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Statistical Properties of Community Structure in Large Social and
Information Networks
By Leskovec et al appeared in WWW08
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Network Community Profile Plot

e Conductance of some S C V is given by-

¢o=s/v

Where, v is the sum of the degrees of nodes in S and s is the
number of edges that cross the cut S in the graph
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e Conductance of some S C V is given by-

¢o=s/v

Where, v is the sum of the degrees of nodes in S and s is the
number of edges that cross the cut S in the graph

@ Now for a given size k the best conductance value for this size
in the entire network is given by-

®(k) ZSCWE\:k‘P(S)
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Network Community Profile Plot

e Conductance of some S C V is given by-

¢o=s/v

Where, v is the sum of the degrees of nodes in S and s is the
number of edges that cross the cut S in the graph

@ Now for a given size k the best conductance value for this size
in the entire network is given by-

®(k) ZSCWE\:k‘P(S)

@ NCP plot measures the quality of best possible community as
a function of size of the community
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An Example NCP and General Graph Structure for large
Social Networks
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@ Upto size of around 100 nodes the slope of NCP plot is usually
sloping downward indicating good quality of communities
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@ Upto size of around 100 nodes the slope of NCP plot is usually
sloping downward indicating good quality of communities

@ Beyond the size of 100 nodes the NCP plot slopes upward
indicating that quality of communities worsen with increasing

size
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@ Upto size of around 100 nodes the slope of NCP plot is usually
sloping downward indicating good quality of communities

@ Beyond the size of 100 nodes the NCP plot slopes upward
indicating that quality of communities worsen with increasing
size

@ Does large sized communities really exist?
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@ Upto size of around 100 nodes the slope of NCP plot is usually
sloping downward indicating good quality of communities

@ Beyond the size of 100 nodes the NCP plot slopes upward
indicating that quality of communities worsen with increasing
size

@ Does large sized communities really exist?

@ Current random network models do not exhibit this behaviour
except for the forest fire> model

2 Graph Evolution: Densification and shrinking diameters by Leskovec et al
in TKDD 07
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Group Formation in Large Social Networks: Membership, Growth ,
Evolution
By Backstrom et al appeared in KDD06

E-Commerce Lab Social Networks



Community Structures
Statistical Properties
Group Formation

Community membership
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Figure 1: The probability p of joining a LiveJournal commu-
nity as a function of the number of friends i already in the
community. Error bars represent two standard errors.
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Figure 1: The probability p of joining a LiveJournal commu-
nity as a function of the number of friends i already in the
community. Error bars represent two standard errors.
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Community membership...

Features Used ROCA AFR CXE
Mumber of Friends || 0.69244 | 0.00301 | 0.00934
Fost Activity 073421 | 000316 | 0L00934
All 0.75642 | 000380 | 0.00923
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@ Internal connectedness of friends inside the community:
Probability of joining community proportional to this feature
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Observations

@ Internal connectedness of friends inside the community:
Probability of joining community proportional to this feature

@ Relation to Models of diffusion: Asynchronous Behaviour
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Future Directions

@ Asynchronous models of diffusion
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Future Directions

@ Asynchronous models of diffusion
@ Incorporate other features like internal connectedness of the

neighbours along with number of neighbours in models of
diffusion
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Maximizing the Spread of influence through Social Networks
By Kempe et al appeared in KDDO03 J
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Models of Diffusion

Linear Threshold Model

A node v is influenced by each neighbor w according to weights
by w and initially each node chooses a random threshold(6,) and
some initial set of nodes are activated/influenced initially. Now in
each discrete time step activate the nodes whose total weight of its
active neighbours crosses threshold i.e.

bV w Z 6V

5

w active neighbor of v
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Models of Diffusion

Independent Cascade Model

Initially some set of nodes are activated, then at the time step
when a node v becomes active it is given single chance to activate
each currently inactive neighbor w, it succeeds with probability say
Pv.w, the process stops when no more activations are possible.
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Influence Maximization Problem

E-Commerce Lab Social Networks



Diffusion Process and Related Problems Influence Maximization
Marketing Strategies

Influence Maximization Problem

1. Influence maximization problem is NP — hard for both Linear
Threshold and Independent cascade model.

2. Influence function is monotone and submodular for both the
models and 1 —1/e approximation algorithm exists.
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Optimal Marketing Strategies Over Social Networks
By Mukund Sundararajan et al. appeared in WWW 08 J
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The Model

o A seller and set V of potential buyers, seller approaches each
buyer in sequence and offers a price
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The Model

o A seller and set V of potential buyers, seller approaches each
buyer in sequence and offers a price

o Valuation of the buyer is v; : 2¥ — Rt capturing the influence
that other buyers that already own the item have on each other
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The Model

o A seller and set V of potential buyers, seller approaches each
buyer in sequence and offers a price

o Valuation of the buyer is v; : 2¥ — Rt capturing the influence
that other buyers that already own the item have on each other

@ Strategy for the seller consist of two components: Sequence of
buyers and the price to offer
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Optimal Marketing Strategies

@ For symmetric buyers i.e when their valuations are identically
distributed then optimal marketing strategy can be computed
in polynomial time.
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Optimal Marketing Strategies

@ For symmetric buyers i.e when their valuations are identically
distributed then optimal marketing strategy can be computed
in polynomial time.

@ For assymmetric setting finding optimal marketing strategy is
NP — hard
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Optimal Marketing Strategies

@ For symmetric buyers i.e when their valuations are identically
distributed then optimal marketing strategy can be computed
in polynomial time.

@ For assymmetric setting finding optimal marketing strategy is
NP — hard

@ Influence: and Exploit strategies for constant factor
approximation algorithms
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Open Problems

o Finding another family of strategies which intelligently
constructs the sequence of buyers to offer product to, to
improve approximation ratio
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Open Problems

o Finding another family of strategies which intelligently
constructs the sequence of buyers to offer product to, to
improve approximation ratio

o Pricing strategies for viral marketing®

3Pricing strategies for viral marketing on social networks Rajeev Motwani et
al. Under Submission 2009
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Open Problems

o Finding another family of strategies which intelligently
constructs the sequence of buyers to offer product to, to
improve approximation ratio

o Pricing strategies for viral marketing®

@ Strategic buyers with costs involved in maintaining the links

3Pricing strategies for viral marketing on social networks Rajeev Motwani et
al. Under Submission 2009
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Virus Inoculation Strategies Windfall of Friendship

Inoculation Strategies for the victims of viruses and sum of squares
partition problem, James Aspnes et al. Appeared in SODA05
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The Game

@ A sets of n players each choose a strategy a; which is 0 or 1,
this gives strategy profile 3 € [0,1]"
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The Game

@ A sets of n players each choose a strategy a; which is 0 or 1,
this gives strategy profile 3 € [0,1]"

e Individual costs/utilities of nodes given a strategy profile
3e[0,1]"

costi(@) =a;C+(1—aj)L-pi(3)
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The Game

@ A sets of n players each choose a strategy a; which is 0 or 1,
this gives strategy profile 3 € [0,1]"

e Individual costs/utilities of nodes given a strategy profile
3e[0,1]"

costi(@) =a;C+(1—aj)L-pi(3)

@ Social cost-

COSt Z COStJ

E-Commerce Lab Social Networks



Attack Graph

Virus Inoculation Strategies

Inoculation Strategies
Windfall of Friendship

Figure 1: Sample graph G and its attack graph Gg
for @ = 010100.
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Attack Graph
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Figure 1: Sample graph G and its attack graph Gg
for @ = 010100.

pi(a@) = ki/n
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Results

@ Nash Euilibrium of this game always exists and some Nash
Equilibrium can be computed in O(n3) time starting from
3=1"

E-Commerce Lab Social Networks



Inoculation Strategies
Virus Inoculation Strategies Windfall of Friendship

Results

@ Nash Euilibrium of this game always exists and some Nash
Equilibrium can be computed in O(n3) time starting from
3=1"

e Computing worst (w.r.t Social cost) and Best Nash
Equilibrium is NP — hard and Price of Anarchy is ©(n)

E-Commerce Lab Social Networks



Inoculation Strategies
Virus Inoculation Strategies Windfall of Friendship

Results

@ Nash Euilibrium of this game always exists and some Nash
Equilibrium can be computed in O(n3) time starting from
3=1"

e Computing worst (w.r.t Social cost) and Best Nash
Equilibrium is NP — hard and Price of Anarchy is ©(n)

e Computing Social optimum is NP — hard
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Open Problems

@ Better Approximation algorithm for social optimum and/or
inapproximability result
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Open Problems

@ Better Approximation algorithm for social optimum and/or
inapproximability result

o Model complexity: The Virus need not infect all the neighbors
of the infected node, the loss due to virus need not be known
deterministically, the incomplete information about strategies
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On the Windfall of Friendship: Virus Inoculation Strategies on
Social Networks
by Dominic Meier et al. appeared in EC08

E-Commerce Lab Social Networks



Inoculation Strategies
Virus Inoculation Strategies Windfall of Friendship

An Excerpt from a watercooler conversation

E-Commerce Lab Social Networks



Inoculation Strategies
Virus Inoculation Strategies Windfall of Friendship

An Excerpt from a watercooler conversation

@ Prof. Jayant: How do you do Prof. Narahari?
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An Excerpt from a watercooler conversation

@ Prof. Jayant: How do you do Prof. Narahari?

@ Prof. Narahari: Things are great on my end, | think game
theory is the most interesting research area modeling real
world phenomenon perfectly
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An Excerpt from a watercooler conversation

@ Prof. Jayant: How do you do Prof. Narahari?

@ Prof. Narahari: Things are great on my end, | think game
theory is the most interesting research area modeling real
world phenomenon perfectly

@ Prof. Jayant: Now how is that? People in real world are not
purely selfish and intelligent for example, my lab is filled with
students who are light years away from being termed as
intelligent, | bet your’s is too.
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An Excerpt from a watercooler conversation

@ Prof. Jayant: How do you do Prof. Narahari?

@ Prof. Narahari: Things are great on my end, | think game
theory is the most interesting research area modeling real
world phenomenon perfectly

@ Prof. Jayant: Now how is that? People in real world are not
purely selfish and intelligent for example, my lab is filled with
students who are light years away from being termed as
intelligent, | bet your’s is too.

@ Prof. Narahari: Regarding lab situation, | totally agree, but |
beg to differ with you on the former argument prof. Jayant,
people in real world only have strange utility functions.
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An Excerpt from a watercooler conversation

@ Prof. Jayant: How do you do Prof. Narahari?

@ Prof. Narahari: Things are great on my end, | think game
theory is the most interesting research area modeling real
world phenomenon perfectly

@ Prof. Jayant: Now how is that? People in real world are not
purely selfish and intelligent for example, my lab is filled with
students who are light years away from being termed as
intelligent, | bet your’s is too.

@ Prof. Narahari: Regarding lab situation, | totally agree, but |
beg to differ with you on the former argument prof. Jayant,
people in real world only have strange utility functions.

And prof. Narahari wins another intellectual argument against prof.
Jayant
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The Game and Windfall of Friendship
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The Game and Windfall of Friendship

@ The Perceived cost/utility of an Individual-

(i, d) =ca(i,3)+F- Y c().3)

pi€l(pi)

where, F € [0,1] is the Friendship Factor and I'(p;) are the
neighbours of node p;
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The Game and Windfall of Friendship

@ The Perceived cost/utility of an Individual-

cp(i,3) =ca(i, )+ F- Z ca(j,3)
i€l (pi)

where, F € [0,1] is the Friendship Factor and I'(p;) are the
neighbours of node p;

Definition

The Windfall of Friendship (WoF) y(F, 1) is defined as the ratio of
worst Nash equilibrium to the worst Friendship Nash
Equilibrium(FNE)
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Results

e For any instance of the game 1 < y(F,/) < PoA(/)
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Results

e For any instance of the game 1 < y(F,/) < PoA(/)

o It is NP — complete problem to compute the best and the
worst Friendship Nash Equilibrium
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Results

e For any instance of the game 1 < y(F,/) < PoA(/)

o It is NP — complete problem to compute the best and the
worst Friendship Nash Equilibrium

@ For Complete Graph and Star Graph there always exists a
FNE, for K, y(F,1) <4/3, for star graph under certain
conditions it can be as high as O(n).
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Open Problems

e Existence of Nash Equilibrium for any graph
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Open Problems

e Existence of Nash Equilibrium for any graph

o Introduction of Malicious Players* in the setting

*When Selfish meets Evil: Byzantine Players in a Virus Inoculation Game by
Thomas Moscibroda et al. Appeared in PODC06
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Open Problems

e Existence of Nash Equilibrium for any graph
o Introduction of Malicious Players* in the setting

@ There could be number of viruses on each node and each node
could be resistant to subset of those viruses

*When Selfish meets Evil: Byzantine Players in a Virus Inoculation Game by
Thomas Moscibroda et al. Appeared in PODC06
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A Framework For Analysis of Dynamic Social Networks
by Tanya Berger-Wolf et al. appeared in KDD06 J
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The Model

e Consider a population, X = {x1,...,xn}, and g C X and input
temporal sequence of partitions of X, Py, P»,..., Pt where
each partition is a disjoint set of groups and let P(g) denote
the index of the partition to which g belongs.
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The Model

e Consider a population, X = {x1,...,xn}, and g C X and input
temporal sequence of partitions of X, Py, P»,..., Pt where
each partition is a disjoint set of groups and let P(g) denote
the index of the partition to which g belongs.

Definitions

Given Temporal sequence of partitions, and a similarity measure
sim(,), a turnover threshold 8 and a function a(T), then a
MetaGroup (MG) is a sequence of groups MG = {g1,...,81},

o(T) <I<T such that, no two groups in MG are in the same
partition and the groups are ordered by the partition time steps i.e.
Vi,j1<i<j<I, P(gi) < P(gj) and the consecutive groups in MG
are similar i.e V1 </ < [ sim(gj,gi+1) > B
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Graph Theoretic Formulation
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Graph Theoretic Formulation

Graph Model
Consider a multipartite weighted Graph G = (V4,..., V1, E) where
V; is the set of groups in partition P; and (g;i gj) € E if

P(gi) < P(gj) and sim(gi,g;) > B and w(g;,g;) = sim(g;. gj). so
metagroup in this graph will be path of length atleast o(T).

E-Commerce Lab Social Networks



Dynamic Social Networks
Structural Holes
Additional Topics

Algorithms for MG Statistics

E-Commerce Lab Social Networks



Dynamic Social Networks
Structural Holes
Additional Topics

Algorithms for MG Statistics

@ Number of Metagroups, average metagroup length
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Algorithms for MG Statistics

@ Number of Metagroups, average metagroup length

o Extremal problems: Most persistent MG, Most stable MG
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Algorithms for MG Statistics

@ Number of Metagroups, average metagroup length
o Extremal problems: Most persistent MG, Most stable MG

@ Group Connectivity : Given a set of groups gi,...,g in
separate partitions ordered by their partition indices then is
there a MG containing all these groups, among them find the
most persistent,stable MG etc.
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Strategic Network Formation with Structural Holes
by Jon Kleinberg et al. appeared in EC08 J

E-Commerce Lab Social Networks



Dynamic Social Networks
Structural Holes
Additional Topics

The Model

E-Commerce Lab Social Networks



Dynamic Social Networks
Structural Holes
Additional Topics

The Model

Network Formation Game

Each node u links to a set of nodes L(u)

The constructed links by all the nodes form a undirected graph in
which let N(u) be the set of neighbors of u, let r,,, be the number
of length two paths between v, w then payoff to a node u is given

by-
ot [N(u)| + Z B(rw) — Z Cuv
v,weN(u) vel(u)

Where c,, is the edge maintainance cost and f3 is some decreasing
function
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Results and Analysis

@ The best response dynamics of a node can be computed in
polynomial time and for arbitrary cost function the best
response dynamics can cycle
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Results and Analysis

@ The best response dynamics of a node can be computed in
polynomial time and for arbitrary cost function the best
response dynamics can cycle

@ In uniform metric i.e when all edge maintenance costs ¢,, =1
then a multipartite graph G, x whose vertex set
V=VU..UVqU Vg1 where ViNV; =0 for i # j and

Vil = ... = |Vq4| = k and |V11| = nmod k, for each u € V;
L(u)= UJ’-;I Vj is a Nash equilibrium of the game for some
choice of k.
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Results and Analysis

@ The best response dynamics of a node can be computed in
polynomial time and for arbitrary cost function the best
response dynamics can cycle

@ In uniform metric i.e when all edge maintenance costs ¢,, =1
then a multipartite graph G, x whose vertex set
V=VU..UVqU Vg1 where ViNV; =0 for i # j and

Vil = ... = |Vq4| = k and |V11| = nmod k, for each u € V;
L(u)= UJ’-;I Vj is a Nash equilibrium of the game for some
choice of k.

@ They characterize the structure of equilibrium graph by
showing that every equilibrium graph will have Q(n?) edges
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Results and Analysis

@ The best response dynamics of a node can be computed in
polynomial time and for arbitrary cost function the best
response dynamics can cycle

@ In uniform metric i.e when all edge maintenance costs ¢,, =1
then a multipartite graph G, x whose vertex set
V=VU..UVqU Vg1 where ViNV; =0 for i # j and

Vil = ... = |Vq4| = k and |V11| = nmod k, for each u € V;
L(u)= UJ’-;I Vj is a Nash equilibrium of the game for some
choice of k.

@ They characterize the structure of equilibrium graph by
showing that every equilibrium graph will have Q(n?) edges

@ The question of existence of nash equilibrium for general cost
matrix remains open.
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Have
a
Rocking
Weekend!!!
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