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Abstract. A global supply chain spans several regions and countries
across the globe. A tremendous spurt in the extent of globalization has
necessitated the need for modeling global supply chains in place of the
conventional supply chains. In this paper, we propose a framework, Eco-
Supply, to analyze the supply chain ecosystem in a probabilistic setting
unlike the existing methodologies, which presume a deterministic con-
text. EcoSupply keeps track of the previous observations in order to
facilitate improved prediction about the influence of uncertainties in the
ecosystem, and provides a coherent mathematical exposition to construe
the new associations among the different supply chain stakeholders in
place of the existing links. To the best of our knowledge, EcoSupply is
the first machine learning based paradigm to incorporate the dynamics
of global supply chains.
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1 Introduction

Global outsourcing has acquired a central role in the contemporary manufactur-
ing and service industries. Multinational companies invest at different locations
across the globe to gain competitive advantage by exploring new markets, avail-
ing cutting edge technology, and harnessing skills at sustainable costs. Therefore,
the need for making an effective decision regarding the selection of locations and
global business partners from a plausible set of candidates can not be overem-
phasized.

The literature abounds in techniques for modeling the supply chain forma-
tion. Walsh et. al [1] proposed a combinatorial protocol, consisting of a one-shot
auction and a strategic bidding policy, to study the negotiations on production
relationships among multiple levels of production in a distributed setting. Prior
to their work, auction mechanisms were proposed to address the complemen-
tarities or the mutual dependencies among values of obtaining inputs and for
producing outputs ([2], [3]). Typically, a global supply chain is the result of
trade by a firm across national borders by means of either foreign direct invest-
ment (FDI) or outsourcing, though other levels of operational strategies such
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as licensing, joint venture, and acquisition etc. also exist. Consequently, a lot of
effort has gone into investigating the decision of firms to trade through FDI or
outsourcing, see for instance, [4], [5]. Most of these models can not be quanti-
tatively analyzed and proffer only a high level insight into the decision making
process.

Tax has a significant impact on SCF, as the product material moves across
boundaries. Certain parts of the world offer special economic zones, known as the
free trade zones, where goods bound for export can be manufactured, assembled
and stored with attractive tax holidays. Therefore, substantial research has gone
into integrating taxes and other regulatory factors in the global supply chain
design ([6], [7]). Recently, a mixed integer non-linear programming model, which
incorporates the import and export tax liabilities at various stages of the global
supply chain, has been proposed [8]. Besides tax, there are certain other factors
with positive (for example, acquaintance) or negative (e.g. economic and cultural
heterogeneity) influence that have a marked influence on the overall supply chain
formation. However, these factors have been overlooked thus far in the literature.

1.1 Motivation

The literature abounds in expository research on supply chain formation (SCF)
and network planning. However, almost all of these techniques analyze the prob-
lem of selecting an alternative at a given stage using a deterministic cost model
while neglecting altogether the uncertainty in the surrounding ecosystem, which
encompasses all the factors that might influence the supply chain formation. For
instance, there are certain factors in most supply chain ecosystems, such as in-
frastructure, local demand and proximity to key markets, availability of skilled
labor, inventory handling facilities, government regulations and incentives, fi-
nancial costs (e.g. in acquisition of land), transportation, and tax and freight
considerations, etc. While some of these factors, notably tax considerations and
inventory handling costs, have been incorporated in the existing models, a vast
majority of these factors still remains unaccounted. Further, most of the sub-
factors that determine these factors may change over a period of time, thereby
triggering a change in the impact of these factors. Therefore, we believe there
is a need for a generic probabilistic framework that seamlessly incorporates and
integrates these factors for understanding the dynamics of the supply chains.
This adaptive modeling of supply chains is fundamental to explaining the re-
placement of an extant end-to-end supply chain with a new one, as the different
factors governing the SCF change over time. In this work, we explicate this
dynamic aspect of supply chains using a statistical model EcoSupply.

2 Problem Definition and Notation

Consider a multi-stage global supply chain network, where each stage represents
an activity such as production or assembly. We assume that the Supply chain has
N stages: S1, S2, . . . , SN . There are ki alternatives, Si1, Si2, . . . , Siki

, at any stage
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Si to accomplish the activity of that stage. Each alternative q at a stage p is ex-
pressed as a d-dimensional observation or feature vector of factors xpq, with the
data observation corresponding to a factor r denoted by xpqr, whereby the proba-
bility of a factor r being favorable is given by θpqr, 0 ≤ θpqr ≤ 1, r ∈ {1, 2, . . . , d}.
Let Dpq represent a set of n d-dimensional data vectors corresponding to the
qth alternative in stage Sp, and Dpqr represent a set of n samples correspond-
ing to factor r, assumed to be independent and identically distributed (i.i.d),
{x1

pqr, x
2
pqr, . . . , x

n
pqr, x

′

pqr}. Further, let τpqr denote the threshold above which

a factor r is perceived favorable, and wpqr and C
Dpqr
pqr denote respectively the

weight or perceived importance of r, and the estimated cost associated with r

based on Dpqr, at the alternative q in the stage p. Finally, let Cinit
pq and C

Dpq
pq

denote the initial unaccounted cost (which disregards the impact of factors),
and the estimated cost based on Dpq, taking into consideration the ecosystem,
if alternative q is chosen in stage p.

Then, the problem of probabilistic modeling of SCF is formulated as follows:
find the probability of any supply chain, SC = A1, A2, . . . , AN , formed by choos-
ing an alternative Ai from each stage 1 ≤ i ≤ N . Intuitively, the greater this
probability, the more likely the formation of SC, compared to any other supply
chain. Furthermore, this probability might change over time, as more data is
accumulated or the impact of various factors varies.

3 The EcoSupply Model

Two types of factors need to be considered: a) the factors local to an alternative,
and b) the factors governed by a pair of alternatives at successive stages in the
supply chain network. Below, we describe how these factors are modeled using
the EcoSupply framework.

3.1 Modeling the Impact of Factors Specific to an Alternative

At any instant of time, each of the underlying factors in the ecosystem can be
considered as being favorable or unfavorable towards selection of a particular
alternative at a particular instant of time, e.g. there might be a fear of shortage
in supply of raw materials at a particular alternative deeming a high cost for
that alternative. Our aim is to continually learn the favorable probabilities as
more data is accumulated over time. Each of the factors in the ecosystem can be
perceived as Bernoulli variables representing unknown probability distributions.
Then, the estimate for an observation xpqr (which takes one of the two values:
1(favorable) or 0(unfavorable)) conditioned on the parameter θpqr is given by,

P (xpqr|θpqr) = θxpqr
pqr (1− θpqr)

1−xpqr (1)

Then, we have the following result.
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Lemma 1. Let Dpqr = {x1
pqr, x

2
pqr, . . . , x

n
pqr} be a set of n i.i.d samples drawn

according to a probability distribution characterized by θpqr. If θpqr has a uniform
prior distribution, then

P (xpqr|Dpqr) =

(

s
Dpqr
pqr + 1

n+ 2

)xpqr
(

1−
s
Dpqr
pqr + 1

n+ 2

)1−xpqr

where s
Dpqr
pqr =

∑n
j=1 x

j
pqr

Proof.

P (Dpqr|θpqr) = P (x1
pqr, x

2
pqr, . . . , x

n
pqr|θpqr)

= P (x1
pqr|θpqr)P (x2

pqr|θpqr) . . . P (xn
pqr|θpqr)

= θ

∑

n

j=1
xj
pqr

pqr + (1− θpqr)

∑

n

j=1
(1−xj

pqr) [using (1)]

= θ
s
Dpqr
pqr

pqr (1− θpqr)
n−s

Dpqr
pqr (2)

Now,

p(θpqr|Dpqr) =
p(Dpqr|θpqr)p(θpqr)

∫

θpqr

p(Dpqr|θpqr)p(θpqr) dθpqr

In the absence of any prior knowledge about θpqr, assuming a uniform distribu-
tion1 in the interval [0, 1], we obtain

p(θpqr|Dpqr) =
p(Dpqr|θpqr)

∫ 1

0

p(Dpqr|θpqr) dθpqr

⇒ P (xpqr|Dpqr) =

∫

θpqr

P (xpqr|θpqr)p(θpqr|Dpqr) dθpqr

=

∫ 1

0

P (xpqr|θpqr)
p(Dpqr|θpqr)

∫ 1

0

p(Dpqr|θpqr) dθpqr

dθpqr (3)

Using (2),

∫ 1

0

p(Dpqr|θpqr) dθpqr =

∫ 1

0

θ
s
Dpqr
pqr

pqr (1− θpqr)
n−s

Dpqr
pqr dθpqr

1 In general, each of the factors is dependent on several sub-factors, and may follow
an arbitrary distribution, e.g. the supply of raw materials may not be uniform and
may vary from time-to-time, depending on a change in the capability of the source
or trade restrictions. This is not a very stringent assumption, for example, refer [10]
for modeling a Gaussian prior on θpqr.
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. From the definition of beta function, for a, b > 0,

β(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ (a)Γ (b)

Γ (a+ b)

where Γ (.) denotes the gamma function. Then, evaluating the gamma function
on integral arguments, we get,

∫ 1

0

p(Dpqr|θpqr) dθpqr =
Γ (s

Dpqr
pqr + 1)Γ (n− s

Dpqr
pqr + 1)

Γ (n+ 2)

=
s
Dpqr
pqr !(n− s

Dpqr
pqr )!

(n+ 1)!

which in the light of (3) yields,

P (xpqr|Dpqr) =
(n+ 1)!

s
Dpqr
pqr !(n− s

Dpqr
pqr )!

∫ 1

0

P (xpqr|θpqr)p(Dpqr|θpqr) dθpqr

=
(n+ 1)!

s
Dpqr
pqr !(n− s

Dpqr
pqr )!

∫ 1

0

θ
s
Dpqr
pqr +xpqr

pqr (1− θpqr)
n−s

Dpqr
pqr +1−xpqr dθpqr [using (1) and (2)]

=
(s

Dpqr
pqr + xpqr)!(n− s

Dpqr
pqr + 1− xpqr)!

sDpqr
pqr !(n− sDpqr

pqr )!(n+ 2)

⇒ P (xpqr = 1|Dpqr) =
s
Dpqr
pqr + 1

n+ 2
,

and

P (xpqr = 0|Dpqr) = 1−
s
Dpqr
pqr + 1

n+ 2

⇒ P (xpqr|Dpqr) =

(

s
Dpqr
pqr + 1

n+ 2

)xpqr
(

1−
s
Dpqr
pqr + 1

n+ 2

)1−xpqr

In the next lemma, we show how the conditional density estimate can be
incrementally updated on arrival of a new observation.

Lemma 2. Let a new observation, x′

pqr, is recorded that results in an enhanced
data set, D′

pqr = Dpqr

⋃

{x′

pqr}. Then, assuming the mutual independence of the
d factors, the ratio of conditional probabilities,

P (xpq|D
′

pq)

P (xpq|Dpq)
=

d
∏

r=1

(

n+ 2

n+ 3

)

[

s
Dpqr
pqr + x′

pqr + 1

s
Dpqr
pqr + 1

]xpqr
[

n− s
Dpqr
pqr + 2

n− s
Dpqr
pqr + 1

]1−xpqr
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Proof. It follows from Lemma 1 that

P (xpqr|D
′

pqr) =

(

s
D′

pqr
pqr + 1

n+ 3

)xpqr (

1−
s
D′

pqr
pqr + 1

n+ 3

)1−xpqr

=

(

s
Dpqr
pqr + x′

pqr + 1

n+ 3

)xpqr
(

1−
s
Dpqr
pqr + x′

pqr + 1

n+ 3

)1−xpqr

⇒
P (xpqr|D

′

pqr)

P (xpqr|Dpqr)
=

(

n+ 2

n+ 3

)

[

s
Dpqr
pqr + x′

pqr + 1

s
Dpqr
pqr + 1

]xpqr
[

n− s
Dpqr
pqr + 2

n− s
Dpqr
pqr + 1

]1−xpqr

Generalizing to the d-dimensional multivariate case by assuming that these
d factors are mutually independent, we obtain

P (xpq|D
′

pq) = P (xpq|Dpq)

d
∏

r=1

(

n+ 2

n+ 3

)

[

s
Dpqr
pqr + x′

pqr + 1

s
Dpqr
pqr + 1

]xpqr
[

n− s
Dpqr
pqr + 2

n− s
Dpqr
pqr + 1

]1−xpqr

(4)

Therefore, using Lemma 2, we can incrementally update the conditional den-
sity estimate on arrival of x′

pqr. Let τpqr be the threshold that determines if the
factor r is favorable at alternative q in stage p. Then, one of the ways to compute
the effective cost is given by,

CDpq
pq = Cinit

pq







∑

j∈J
Dpq
pq

wpqje
τpqj−P (xpqj=1|Dpqj)

mpqj − |JDpq
pq |+ 1






, (5)

where,

JDpq
pq = {j : τpqj > P (xpqj = 1|Dpqj)}

The weights w signify the importance of the different factors; the values τ can be
adjusted to reflect the penalty in case of factors not meeting the desired threshold
levels; and the scaling parameters m control the non-linearity of the model. Note
that if a factor is deemed favorable with respect to the corresponding threshold,
given the available data, then it does not add to the initial cost estimate, which
disregards the ecosystem.

Theorem 1. The overall estimated cost taking into account all the factors in
the ecosystem at an alternative q in stage p based on D′

pq, for the cost model
proposed in (5), is given by,

C
D′

pq
pq = C

init
pq [

∑

r∈J
D′

pq
pq

(

I
Dpqr
τpqr C

Dpqr
pqr + (1− I

Dpqr
τpqr )wpqr

)

e

τpqr−P (xpqr=1|Dpqr)

mpqr

{

x′
pqr

P (xpqr=1|Dpqr)
−I

Dpqr
τpqr

}

− |J
D′

pq
pq |+ 1] (6)
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Proof. Two cases are possible:
Case 1: τpqr > P (xpqr = 1|Dpqr) and τpqr > P (xpqruwc = 1|D′

pqr)
Then, using equation,

P (xpqr = 1|D′

pqr)

P (xpqr = 1|Dpqr)
=

(n+ 2)(s
Dpqr
pqr + x′

pqr + 1)

(n+ 3)(s
Dpqr
pqr + 1)

, we obtain,

C
D′

pqr
pqr = CDpqr

pqr e

τpqr−P (xpqr=1|Dpqr)

mpqr

{

(n+2)(s
Dpqr
pqr +x′

pqr+1)

(n+3)(s
Dpqr
pqr +1)

−1

}

= CDpqr
pqr e

τpqr−P (xpqr=1|Dpqr)

mpqr

{

(n+2)x′
pqr

s
Dpqr
pqr +1

−1

}

= CDpqr
pqr e

τpqr−P (xpqr=1|Dpqr)

mpqr

{

x′
pqr

P (xpqr=1|Dpqr)
−1

}

[

since P (xpqr = 1|Dpqr) =
s
Dpqr
pqr + 1

n+ 2

]

Case 2: τpqr < P (xpqr = 1|Dpqr) and τpqr > P (xpqr = 1|D′

pqr)
It is straightforward to see,

C
D′

pqr
pqr = wpqre

τpqr−P (xpqr=1|Dpqr)

mpqr

{

x′
pqr

P (xpqr=1|Dpqr)

}

These two cases can be combined together as,

C
D′

pqr
pqr =

(

IDpqr
τpqr

CDpqr
pqr + (1− IDpqr

τpqr
)wpqr

)

e

τpqr−P (xpqr=1|Dpqr)

mpqr

{

x′
pqr

P (xpqr=1|Dpqr)
−I

Dpqr
τpqr

}

where I
Dpqr
τpqr is an indicator variable which takes value 1 if τpqr > P (xpqr =

1|Dpqr), else 0. Then, the overall cost considering all the factors, in accordance
with (5), is given by (6).

We note that Cinit
pq takes into consideration the influence of factors prevalent at

the different alternatives on the effective costs. Similarly, costs involved among
alternatives at successive stages (for instance, due to transport, tax, and handling
of inventory in transaction etc.) can also be incorporated, taking into account
uncertainty as gathered from historical data. For a particular application domain,
the value of weights assigned to the different categories may be suitably adjusted
for analyzing the overall cost across disparate supply chain domains.

3.2 Modeling the Impact of Acquaintances and Distances

The impact of previous experience as a result of relationships among the differ-
ent entities (e.g. suppliers/consumers at successive stages) is another important
factor that has been overlooked thus far in the literature: if the experience is
fruitful, the entities are likely to transact together as a part of supply chain
again. In fact, this behavior is even more pronounced in case of global supply
chains as the experience, between entities at successive alternatives, percolates
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down the supply chain. Furthermore, the distance dimensions also play a cru-
cial role in the formation of global supply chains. In [9], these distances have
been characterized into the following categories: cultural (e.g. religion, race, so-
cial norms, language), administrative and political (e.g. colony-colonizer links,
currencies, trading arrangements), geographic (e.g. climate, waterway access,
transportation and communication links, physical remoteness), and economic
(e.g. information/knowledge, costs and quality of natural, financial and human
resources, different consumer incomes)

An important observation is in order. These distances are a function of a pair
of disparate alternatives at successive stages rather than being dependent on a
single alternative. Thus, the whole process of the supply chain formation can be
analyzed by using the following model:

1. Each of the alternatives is represented by a node.
2. For each node Spq, a probability value Ppq = P(Spq is calculated (6) from

Theorem 1 as

Ppq =

|Sp|
∑

j=1

C
D′

pj

pj − C
D′

pq
pq

(|Sp| − 1)

|Sp|
∑

j=1

C
D′

pj

pj

(7)

3. The impact of acquaintance between alternatives, Sij and Sl,k, i ∈ {1, 2, . . . , N−
1}, l = i + 1, j ∈ {1, 2, . . . , |Si|}, k ∈ {1, 2, . . . , |Si+1|} , on SCF is reflected
by the corresponding acquaintance edge having probability,

P
AB
ijlk =

ABijlk

|Eij |
∑

j=1

ABijlk

where, ABijlk denotes acquaintance benefit of alternative k at stage l; and
EAB

ij is the set of acquaintance edges that are outbound from alternative j

at stage i.
4. The impact of distance between alternatives, Sij and Slk, i ∈ {1, 2, . . . , N −

1}, l = i + 1, j ∈ {1, 2, . . . , |Si|}, k ∈ {1, 2, . . . , |Sl|}, on SCF is reflected by
a corresponding distance edge having probability,

P
DC
ijlk =

|EDC
ij

|
∑

j=1

DCijlk −DCijlk

(|EDC
ij | − 1)

|EDC
ij

|
∑

j=1

DCijlk

with DCijlk = WCfC(DCC
ijlk)+WAfA(DCA

ijlk)+WGfG(DCG
ijlk)+WEfE(DCE

ijlk);

where WC ,WA,WG,WE are non-negative weights indicating the importance
of the different dimensions corresponding to cultural, administrative, geo-
graphic, and economic distance respectively; fC , fA, fG, fE : R+ → R+ are
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monotonically increasing functions that map the respective distance values
into their equivalent perceived costs; and EDC

ij is the set of distance edges
that are outbound from alternative j at stage i.

5. The acquaintance edge and the distance edge between every pair of nodes in
the underlying model are replaced by a single edge called the influence edge
(with same orientation as the acquaintance edge) between the same nodes.
The probability on this edge is given by,

Pijlk = W ∗ PAB
ijlk + (1−W ) ∗ PDC

ijlk , 0 ≤ W ≤ 1

(where W indicates a relative preference for acquaintance over distance.)

= W
ABijlk

|Eij |
∑

j=1

ABijlk

+ (1−W )

|EDC
ij

|
∑

j=1

DCijlk −DCijlk

(|EDC
ij | − 1)

|EDC
ij

|
∑

j=1

DCijlk

(8)

Note that (8) is a valid probability measure since the sum of probabilities on
all influence edges equals 1. Additionally, defining the probabilities this way
is intuitive since the greater the acquaintance and the lesser the distance
between two particular alternatives at successive stages is, the more likely
the possibility of these alternatives being aligned again in a supply chain is.

4 Explaining the Dynamics of Supply Chain Formation

The dynamics of supply chain formation can be elegantly enunciated by using
the following algorithm, based on the EcoSupply Model:

1. For each alternative q in stage p, draw a node with a probability value Ppq

computed using (7).
2. Define the edge probabilities, for every pair of nodes representing alternatives

at successive stages, using (8).
3. Add a dummy node, Start, which represents the stage S0, and outbound

edges to every node in S1, with probability on each edge set to
1

|S1|
. Further,

set the probability value at Start to 1. (Note that this node serves the
purpose of modeling multiple sources in the supply chain, which is another
issue that has not been addressed in the literature thus far.)

4. Add a dummy node, End, which represents the stage SN+1, and inbound
edges from every node in SN , with probability on each edge set to 1. Further,
set the probability value at End to 1.

5. The probability of formation of a particular supply chain, SC = A1A2 . . . AN ,
with Ai i ∈ {1, 2, . . . , N} denoting the alternative chosen at the stage i, is
given by

PSC = PStartA1

N
∏

i=1

PAi
PAiAi+1

(9)
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The algorithm considers all the factors, depending on a particular alterna-
tive or a pair of alternatives at adjacent stages, that define the ecosystem: the
probability on the nodes indicates the influence of factors restricted to a location
whereas the probability on the edges indicates the influence of factors governing
more than a single location. A change in any of these factors results in change in
the probability values, given by (7) and (8), and a corresponding change in the
probability of formation of an end to end supply chain, as indicated by (9). A
relatively favorable ecosystem at an alternative, with respect to other alterna-
tives, results in an increase in the corresponding probability of that alternative
being a preferred option at its stage, in the entire supply chain.

5 Summary and Future Work

Modeling the impact of ecosystem on the supply chain formation is a topic of
immense significance and has wide practical implications. Factors such as tax
constraints and inventory handling costs have been well studied in the literature,
however, several other important considerations such as the economic and cul-
tural heterogeneity that constitute the entire ecosystem have been conspicuously
ignored. In this paper, we proposed a generic Bayesian framework, EcoSupply,
to model the dynamics of the supply chain formation. Specifically, we have illus-
trated how a change in the ecosystem accompanies a change in the local business
alignments, and thereby the global supply chain dynamics. We have also showed
how the acquaintances among the stakeholders greatly influence the future de-
cisions regarding their collaboration. An important future direction would be
to apply the EcoSupply model in different domains, for instance, food industry,
automobile industry, financial sector, etc.
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