re s t ab le . i . j=1 .2 ;~~ ,k . j f i ,  

- -  
" -  

where ,Qj and iI are  as defited  in Theorem 2 and 1"; and ~j are  defined 
b y , ~ . ~ [ ~ ~ I , i V , , . . . . . N , , ] :  ,Mj~Blockdiag . (~WI, ) . i=I .2 ; . . ,k .  

B. Srrucrurul Esrensions 

We  now examine  structural  results  that  hold  for  almost  any  (arbitrarily 
structured) L and block  diagonal N of Structure I. We  now state  and 
prove the main  result on structural  stabilizability  under  decentralized 
feedback. 

Theorem 9: For almost  any  (arbitrarily  structured) L and block  diago- 
nal N.  of Structure I. 

i) free  spectrum  assignment.  using  decentralized  feedback,  can  be 
achieved if, for i = 1.2: . ..k, 

a) (C,, A,,  B,) is a  controllable.  observable triple. 

b) Rank [ c, :] 2 n i  + u, -rank(sI - M,). 
S I  - A, 

for all s E u( M,): 

stable, i=1,2; . . ,k .  
ii) stabilization can be acheved if condition i-a) holds  and u ( M , )  is 

The proof of this  theorem is similar to that of Theorem 5. and is 
omitted. 

VI. STABILIZATION THROUGH LOCAL STATE FEEDBACK 

In an  interconnected  system,  it is sometimes  possible tq obtain  the 
entire  local  state  through  measurements or by estimating the local  states 
via observers.  Then  the  question  that  arises is under  what  conditions we 
can  stabilize (3) and  (4) by  using local state feedback  controls 

C , = ~ . X ~ + W ,  i=1.2; . . .k  . (1 5) 

We answer  this  question  constructively below. For ease of presentation. 
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we consider  a two subsystem  case.  The  k-subsystem  results  follow  easily. 
Thus. with k =2,  (3) and (15) result in 

1.e.. 

with  the  appropriate  identifications. 
To obtain  the  conditions  under whch   Fcan  be  made  stable, as well  as 

the  feedback  gains  required  to  achieve th~s. we need  the following 
preliminary  result. 

Lenznza 2; Given the matrix 

if 
i) A ,  is stable. 
ii) ( A , ,  B 2 )  is a  controllable  pair 

it is possible  to  constructively  choose  an F, such  that V is stable. 
Proof: We omit the  proof as it is v e v  similar  that of Lemma 2, Sezer 

and Huse-n 143.  We merely note  that  the  constructive proof makes it 
possible to obtain  explicit  values of the feedback  gain F, required  to 
stabilize L'. 

- 
i 

Now. we are in a position to prove  the following result. 
Theorenz 10: The  dynamically  interconnected system (3)  (Structure  I) 

can be stabilized by local  state  feedback of the  type (15). if. for I = 
1.2.. - ' . k .  

i )  M z  is stable; 
i i )  ( A , .  B, ) is a controllable  pair. 

Proof: We prove the result  for k = 2. i.e.. we prove  the  stabilizability 
of (16).  through an appropriate choice of FI. F?. The  k-subsystem  results 
follow similiarly. 

with 

\vhereA, & A +  BIPl lCl .  
From standard  results in system theoq. if ( A l .  B , )  is a  controllable  pair. 
so is (A,. E l ) ,  It is now immediately  obvious.  applying  Lemma 2. to (19). 
aith appropriate  identifications,  that Wl,  is stable if 

i) M , .  .V2 are  stable. (20) 
i i )  ( A  I. B ,  ) is a  controllable  pair (21) 

Now, IV of ( I  7)  can be partitioned as 
and Fl i shosen  using the  procedure  described in  the lemma. 

This gives us the  theorem when k = 2. The  result  for  a  general k follows 
similarly. 0 

VII. COKCLUSIONS 

In this paper. we have  considered  the  problem of stabilizing an inter- 
connected  system.  and  have  obtained  sufficient  conditions  for  the  stabiliz- 
ability of certain  practically  important  dynamic  interconnection  struc- 
tures.  There  are  other  structures  representative of practical  situations and 
these could  also be analyzed in a  manner  similar  to  the  one given here. In 
fact, the multiarea  load  frequency  control  problem  provides an example 
of another  structure closely related  to  those  considered in this paper. 

While  the sufficient  conditions  obtained  are  neat. it would be interest- 
ing to obtain  possibly  simple  necessary  and  sufficient  conditions  for  the 
system  structures  considered here. Also. in contrast  to  the  local  state 
feedback  considered here for stabilization.  the use of decentralized dy- 
namic  compensators is also an important  problem  awaiting  solution. 
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Topological Optimization of Networks: A Nonlinear 
Mixed Integer Model Employing Generalized 

Benders Decomposition 

HOANG HA1 HOC 

A hstract --A class of network  topological optimization  problems is 
formulated as a  nonlinear mixed integer programming  model, which can be 
used to design transportation and computer communication networks  sub- 
ject  to  a budget constraint. The approach proposed for selecting  an optimal 
nehvork consists of separating  the  continuous  part of the model from  the 
discrete  part by generalized  Benders decomposition. One then solves a 
sequence of master and subproblems. The subproblems of the minimal 
convex  cost  multicommodity flow type are used to  generate  cutting  planes 
for choosing potential  topologies by means of the  master problems.  Com- 
putational  techniques  suited to solving the  master and subproblems  are 
suggested, and  very encouraging  experimental  results  are  reported. 
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