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ABSTRACT
Information diffusion and influence maximization in social
networks are well studied problems and various models and
algorithms have been proposed. The main assumption in
these studies is that the influence probabilities are known to
the social planner. The influence probabilities, however can
vary significantly with the type of the information and the
time at which the information is propagating. The most
accurate sources to obtain influence probabilities are the
agents in the social network. In this work, we formulate
game theoretic models of the information diffusion process
so as to elicit influence probabilities truthfully from the
agents. For these models we design several mechanisms
to truthfully extract the influence probabilities from the
users. We consider two different game theoretic models
namely (1) influencer model and (2) influencer-influencee
model. In the context of the influencer model, we design a
Vickrey-Clarke-Groves based mechanism. In the influencer-
influencee model, we design a scoring rule based direct mech-
anism. We analyze the incentive compatibility of all these
mechanisms.

Categories and Subject Descriptors
H.4 [Algorithms and Theory]: Social Networks, Scoring
Rules, Mechanism Design

General Terms
Algorithms

Keywords
Social Networks, Game Theory, Information Diffusion

1. INTRODUCTION
A social network is a graph in which a person is repre-

sented as a node and there is an edge between two people
if they are associated with each other. Examples of online
social networks include orkut, facebook, twitter etc. Social
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networks are widespread and also, they are the most effec-
tive medium to propagate information and to market and
advertise products in a short time span.

Consider a situation in which a company has designed a
new gaming console which it wants to market on a social
network. The company can select a small set of users to
whom it will give the product for free. If these users like
the product, then they will recommend it to their friends.
These friends may get influenced by the users and will per-
haps buy the product with some probability. Among these
friends, whoever gets influenced will in turn recommend the
product to her friends and so on. This is known as the in-
formation diffusion process. Here the choice of an initial
set of users is critical because they will decide the expected
number of users that would get influenced. The problem
now is, given a social network graph and influence proba-
bilities on each edge, how do we select a small set of initial
users so as to maximize the product sale. This is the influ-
ence maximization problem in social networks. An online
social network is an effective medium for launching such a
marketing campaign because it has much information about
the users as well as the relationship graph of users. In this
paper we address the influence maximization problem in an
incomplete information setting in which, influence probabili-
ties are the private information. We do this by formulating a
game theoretic model of information diffusion process using
which we are able to find a small set of influential nodes, by
making the nodes in the social network reveal the influence
probabilities truthfully.

The problem of influence maximization in a social network
has been studied extensively. Various algorithms have been
proposed to find the set of highly influential nodes in a so-
cial network efficiently [8, 11]. All these algorithms make an
important assumption that the influence probabilities in the
relationship graph are available to the algorithm. However,
there do not exist any robust techniques to extract these in-
fluence probabilities. Indeed the users of the social network
are the most reliable sources that can provide the influence
probabilities on the edges that are present in their neighbor-
hood. In this work we formulate the problem of extracting
the influence probabilities from the user as a mechanism de-
sign problem.

1.1 Motivation
The current models for the information diffusion process

assume that the social planner knows the influence proba-
bilities accurately whatever the information that is getting
propagated on the social network. However, in practice this
need not be the case.
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Figure 1: The variation of influence probabilities
with product

Consider an example, say a seller wants to sell a newly re-
leased book by some author and another seller wants to sell a
tennis racket. Both the sellers decide to use viral marketing
on a popular online social network to market these prod-
ucts. To do this the seller will have to assume one model,
say the independent cascade model, find the values of influ-
ence probabilities on each edge and find the influential set
of nodes to initiate the cascade process.
But consider a user u and her set of friends S on the social

network. The influence probability of u on each member
of set S for a product say book need not be the same for
another product say tennis racket. This is perhaps because
u is a novice tennis player but is good at English literature
and her friends know this, and this particular information
is not available on this social networking site. Hence her
friends will be influenced more by her recommendation of a
novel to them than a tennis racket. This is illustrated by
figure1
Thus, the influence probabilities can vary drastically with

the product being marketed, the time at which the recom-
mendation is made, and perhaps some other factors. Build-
ing robust and accurate models for estimating the influence
probabilities from the currently available data in the online
social networks will be a difficult task. On the other hand,
to get the values of the influence probabilities accurately, the
best sources are the users of the social network themselves.
However, the users need not reveal the true influence prob-
abilities to the seller as they might be better off by lying.
For example, a user might pose as having a heavy influence
on her friends and get to be a part of the initially active set.
The success of a viral marketing strategy is critically de-

pendent on the initially chosen target set. This in turn de-
pends on the accuracy of the influence probabilities.

1.2 Relevant Work
Kempe, Kleinberg, and Tardos in [8] considered the al-

gorithmic problem of influence maximization proposed by
Domingos and Richardson in [6]. In this paper they proved
that this problem is NP-hard even for simple models of infor-

mation diffusion and for some of the more complex models,
it is not even constant factor approximable. They gave a
constant factor approximation algorithm for the basic inde-
pendent cascade model by proving the sub-modularity of the
influence function. But, the greedy algorithm they propose
assumes that the influence probabilities are available to the
algorithm.

Ramasuri and Narahari in [11] propose a heuristic based
algorithm for the influence maximization problem. Given an
integer k, they use Shapley value to choose k nodes from the
social network that have highest influence. In their approach
they consider the influence function as the characteristic
function of the coalitional form game. This approach works
even if the influence function is not sub-modular. They also
show experimentally, that this algorithm works efficiently
on real world social networks. But, their algorithm also as-
sumes that the influence probabilities are available to the
algorithm.

Alon, Fischer, Procaccia, and Tennenholtz in [1] proposed
a game theoretic model for truthfully choosing the agents
that maximize the sum of indegrees in a directed graph. In
the model they propose, they consider the outdegree of an
agent as private information. The objective of each agent is
to be among the set of nodes chosen by the algorithm. This
objective is in some sense orthogonal to that of the social
planner. In [1], they propose various deterministic and ran-
domized strategy-proof algorithms to achieve the objective
of maximizing the sum of indegrees. In our problem, for the
case of 0-1 cascade process and the influencer model, the
objective of the social planner is to choose a set of agents
that have maximum reachability. Whereas, the objective of
each agent is to maximize the number of neighbors that she
is able to activate in the 0-1 cascade process.

A mechanism design based framework to extract the in-
formation from the agents have been proposed for ranking
systems [2], and query incentive networks [5].

Dixit and Narahari in [5] proposed quality conscious query
incentive networks in which the nodes, along with the an-
swer are aware of the quality of the answer. They pro-
posed a game theoretic model of query incentive networks
in which the quality of answer is the private information.
They also designed a scoring rule based mechanism to truth-
fully extract the quality of the answers from the agents
along with the actual answer. In our work, we design the
influencer-influencee model which is similar to the game the-
oretic model presented in [5] for the quality conscious query
incentive networks. In [5] the rewards to the agents depends
on the truthfulness of the quality of answers they report.
In our problem the payments to the agents depends on the
truthfulness of the influence probabilities they report.

The work that is closest to our work is that by Goyal,
Bonchi, and Lakshmanan in [7]. In [7], they use a machine
learning based approach to build the models for predicting
the influence probabilities in social networks. Intuitively, the
approach they consider is that if a person x takes a total of n
actions and out of that if say m ≤ n actions were performed
by its neighbor y before x, then there is a probability of
m
n

that person x will be influenced by y in future. Here
the “action” is the act of joining a community or group in
a social network which does not involve any effort or mone-
tary transfer. They validate the models they build on a real
world data set.
To the best our knowledge, the model presented in this pa-



per is the first one which captures the strategic behavior
of agents in the information diffusion process. Using this
model, our aim is to elicit the true influence probabilities
from the agents in order to accurately compute the set of
highly influential nodes.

1.3 Contributions and Outline
In this work, we design mechanisms to extract the influ-

ence probabilities from the users of the social network. We
do this by designing game theoretic models of information
diffusion. Given the model of utilities and payments we ask
each user to reveal the influence probabilities. If the mecha-
nism is incentive compatible then every user will reveal the
influence probabilities truthfully.

The Influencer based Model
First, we develop a game theoretic model for information
diffusion process in which we ask only the influencer to reveal
the influence probability on an edge. A detailed description
of this model is given in Section 2. For this model we obtain
following result:

• We design a VCG based payment scheme[9, 10] for the
influencer based model for the ideal influence maximiz-
ing algorithm. We show that, without using money or
any payment scheme the ideal influence maximizing
algorithm is manipulable. We show this by construct-
ing an example in which an agent is able to manipu-
late the algorithm. We can construct similar examples
for other current algorithms for influence maximiza-
tion including the greedy algorithm [8]. This payment
scheme is presented in section 2.1.

The Influencer-Influencee Model
Next, we develop a more general game theoretic model in
which given an edge in the social network, we ask the influ-
encer as well as the influencee to reveal the influence prob-
ability on the edge. This model is more realistic since, both
the persons involved in the connection will have information
about the influence probability. This model is presented
section 3.1. For this model we obtain following result:

• For the influencer-influencee model, we design a di-
rect payment scheme in which we use scoring rules to
design the payment scheme. We show that, it is a
Nash equilibrium to report true influence probability
in this mechanism. We also design the reverse weighted
scoring rule derived from the weighted scoring rule
[5] which has several desirable properties which, the
standard scoring rules like the quadratic and spheri-
cal scoring rules do not have. This payment scheme is
presented in section 3.2.

In the appendix, we provide preliminaries in which we de-
scribe the scoring rules, the independent cascade model of
information diffusion process and define the influence max-
imization problem formally.

2. THE INFLUENCER MODEL
We propose a game theoretic framework for the informa-

tion diffusion process in order to truthfully elicit the influ-
ence probabilities from the users. In this model we ask only
the influencer to report the probability values. The model
is as follows:

• The social planner has the entire graph structure of
the social network. The players in the game V =
{1, 2, 3..., n} are the users of the social network.

• Let N(i) be the set of neighbors of an agent i that is
N(i) = {v ∈ V |(i, v) ∈ E}. Then, the agent i has the

influence probability vector θi ∈ [0, 1]|E|as her private
information. The jth component of θi will give the
influence probability of i on node j. Thus for all the
non-neighbors of node i, the influence probability will
be zero and this is known to the social planner as the
social planner has the structure of the graph. However,
the social planner does not know anything about the
influence probability of node i on its neighbors. Be-
fore starting the marketing of the product, the social
planner asks each agent to report her influence vector.
The agents here can lie about their influence on its
neighbors.

• Given the reported influence probabilities, the social
planner now computes the target set using some in-
fluence maximization algorithm. Let this target set
be A. The social planner now starts her advertising
campaign from this chosen set of nodes. That is, this
chosen set of nodes would get the product for free and
the cascade starts with them.

• Let θ ∈ [0, 1]|E| be the true influence probability vec-
tor, representing the influence probability on each edge
of the graph. Then the utility of a player when the so-
cial planner chooses a target set A is nothing but the
expected number of neighbors activated by that player.
Also, without involving payments, the valuation func-
tion for each agent is equal to its utility that is,

ui(θ,A) = vi(θ,A)

Thus utility is proportional to the expected number of
neighbors an agent is able to activate, given the target
set. The exact formula for vi(θ,A) is given in lemma
1.

Here the valuation function represents the preferences of the
agents over the target set chosen by the social planner.

2.1 A VCG Based Mechanism
Consider the exact influence maximization algorithm which

optimizes the influence function. It has been proven in [8]
that this problem is NP-hard. Given our game theoretic
model and the algorithm to choose the target set is the exact
influence maximizing algorithm, then we can easily come up
with an example in which the agents can lie about their pref-
erences and still be better off. One such example is given in
the next subsection. We can make this algorithm incentive
compatible introducing appropriate incentives to the agents.
Now the utility of the agents with payments or discount will
be:

ui(θ,A) = vi(A) + ti(v1, v2, ..., vn)

where ti is the discount offered to agent i by the social plan-
ner. We will use Vickrey-Clarke-Groves payments (see for
example [9]) to make this mechanism incentive compatible,
but to use it we need to prove that the social choice function
is allocatively efficient. In our framework the social choice
function is nothing but the algorithm being used to choose
the target set.



We will first prove the following useful lemma which will
immediately imply that the exact influence maximization al-
gorithm is allocatively efficient. To prove the lemma, we will
first describe an equivalent view of the independent cascade
model given by Kempe, Kleinberg and Tardos in [8].
The influence probability of node i on j denoted by θij

gives the probability that node i will activate j given that
node j will be inactive at the instant when node i becomes
active. This event can be viewed as the flip of a biased coin.
In the process, say we flip the coins on all the edges before
the start of the cascade process and check the result of the
coin flip only when a node becomes active and its neighbor-
ing node is inactive. This change will not affect the final
result and it is equivalent to the original cascade process.
We call the edges on which the coin flip resulted in heads as
live edges and the remaining edges as blocked. Given this
equivalent view, if we fix the outcomes of all coin flips and
initially active set of nodes A, then we will get a graph in
which some edges are live and some are blocked depending
on the outcome. Clearly in this graph, if we run the cascade
process, then the number of nodes that are active will be the
number of nodes that are reachable from set A on a path
that consists of only live edges.
Thus we will consider a sample space S in which each

sample point corresponds to one possible outcome of all the
coin flips. If X denotes one such fixed outcome of coin flips,
we define σX(A) to be the number of active nodes at the end
of the cascade process for the fixed outcome X and target
set A. Then σ(A) is given by:

σ(A) =
∑
X∈S

P [X]σX(A)

Given this formula for σ(A) we can now prove the following
lemma.

lemma 1. Given a target set A, then

σ(A) =

n∑
i=1

vi(θ,A) + |A|

where vi is the valuation function of agent i which is equal
to the expected number of neighbors activated by that agent.

Proof. Fix one sample point X from the sample space
S of all possible coin flips on the edges. Consider some ar-
bitrary node i in the graph. Let viX (A) be the number
of neighbors activated by node i for outcome X. More
concretely, we define d(A, v) where A ⊆ V and v ∈ V
as the shortest path distance between A and a node v.
Thus, d(A, v) = 0 if v ∈ A. Let, RAv = {u ∈ V |(u, v) ∈
EX ∧ d(A, u) is finite∧ d(A, u) + 1 = d(A, v)} where, EX is
the edge set that is active for the outcome X. RAv is the
set of nodes that are lying on the shortest path from set A
to node v. Thus, we define

viX (A) = |{v ∈ N(i)|i ∈ RAv ∧ i ≽ j ∀j ∈ RAv}|

where, the ordering ≽ is lexicographic. Thus we are break-
ing the ties in favor of the node with the highest lexico-
graphic order. Also lexicographic ordering ensures that a
node is activated deterministically by exactly one node for
a fixed outcome X.
Then we have,

σX(A) =

n∑
i=1

viX (A) + |A|

Figure 2: An Example Social Network
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Also we can see that
n∑

i=1

vi(θ,A) + |A| =
∑
X∈S

P [X]{
n∑

i=1

viX (A) + |A|}

Since
∑

X∈S P [X] = 1, we have

=⇒
n∑

i=1

vi(θ,A) + |A| =
∑
X∈S

P [X]σX(A)

=⇒
n∑

i=1

vi(θ,A) + |A| = σ(A)

Thus, by using Lemma 1, we can say that the exact influence
maximization algorithm is allocatively efficient and hence
VCG payments will give us strategy-proof mechanism for
this algorithm. Thus with VCG payments the utility for
each agent will be :

ui(θ,A) = vi(A) +
∑
j ̸=i

vj(A)− h(v1, ...vi−1, vi+1, ...vn)

Here h is some function independent of vi. Thus we have
the following result:

Theorem 1. The exact influence maximization algorithm
is allocatively efficient and hence is dominant strategy in-
centive compatible under VCG payments, but the exact al-
gorithm is not incentive compatible without involving pay-
ments.

2.2 An Example
We now give one simple example to illustrate how the

proposed model functions. Consider a simple social network
graph as shown in Figure 2.

Assume that the true influence probabilities are all 1 in
the graph and the algorithm for target set selection is the
exact influence maximizing algorithm. If we want to choose
only one node as the target set, then clearly node j will be



chosen, because σ({j}) = 8, which is the maximum influence
among all nodes present, as can be seen from the figure.
Now assume that, all nodes except node k report their true
influence. Consider node k, if this node reports its true
influence, then node j will be chosen as target set and its
utility will be 1. Because she will only be able to influence
node m. This is because when cascade reaches node k at
t = 1, then till that time its neighbor node l would have
already been influenced by node j at time t = 0. Now if
node k lies about its influence on node m as 0, then node i
will be chosen as the influence maximizing target set. For
this target set, the utility of agent k will be 2 but now the
influence will be σ({i}) = 7. Thus agent k is better off by
lying rather than telling the truth. Hence exact influence
maximization algorithm is not incentive compatible without
payments.
Now assume that we include the Vickrey-Clarke-Groves

payment scheme in this scenario and h(v1, ..., vi−1, vi+1, ...vn) =
0. If node j is chosen as the target set then agent k will be
able to influence agent m and she will get the monetary pay-
ment of 7 units, thus total utility will be 8 and if any other
node is chosen as the target set, then node k′s payoff will
be lower.
For the value of k = 1 the greedy algorithm proposed by

Kempe, Kleinberg and Tardos in [8] is same as the exact
influence maximization algorithm. Thus the above example
also shows that greedy algorithm is not incentive compat-
ible. We can construct examples for other heuristic based
algorithms like the high degree heuristics [8], the shapley
value based algorithm [11], degree discount heuristics [4]
etc. All these algorithms use the information reported by
the agents directly to select the target set. Thus, none of
these algorithms are strategy-proof. However the random-
ized algorithm in which we select the nodes in the target set
uniformly randomly is strategy-proof. But the expected in-
fluence of this algorithm is low as shown by the experiments
done in [8].

3. INFLUENCER-INFLUENCEE MODEL
In a real world social network, given a social connection

between two persons, both the persons will have information
about various properties of the connection. The influencer
and the influencee model tries to leverage this fact in de-
signing strategy-proof mechanisms. The advantage of the
mechanisms designed for this model is that while deciding
the strategies, agents need not know any information beyond
its neighborhood.

3.1 The Model
We will now consider the influence and the influencee

model of information diffusion and design a payment scheme.
The influencer and the influencee model is as follows:

• Given a directed edge (u, v) in the social network, the
social planner will ask agent u the influencer about
her influence probability θuv on v and we will also ask
agent v the influencee about u′s influence on her. Thus
we will ask each agent to reveal the probability distri-
bution over each edge which is incident on it and which
is emanating from it.

• Consider a directed edge (u, v) with influence proba-
bility θuv on it. Now agent u can activate v with prob-
ability θuv thus we can consider the activation proba-

bility on each edge as probability distribution over set
S = {active, inactive}.

• Given these influence probabilities the social planner
will now compute the influence maximizing target set
along with the amount of discount to be given to the
agents based on their reported probability distribution
on edges.

• Consider an agent u. Let Influencer(u) = {v|(u, v) ∈
E} and influencee(u) = {v|(v, u) ∈ E}. Thus agent
u acts as influencer to nodes in the set Influencer(u)
and agent u is the influencee for the nodes in set
Influencee(u). In this model an assumption is that
agent u knows about the influence probabilities on the
edges that are incident on u and that are emanating
from u. Thus agent only knows about the influence
probabilities in its neighborhood and nothing beyond
that.

• Also agent does not know what influence probability is
reported by the agents in its neighborhood. The only
way an agent can predict the reported probability by
its neighbor is by her own assessment of it. Thus we
assume that for any given pair of nodes u and v having
edge (u, v) between them. We assume the conditional
probability distribution function P (θvuv|θuuv) which has
all the probability mass concentrated at θvuv = θuuv.

• Here we discretize the continuous interval [0,1] into
1/ϵ + 1 equally spaced numbers and agents will have
to report the influence probability by quoting one of
the 1/ϵ + 1 numbers. More concretely, given set T =
{1, 2, ..., t} we define z ∈ {0, ϵ, 2ϵ, ..., 1}t such that

∑t
i=1 zi =

1. For the case of our problem, T = {active, inactive}
thus agents will only have to quote one number θuv ∈
{0, ϵ, 2ϵ, ..., 1}.

Based on this model we will now design scoring rule based
payment schemes. The overview of the scoring rules is given
in the appendix along with lemma 2 that is used in proving
theorem 2.

3.2 Scoring Rule Based Direct Payment Scheme
We now consider a scoring rule based payment scheme in

which we incentivize agents for reporting the true probabil-
ity distribution on each edge.

In this mechanism, the payment to an agent i depends
on the truthfulness of the distribution she reveals on edges
incident on i as well as on the edges emanating from i. Here
we assume that the scoring rule used is quadratic scoring
rule. In this mechanism the payment received by an agent i
is given by(

vi(A, θ) +
d2i
2ϵ2

)( ∑
j∈Influencee(i)

V i
ji(θ̂

j
ji|θ̂iji)+

∑
j∈Influencer(i)

V i
ij(θ̂

j
ij |θ̂iij)

)

where, di is the degree of agent i, V i
ij() is the expected

score that agent i gets for reporting the distribution θ̂iij on
the edge (i, j)



Theorem 2. Reporting true probability distribution is a
Nash equilibrium in the direct payment scheme.

Proof. We will first consider the strategic behavior of
some arbitrary agent i considering only the agents in the set
S = Influencee(i)∪ Influencer(i). In the payment scheme
the agents belonging to the set V \ S can only affect the
valuation vi(A, θ). The expected payoff an agent i gets is
given by

∑
j∈Influencee(i)

1∑
θji=0

P (θjji|θ
i
ji)vi(A, θ)V i

ji(θ̂
j
ji|θ̂iji)+

∑
j∈Influencer(i)

1∑
θij=0

P (θjij |θ
i
ij)vi(A, θ)V i

ij(θ̂
j
ij |θ̂iij)+

d2i
2ϵ2

( ∑
j∈Influencee(i)

1∑
θji=0

P (θjji|θ
i
ji)V

i
ji(θ̂

j
ji|θ̂iji)+

∑
j∈Influencer(i)

1∑
θij=0

P (θjij |θ
i
ij)V

i
ij(θ̂

j
ij |θ̂iij)

)

Note that the valuation vi(A, θ) is dependent on the as-
sessment of the influence probabilities by agent i in its neigh-
borhood.
Every agent will now try to maximize the expected payoff

by considering the strategy of agents in its neighborhood. If
all the agents in the neighborhood are truthful then we have∑

j∈Influencee(i)

1∑
θji=0

P (θji|θiji)vi(A, θ)V i
ji(θji|θ̂iji)+

∑
j∈Influencer(i)

1∑
θij=0

P (θij |θiij)vi(A, θ)V i
ij(θij |θ̂iij)+

d2i
2ϵ2

( ∑
j∈Influencee(i)

1∑
θji=0

P (θji|θiji)V i
ji(θji|θ̂iji)+

∑
j∈Influencer(i)

1∑
θij=0

P (θij |θiij)V i
ij(θij |θ̂iij)

)
Now consider the expression(

vi(A, θ) +
d2i
2ϵ2

)( ∑
j∈Influencee(i)

V i
ji(θji|θ̂iji)+

∑
j∈Influencer(i)

V i
ij(θij |θ̂iij)

)

Now Let β =
∑

j∈Influencee(i) V
i
ji(θji|θji) +∑

j∈Influencer(i) V
i
ij(θij |θij)

Thus β is the expected score agent i gets when she reports
the true distribution over all the edges. Also, by probability
mass assumption this is the expected score she will receive
when she reports truthfully.

Thus, if an agent is truthful then, she will receive a payoff
given by (

vi(A, θ) +
d2i
2ϵ2

)
· β

Let, vi(A, θ) be the true valuation on an agent and v′i(A, θ)
be the valuation when agent lies. That is when agent reports

some θ̂iij ̸= θij Consider the utility of an agent when she lies
on only one of the edges(

v′i(A, θ) +
d2i
2ϵ2

)
·
(
β − 2ϵ2

)
When an agent reports probability value that is ±ϵ away

from true probability value the quadratic scoring rule (lemma
2) ensures that agent gets payoff lower by 2ϵ2 for that edge.
Now, we assume the worst case scenario in which agent gains
maximum by reporting the false probability value on only
single edge and that too minimum possible deviation from
the true value, Since we divide the [0,1] probability inter-
val into 1/ϵ numbers, agent has to report the probability
value that is at least ϵ away from the true probability value.
That is, agent will have to report some probability value

θ̂iij = θij ± ϵ. This gives us
(
β − 2ϵ2

)
.

An agent cannot get more score for lying as scoring rule
is incentive compatible. Thus agent can gain only in the
valuation part. Now by reporting false probability agent
can get valuation greater than true valuation by say δ that
is,

v′i(A, θ) = vi(A, θ) + δ

Where δ ∈ [0,
∑

j∈influencer(i) θij − vi(A, θ)]
Thus by reporting false probability value an agent gets

payoff of (
vi(A, θ) + δ +

d2i
2ϵ2

)
·
(
β − 2ϵ2

)
Thus for the agent to remain truthful we require that(
vi(A, θ) +

d2i
2ϵ2

)
· β ≥

(
vi(A, θ) + δ +

d2i
2ϵ2

)
·
(
β − 2ϵ2

)
=⇒ d2i + (vi(A, θ) + δ) 2ϵ2 ≥ δβ

Now, we have δβ ≤ d2i and (vi(A, θ) + δ) 2ϵ2 ≥ 0. Thus, it
is a best response strategy for an agent to report truthfully
when the agent in its neighborhood are truthful.

Now we still have to resolve the case for the agents belong-
ing to set V \S. Now these agents only affect the valuation of
agent i. In the above analysis the best response strategy for
an agent was derived by assuming that with minimum pos-
sible deviation from reporting true probability values agent
i is able to gain maximum possible valuation. Thus even if
agents in V \ S report anything the best strategy for agent
i is to report truthfully. Thus without knowing the strategy
of agents in set V \S the best response for an agent i is to re-
port truthfully. Thus reporting true influence probabilities
is a Nash equilibrium in this mechanism.

Note that the social planner will have to fix the value of
ϵ which will decide the accuracy of the probability values
extracted from the users. Smaller the value of ϵ, greater the
payment the seller will have to make to the users. The main
advantage of this mechanism is that the seller can use any



of the algorithms to select the target set. The agents will be
truthful regardless of which target set is chosen.
The same payment scheme can be used with other scoring

rules namely spherical and weighted scoring rule. For the
spherical scoring rule the expression for payoff is given by :(

vi(A, θ) +
2d2i
3ϵ2

)( ∑
j∈Influencee(i)

V i
ji(θ̂

j
ji|θ̂iji)+

∑
j∈Influencer(i)

V i
ij(θ̂

j
ij |θ̂iij)

)

For the weighted scoring rule the payoff is given by :(
vi(A, θ) +

d2i
ϵ2

)( ∑
j∈Influencee(i)

V i
ji(θ̂

j
ji|θ̂iji)+

∑
j∈Influencer(i)

V i
ij(θ̂

j
ij |θ̂iij)

)

The standard scoring rules like quadratic and spherical
are not appropriate for the direct payment scheme. This is
because even if the influence probability on an edge is zero,
both these scoring rules will give the expected score of one.
Thus, even if the social network is the empty graph, in which
all the edges are inactive, these standard payment schemes
will give maximum possible expected score.

3.2.1 The Reverse Weighted Scoring Rule
We will now propose the reverse weighted scoring rule de-

rived from the weighted scoring rule which has the following
desirable properties:

1. Incentive compatibility.

2. The expected score is proportional to the influence
probability.

3. If θij = 0 then the expected score for the edge (i, j) to
both the agents u and v is zero. That is, V i

ij(θ
j
ij |θ

i
ij) =

V j
ij(θ

i
ij |θjij) = 0 if θij = 0.

Property 1 is required to truthfully extract the influence
probabilities. Property 2 is desirable because the social plan-
ner would want to reward the agent which revealed the social
connection through which the product can be sold with high
probability. Property 3 ensures that an agent does not get
anything for revealing a social connection through which the
product cannot be sold.
Following is the reverse weighted scoring rule that has all

these properties.

Si(z) = 2zi(t− i)−
t∑

j=1

z2j (t− j)

We can show that the above scoring rule is incentive com-
patible using arguments similar to the weighted scoring rule
[5].

Implementation of Mechanisms
Since all the mechanisms presented under the influencer-
influencee model involves payments, the influence maximiza-

tion process should involve monetary transfers. Viral mar-
keting is one such process and we will now discuss the im-
plementation of the mechanism in the context of viral mar-
keting in an online social network like facebook, orkut, etc.

Consider that a seller wants to market a certain product in
the social network. The seller can now ask each user in the
social network to reveal her influence on each of the users in
their friends list. Users have incentive to participate in this
mechanism because each user will get a fixed positive pay-
ment based on the influence probabilities they report. The
seller can ask each agent to report the influence probability
by developing the application on the social network. There
are a large number of applications on the social networks like
orkut, facebook etc. which users use extensively for playing
games and socializing online.

In an online social network like facebook for example, if
a user is interested in the product to be sold, then she can
grant the access to the application. Now, this application
will have full access to the friends list and other profile infor-
mation of the user that is public. Thus such an application
can be easily implemented in an online social network with-
out any privacy issues. The seller will first have to fix the
level of accuracy that she needs before starting the informa-
tion extraction process.

Now, given the influence probabilities, the application will
now compute the influence maximizing target set. The ap-
plication will also compute the payment to be made to the
user. This payment can be made in the form of a discount
on the product to be marketed. The seller will now give
the product for free to the users selected in the target set.
The sale of the product will now proceed as in the inde-
pendent cascade process and users will get appropriate dis-
counts based on the reported influence probabilities. Since
the payment scheme ensures incentive compatibility, every
user will truthfully reveal the information to the seller via
the application.

4. SUMMARY AND FUTURE DIRECTIONS
In this paper we designed game theoretic models of infor-

mation diffusion process in a social network in order to ex-
tract the influence probabilities from the users. We designed
various incentive compatible mechanism which can be de-
ployed in a social network to select the target set. All these
mechanisms are individually rational and the payments in
these mechanisms come from the seller. To the best of our
knowledge this is the first time that the problem of extract-
ing the influence probabilities from the social network has
been studied with the perspective of game theory. Indeed,
this work opens up a host of interesting problems

• In the influencer model, does there exist an incentive
compatible algorithm having a constant factor approx-
imation ratio with or without payments?

• In the influencer model, does there exist a heuristic
based incentive compatible algorithm which may not
have theoretical guarantees about the approximation
but in a practical sense it performs well?

• In the direct payment scheme, the payments depend on
ϵ which decides the accuracy of the probability distri-
bution. The higher the accuracy is required, the more
is the payment to be made to the user. An interesting



direction of future research would be to design the in-
centive compatible mechanisms that are independent
of this factor.

• The models considered in this paper do not reflect the
exact real world situation. Indeed this is the first at-
tempt to design a game theoretic model of the informa-
tion diffusion process. In this work we only considered
the game theoretic version of simple model of inde-
pendent cascade process. Developing a game theoretic
model of a more realistic information diffusion model
given in [3] will be an exciting direction of future re-
search.
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APPENDIX
A. PRELIMINARIES

Various probabilistic models have been proposed to model
the spread of information in social networks. In this section,
we will give a brief overview of the Independent Cascade
Model. We will represent any social network by directed
graph G. We will say that an individual is active if she is
the adopter of the innovation or the behavior and inactive
otherwise. We will assume that once an individual becomes
active, she cannot switch back to being inactive.

A.1 Independent Cascade Model
In this model we activate some set of nodes A0 initially.

The information diffusion process unfolds in discrete time
steps as follows.

Each node that becomes active at time step t will try to
activate each of its neighbors. A node will get the chance
to activate its neighbors only once, that is at the time in-
stant in which it became active. A node i will successfully
activate its neighbor j with probability pij . Thus pij is the
probability that node i will activate node j conditioned on
the event that node j will be inactive when node i got ac-
tivated. The successfully activated nodes at time instant t
will now activate their neighbors at time instant t+1. This
process ends when no more nodes get activated. Clearly this
process will end in at most n− 1 time steps.

A.2 Influence Maximization Problem
We now introduce the influence maximization problem in

social networks. Before that, we define the notion of influ-
ence function:

Definition 1. Given an initially active set A and influence
probabilities, the influence function denoted by σ(A) is the
expected number of active nodes at the end of the diffusion
process. Thus for all A ⊆ V and influence probabilities on
each edge, we have

σ : 2V −→ [0, n]

The influence maximization problem is, given a parameter
k, a social network graph G, and a model of information
diffusion, find a set of k nodes in G to be activated initially
(also known as target set) such that, it will maximize the
influence function σ(A).

B. SCORING RULES
Scoring rules [12] are used to compare the observed proba-

bility distribution with a predicted one. Scoring rules consist
of a sequence of scoring functions S1, S2, ..., St where each Si

assigns score Si(p) to each p ∈ △(T ) where T = {1, 2, ..., t}.
For our problem, we will consider only real valued scoring
functions.

Expected Score
Let us assume that w ∈ △(T ) be the true or observed dis-
tribution and z ∈ △(T ) be the predicted distribution then
the expected score of reporting z for observed distribution



of w is given by

V (z|w) =

t∑
i=1

wiSi(z)

The expected score loss L(z|w) of reporting z for observed
distribution w is given by

L(z|w) = V (w|w)− V (z|w)

We now define proper scoring rule or incentive compatible
scoring rule as:

Definition 2. Proper Scoring rule is defined as sequence of
scoring functions S1, S2, ..., Sn such that for any z, w ∈ △(T )
and z ̸= w we have, L(z|w) > 0

Thus, if the scoring rule is proper, or incentive compatible
then, it is the best response for each agent to report its true
probability distribution.
There are several scoring rules which are incentive com-

patible, some of them are:
1) Quadratic Scoring rule

Si(z) = 2zi −
t∑

j=1

z2j

2) Weighted scoring rule

Si(z) =
2i · zi −

∑t
j=1 z

2
j · j

t

3) Spherical scoring rule

Si(z) =
zi√∑t
j=1 z

2
j

The following lemma quantifies the amount of loss that
an agent suffers by deviating from the true value.

lemma 2. If w, z ∈ {0, ϵ, 2ϵ, ..., 1}t, 0 < ϵ ≤ 1 such that∑t
i=1 wi = 1 and

∑t
i=1 zi = 1 and zi = wi ± ϵ for some

integer 1 ≤ i ≤ t, then

• For quadratic scoring rule

V (z|w) = V (w|w)− 2ϵ2

• For weighted and reverse weighted scoring rule

V (z|w) = V (w|w)− ϵ2

• For the spherical scoring rule

V (z|w) = V (w|w)− 1.5ϵ2



Table 1: Notations used in the paper
Symbol Meaning

V = {1, 2, ..., n} Set of agents in a social network
E Set of edges in the social network
N(i) Set of neighbors of a node i in the given graph
di Degree of agent i

d(x, y) Shortest path distance between vertices x and y in a graph
A Target set

σX(A) Number of active nodes given a fixed outcome X and a target set
σ(A) Expected number of nodes influenced by target set A
θij Probability that node i will influence node j

θ̂iij The reported probability of influence on edge (i, j) ∈ E by agent i

θiij The probability of influence on edge (i, j) ∈ E as perceived by agent i
θi The influence vector reported by agent i to the social planner
θ The true influence vector for the entire graph

ui(θ,A) Utility of an agent i
vi(θ,A) Valuation function of agent i

ti(v1, v2, ..., vn) The payment function for agent i
S1, S2, S3, ...., Sn Set of scoring functions that define the scoring rule

△(T ) Set of all possible probability distributions over set
V (z|w) The expected score agent gets for reporting distribution z given the true distribution w
L(z|w) The expected loss agent suffers for reporting distribution z given the true distribution w

ϵ The quality of approximation of the [0,1] interval

V i
ij(θ̂

i
ij |θ

j
ij) The expected score agent i gets for reporting θ̂iij given the estimate θjij by agent j

P (θjji|θ
i
ji) The belief probability of i given her type θiji


