## On network analysis and user behavior

Ramayya Krishnan iLab, The H. John Heinz III College Carnegie Mellon University Pittsburgh, PA rk2x@cmu.edu

# Outline

- Two examples
  - Intra-organizational KM the role of triadic closure or cliques in determining user behavior
  - Product adoption the role of social influence vs.
     homophily
- Key points
  - Multi-disciplinary perspective that blends computational and social science is needed
  - New estimation methods to work with novel data sets
  - Need for new methods to design and conduct experiments in a networked world

Example 1: Social Media and Knowledge Management in a Global Organization

#### Sample data posting of query and responses

| threadid   | associateid | postedtime          | messagetype | subject                    | message                           |
|------------|-------------|---------------------|-------------|----------------------------|-----------------------------------|
| {20070110- | 138242      | 2007-01-10 06:41:15 | Query       | Panel Creation in REXX     | Hi,                               |
| {20070110- | 122971      | 2007-01-10 07:42:54 | Response    | Re: Panel Creation in REXX | For retaining the input panel     |
| {20070110- | 107246      | 2007-01-10 13:20:24 | Response    | Re: Panel Creation in REXX | You are not creating the          |
| {20070110- | 128623      | 2007-01-17 07:19:18 | Response    | Re: Panel Creation in REXX | No need to VPUT you can           |
| {20070110- | 129498      | 2007-03-01 12:31:42 | Response    | Re: Panel Creation in REXX | it's simple if var1 var2 are the  |
| {20070110- | 107246      | 2007-03-01 13:49:16 | Response    | Re: Panel Creation in REXX | TYPE(INPUT) is to define the      |
| {20070110- | 125034      | 2007-04-14 07:17:32 | Response    | Re: Panel Creation in REXX | You can use the command           |
| {20070110- | 107246      | 2007-04-14 23:43:30 | Response    | Re: Panel Creation in REXX | <em><strong>ADDRESS</strong></em> |
|            | 0000000     |                     |             |                            |                                   |

# Sample Query

- Query on: Singleton class and threads in Java
- Responses:
- 1. Singleton class means that any given time only one instance of the class is present, in one JVM. So, it is present at JVM level.
- The thing is if two users(on two different machines which has separate JVMs) are requesting for singleton class then both can get one-one instance of that class in their JVM.

# Data description

- Message level and thread-level data from forum
- Message characteristics
  - Posting time, EmployeeID, Thread, Type of message (query or response), content of message etc.
- User characteristics
  - EmployeeID, Tenure at firm, Age, Gender, Location, Division, Job Title

# Network structure evolution

Sequence of Actions:

- User 301 posts a query Q1000
- Users 502, 641 post responses
- User 900 posts a query Q1001
- Users 301, 641 post responses



# Network structure

Asymmetric tie:

 A as responded to B's query but B has not responded to A

Sole-symmetric tie:

 Users have responded to each other, but not as part of a clique

Simmelian Tie:

 Users are part of a 'clique', whose members have all responded to one another

# Simmelian Ties

#### **Research Questions**

- Can Simmelian ties be established in an electronic communications medium with repeated interactions? Will they matter?
- 2. Do these ties depend upon the context? Do more instrumental contexts result in weaker Simmelian ties or less effective Simmelian ties?
- 3. Do both current context (what type of query) or past context in which the tie was established matter?

#### Dependent variable:

Number of response by A to B in period two



Dependent variable:

Number of response by A to B in period two

Explanatory Variables:



Dependent variable:

Number of response by A to B in period two

Explanatory Variables:



Dependent variable:

Number of response by A to B in period two

Explanatory Variables:



Dependent variable:

Number of response by A to B in period two

Explanatory Variables:



Dependent variable:

Number of response by A to B in period two

Explanatory Variables:



# Example 2: Social Influence vs. Homophily in product/service adoption

• Focus on identifying users that can help diffuse "information" over the network

 Learn about the power of "social influence" as trigger for the diffusion process

 Learn about how social influence is associated to "contagious churn"

#### **Research Question**

Can we predict consumers' product purchase decisions...

➢ Using social network information?

#### **Theoretical Foundation**

#### ➢ Homophily (Mcpherson et al. 2001)

➤ "Birds of a feather flock together"



### The Challenge

#### ➢ Large-scale network





### Literature

A rich literature on networks from various fields (e.g. Kleinberg 1999, Brin and Page 1998)

Network-based marketing

Network Neighbors: Hill, Provost, Volinsky (2006)
 Viral Marketing: Richardson and Domingos (2002)

Classification: Macskassy and Provost (2003, 2007)

> What about *unobserved product taste*?

> For small, tightly connected groups: Hartmann (2010)

But what about large-scale networks of arbitrary connection structure?

### This Study

- Model correlated purchase behaviors of consumers in a large social network...
- Using Gaussian Markov Random Field (GMRF) to characterize latent product taste
  - Handle networks of arbitrary topology
  - Encapsulate conditional independence
- Estimation result confirms the positive taste correlation among connected people
- Predictive performance better than existing LR based models, and better than SVM based models, too.

#### Data

Obtained from a large Asian telecom company

- ➤ 231,416 customers
- ≻6 month period
- Detailed phone call data
  - ≻Who called whom, when
- > Demographics information: gender, age
- > Purchase records of caller ringback tone (CRBT)
  - ➤Who purchased what, when

> Can we predict CRBT adoption decisions?

#### **Descriptive Statistics**

|                                             | Mean   | SD         | Min    | Max    |
|---------------------------------------------|--------|------------|--------|--------|
| Gender                                      | Male   | 218017     | Female | 13399  |
| Age                                         | 40.56  | 13.67      |        |        |
| Number of Consumers Called by Each Consumer | 13.73  | 22.9       | 1      | 2858   |
| Number of Phone Calls Per Consumer          | 410.4  | 942.7      | 1      | 59016  |
|                                             |        | Adoption   |        |        |
|                                             | Number | Percentage |        |        |
| Number of Consumers                         | 231416 |            |        |        |
| Number of Consumers Who Adopted CRBT        | 79505  | 34.36%     |        |        |
| Adoption Percentage by Gender               | Male   | 34.50%     | Female | 31.89% |

Preliminary analysis: gender doesn't help much in prediction...

### Data – Preliminary Analysis

Age doesn't help much, either...



#### Data – Preliminary Analysis

Node degree helps a lot (need for social network)!



#### Data – Preliminary Analysis



Maybe, but need the discipline of a model

### Model

There are *I* consumers in a social network

Connection matrix:  $C = [c_{ij}]$ 

$$c_{ij} = \begin{cases} 1 & \text{if consumers } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

Adoption decision:  $D_i = \begin{cases} 1 & \text{if consumers } i \text{ adopts the product} \\ 0 & \text{otherwise} \end{cases}$ 

### **Adoption Probability**

**Binary Probit Model** 

 $Pr(D_i = 1) = Pr(U_i >= 0)$ 

$$U_i = \alpha_i + \beta X_i + \varepsilon_i$$

$$\varepsilon_i \sim N(0,1)$$
 Random disturbance

- *X<sub>i</sub>* Observed individual characteristic (gender, age, connection degree)
- $\alpha_i$  Unobserved product taste Modeled as a GMRF!

### Gaussian Markov Random Field (GMRF)

Definition (GMRF): A random vector  $\vec{x} = (x_1, ..., x_n)^T$  is called GMRF w.r.t. the undirected graph  $G = (V = \{1..n\}, E)$  with mean  $\bar{\mu}$  and precision matrix Q > 0 if and only if its density has the form:

$$\pi(\vec{x}) = (2\pi)^{-n/2} |Q|^{1/2} \exp(-\frac{1}{2}(\vec{x} - \vec{\mu})^T Q(\vec{x} - \vec{\mu}))$$

And

 $Q_{ij} \neq 0 \Leftrightarrow \{i, j\} \in E, \forall i, j$ 

► A multivariate normal vector

Connection structure encoded in its precision matrix

Non-zero off-diagonal elements correspond to connections

### Properties of GMRF

Can model connections of arbitrary topology

➢ Better than using in-group correlation

> Encodes conditional independence



Consumers 1 and 3 should be correlated But conditional on consumer 2, they should be independent

> Model parameters have intuitive explanations

#### Model Latent Product Taste Using GMRF

$$\begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_I \end{pmatrix} \sim N(\begin{pmatrix} \overline{\alpha} \\ \dots \\ \overline{\alpha} \end{pmatrix}, Q^{-1})$$

$$Q = [q_{ij}]$$
, where  $q_{ij} = 0$  if  $c_{ij} = 0$ 

Straightforward Interpretation :

Precision
$$(\alpha_i | \alpha_{-i}) = q_{ii}$$
  
 $\operatorname{Cor}(\alpha_i, \alpha_j | \alpha_{-ij}) = -q_{ij} / \sqrt{q_{ii}q_{jj}}$ 

Parameterization (base model, model B):

$$Q = \begin{pmatrix} \kappa & -r\kappa & 0 & \dots & -r\kappa \\ -r\kappa & \kappa & 0 & \dots & 0 \\ 0 & 0 & \kappa & \dots & -r\kappa \\ \dots & \dots & \ddots & \dots \\ -r\kappa & 0 & -r\kappa & \dots & \kappa \end{pmatrix}$$

- *r* Conditional correlation between connected consumers
- $\kappa$  Conditional precision

#### **Model Extension**

Model AI:

1

$$Q^{I} = \begin{pmatrix} \kappa_{d_{1}} & -r\sqrt{\kappa_{d_{1}}\kappa_{d_{2}}} & 0 & \dots & -r\sqrt{\kappa_{d_{1}}\kappa_{d_{1}}} \\ -r\sqrt{\kappa_{d_{1}}\kappa_{d_{2}}} & \kappa_{d_{2}} & 0 & \dots & 0 \\ 0 & 0 & \kappa_{d_{3}} & \dots & -r\sqrt{\kappa_{d_{3}}\kappa_{d_{1}}} \\ \dots & \dots & \dots & \ddots & \dots \\ -r\sqrt{\kappa_{d_{1}}\kappa_{d_{1}}} & 0 & -r\sqrt{\kappa_{d_{3}}\kappa_{d_{1}}} & \dots & \kappa_{d_{1}} \end{pmatrix} \qquad \kappa_{d} = \kappa_{0} + \kappa_{1} \cdot \log(d+1)$$

The more we know about a consumer's connections, the more we should know about the consumer

Model All:

$$Q^{II} = \begin{pmatrix} \kappa_{d_1} & -r_{21}\sqrt{\kappa_{d_1}\kappa_{d_2}} & 0 & \dots & -r_{I1}\sqrt{\kappa_{d_1}\kappa_{d_1}} \\ -r_{21}\sqrt{\kappa_{d_1}\kappa_{d_2}} & \kappa_{d_2} & 0 & \dots & 0 \\ 0 & 0 & \kappa_{d_3} & \dots & -r_{I3}\sqrt{\kappa_{d_3}\kappa_{d_1}} \\ \dots & \dots & \dots & \ddots & \dots \\ -r_{I1}\sqrt{\kappa_{d_1}\kappa_{d_1}} & 0 & -r_{I3}\sqrt{\kappa_{d_3}\kappa_{d_1}} & \dots & \kappa_{d_I} \end{pmatrix} r_{ij} = r_0 + r_1 \cdot \log(Call_{ij})$$

The more communication between two consumers, the stronger the tie should be, and the stronger the correlation

#### Estimation

Hierarchical Bayesian approach

>MCMC draws with hybrid Metropolis-Gibbs fashion

$$f(\alpha_i \mid \alpha_{-i}, \beta, \alpha, r, \kappa, X_i, D_i, C) \propto \varphi(\alpha_i \mid \alpha_{N(i)}, \alpha, r, \kappa) L(D_i \mid \alpha_i, \beta, X_i, D_i)$$

$$f(\overline{\alpha} \mid \alpha_i : i = 1..I) \propto \phi((I + V_{\alpha})^{-1} (\sum_{i=1}^{I} \alpha_i + V_{\alpha} \overline{\alpha}), (I + V_{\alpha})^{-1})$$

$$f(\beta \mid \alpha_i : i = 1..I, X_i, D_i) \propto \pi(\beta) \prod_{i=1}^{I} L(D_i \mid \alpha_i, \beta, X_i, D_i)$$

$$f(r \mid \alpha_i : i = 1..I, \beta, \overline{\alpha}, \kappa, C) \propto \pi(r) \prod_{i=1}^{I} \varphi(\alpha_i \mid \alpha_{N(i)}, \overline{\alpha}, r, \kappa)$$

$$f(\kappa \mid \alpha_i : i = 1..I, \beta, \overline{\alpha}, r, C) \propto \pi(\kappa) \prod_{i=1}^{I} \varphi(\alpha_i \mid \alpha_{N(i)}, \overline{\alpha}, r, \kappa)$$

### Identifying Connections

- Based on phone call data
- Using a "threshold" method: two consumers are considered as connected if they made at least a certain number of phone calls
- Endogenizing network formation left for future extension

> Vary threshold value to ensure robustness

### **Dividing Training and Testing Data**



- >80% of consumers for training, 20% for testing
- ➢ Each node (consumer) is individually randomly assigned ("flip-a-coin") to training or testing set.
- ➤The sub-network consisting of training nodes is used for estimation
- Other division methods possible, for future extension
   Vary training dataset size for sobustness check

#### **Result: Parameter Estimation**

#### Model B



>The higher the threshold value, the higher the correlation

➢Higher threshold filter out more "noise"

#### **Result: Parameter Estimation**

#### Model AI

| Threshold  | κ      | 0       | $\kappa_{1}$ | !       | r       |         |  |
|------------|--------|---------|--------------|---------|---------|---------|--|
| 1111001010 | Mean   | SD      | Mean         | SD      | Mean    | SD      |  |
| 1          | 0.129  | 0.0011  | -0.013       | 0.00031 | 0.0227  | 0.00038 |  |
| 3          | 0.115  | 0.00093 | -0.0097      | 0.00037 | 0.03487 | 0.0006  |  |
| 5          | 0.113  | 0.00153 | -0.0094      | 0.00061 | 0.03912 | 0.00079 |  |
| 8          | 0.108  | 0.0011  | -0.008       | 0.00075 | 0.0469  | 0.00088 |  |
| 10         | 0.1043 | 0.0015  | -0.0063      | 0.00084 | 0.0536  | 0.00094 |  |
| 20         | 0.101  | 0.0016  | -0.0054      | 0.00091 | 0.0607  | 0.0012  |  |
|            |        |         |              | )       |         |         |  |

Conditional precision is lower for nodes with higher degree

➢ Possibly explained by heterogeneity

#### **Result: Parameter Estimation**

#### Model All

| Threshold | κ      | 0      | κ       | 1       | r       | 0        | r      | <i>r</i> <sub>1</sub> |  |  |
|-----------|--------|--------|---------|---------|---------|----------|--------|-----------------------|--|--|
|           | Mean   | SD     | Mean    | SD      | Mean    | SD       | Mean   | SD                    |  |  |
| 1         | 0.129  | 0.0011 | -0.0127 | 0.0004  | -0.0013 | 0.000832 | 0.0128 | 0.0004                |  |  |
| 3         | 0.117  | 0.0008 | -0.0099 | 0.0004  | -0.021  | 0.0022   | 0.0183 | 0.0007                |  |  |
| 5         | 0.11   | 0.0012 | -0.0078 | 0.0006  | -0.025  | 0.0034   | 0.0199 | 0.001                 |  |  |
| 8         | 0.1077 | 0.0016 | -0.0074 | 0.0008  | -0.0476 | 0.0035   | 0.0253 | 0.0009                |  |  |
| 10        | 0.1051 | 0.0011 | -0.0063 | 0.0006  | -0.0444 | 0.0047   | 0.0242 | 0.0012                |  |  |
| 20        | 0.0994 | 0.0014 | -0.004  | 0.00087 | -0.056  | 0.0061   | 0.0283 | 0.0014                |  |  |

➤The more frequently the communication, the higher the conditional correlation!

➢Not all connections are the same; strength matters.

### **Predictive Performance**

#### ➢ Prediction Approach:

➤"Individual-based": predict adoption when calculated probability is 0.5 or higher.

➤ "Top-k": predict adoption for the k consumers with the highest calculated probabilities.

#### ➤ Evaluation Approach:

>Accuracy: percentage of correct predictions

Precision: percentage of correct predictions when the prediction is to adopt

#### **Benchmark Models**

| Model | Explanatory Variables                                     | Mechanism              |
|-------|-----------------------------------------------------------|------------------------|
| BM1   | Gender, Age                                               | Logistic Regression    |
| BM2   | Gender, Age, Degree                                       | Logistic Regression    |
| BM3   | Gender, Age, Degree, Percentage of<br>Neighbors who Adopt | Logistic Regression    |
|       | Gender, Age, Degree, Percentage of                        | Suppor Vector Machine, |
| BM4   | Neighbors who Adopt                                       | Linear Kernel          |
|       | Gender, Age, Degree, Percentage of                        | Suppor Vector Machine, |
| BM5   | Neighbors who Adopt                                       | Polynomial Kernel      |

#### Accuracy – Individual Based

|                                              |             |             |            |           | Percent of Correct Prediction |        |          |   |           |         |        |
|----------------------------------------------|-------------|-------------|------------|-----------|-------------------------------|--------|----------|---|-----------|---------|--------|
|                                              | Total Test  | Total       | A          | doption   |                               |        |          |   |           | "Naive" |        |
| Threshold                                    | Cases       | Adoption    | Pe         | ercent    | M                             | ode B  | Model AI | N | lodel AII | М       | odel   |
| 1                                            | 46092       | 15752       |            | 34.18%    |                               | 66.82% | 66.71%   |   | 67.14%    |         | 65.82% |
| 3                                            | 42675       | 15205       |            | 35.63%    |                               | 65.93% | 66.10%   |   | 66.52%    |         | 64.37% |
| 5                                            | 39575       | 14234       |            | 35.97%    |                               | 65.35% | 65.24%   |   | 66.06%    |         | 64.03% |
| 8                                            | 36715       | 13674       |            | 37.24%    |                               | 64.52% | 64.97%   |   | 65.49%    |         | 62.76% |
| 10                                           | 35290       | 13103       |            | 37.13%    |                               | 64.38% | 63.84%   |   | 64.79%    |         | 62.87% |
| 20                                           | 29846       | 11520       |            | 38.60%    |                               | 63.11% | 63.20%   |   | 63.74%    |         | 61.40% |
|                                              |             |             |            |           |                               |        |          |   |           |         |        |
| ND attar tha                                 |             | adal (nati  | <b>ل</b> م | (much)    |                               |        |          | 1 |           |         |        |
| F Beller Ina                                 | n naive mo  | bael (not i | by         | much) -   |                               |        |          |   |           |         |        |
|                                              |             |             |            |           |                               |        |          |   |           |         |        |
| ➤Higher thr                                  | eshold lead | ds to lowe  | er         | accurac   | <b>y</b> -                    |        |          |   |           |         |        |
|                                              |             |             |            |           |                               |        |          |   |           |         |        |
| Dut that's baseuss "the problem gets barder" |             |             |            |           |                               |        |          |   |           |         |        |
| 📕 Dut tildt S                                | necause i   | ine proble  | 211        | i gets na | 11(                           |        |          |   |           |         |        |

### Precision – Individual Based

|               |           | Mod      | el B       | Mode         | elAI       | Model AII |            |  |
|---------------|-----------|----------|------------|--------------|------------|-----------|------------|--|
|               | Predicted |          | Correct    | Predicted    | Correct    | Predicted | Correct    |  |
| Threshold Ado |           | Adoption | Percentage | Adoption     | Percentage | Adoption  | Percentage |  |
|               | 1         | 8385     | 52.88%     | 7671         | 52.76%     | 8129      | 53.72%     |  |
|               | 3         | 5658     | 55.07%     | 6439         | 55.71%     | 6752      | 56.80%     |  |
|               | 5         | 6609     | 54.18%     | 6359         | 55.56%     | 6672      | 56.01%     |  |
|               | 8         | 6707     | 54.96%     | 6333         | 55.35%     | 6700      | 57.48%     |  |
|               | 10        | 6182     | 55.26%     | <b>7</b> 344 | 54.10%     | 6242      | 55.43%     |  |
|               | 20        | 6213     | 54.45%     | 5977         | 55.19%     | 6693      | 55.22%     |  |

Much better than naïve model

≻Model All is the best

➢Performance best at medium threshold

➢Balance between filtering out noise and retaining information

#### Benchmark Precision – Individual Based

|           | Mode      | Model BM2  |    |          | Model BM3 |          |   |                               |
|-----------|-----------|------------|----|----------|-----------|----------|---|-------------------------------|
|           | Predicted | Correct    | Pr | redicted | (         | Correct  |   |                               |
| Threshold | Adoption  | Percentage | A  | deption  | Pe        | rcentage |   |                               |
| 1         | 2006      | 56.23%     |    | 2089     |           | 59.89%   |   |                               |
| 3         | 2060      | 54.13%     |    | 2226     |           | 57.77%   |   | <br>Slightly higher procision |
| 5         | 4142      | 56.78%     |    | 1951     |           | 58.89%   |   | Singlicity higher precision   |
| 8         | 5475      | 55.87%     |    | 2015     | K         | 60.10%   |   | On much fewer predictions     |
| 10        | 7124      | 52.91%     |    | 2176     |           | 59.93%   |   | on machiewer predictions:     |
| 20        | 10939     | 48.43%     |    | 2289     |           | 62.69%   |   |                               |
|           |           |            |    |          | ノ         |          | ) |                               |

|           | Mod       | el B       | Mode      | el AI      | Model AII |            |  |
|-----------|-----------|------------|-----------|------------|-----------|------------|--|
|           | Predicted | Correct    | Predicted | Correct    | Predicted | Correct    |  |
| Threshold | Adoption  | Percentage | Adoption  | Percentage | Adoption  | Percentage |  |
| 1         | 8385      | 52.88%     | 7671      | 52.76%     | 8129      | 53.72%     |  |
| 3         | 5658      | 55.07%     | 6439      | 55.71%     | 6752      | 56.80%     |  |
| 5         | 6609      | 54.18%     | 6359      | 55.56%     | 6672      | 56.01%     |  |
| 8         | 6707      | 54.96%     | 6333      | 55.35%     | 6700      | 57.48%     |  |
| 10        | 6182      | 55.26%     | 7344      | 54.10%     | 6242      | 55.43%     |  |
| 20        | 6213      | 54.45%     | 5977      | 55.19%     | 6693      | 55.22%     |  |

#### Benchmark Precision – Individual Based

|           | Model     | BM4        |      | Model BM5 |            |   |                               |
|-----------|-----------|------------|------|-----------|------------|---|-------------------------------|
|           | Predicted | Correct    | Pred | icted     | Correct    |   |                               |
| Threshold | Adoption  | Percentage | Ado  | ption     | Percentage |   |                               |
| 1         | 3470      | 62.07%     |      | 1654      | 68.50%     |   |                               |
| 3         | 3718      | 61.97%     |      | 1946      | 65.83%     |   | 🔶 Same story here             |
| 5         | 3371      | 62.06%     |      | 2529      | 64.41%     |   | • • • • • • • • • • • • • • • |
| 8         | 4383      | 62.03%     |      | 2977      | 65.10%     |   |                               |
| 10        | 4712      | 60.36%     |      | 3474      | 63.27%     |   |                               |
| 20        | 4688      | 60.30%     |      | 3403      | 62.83%     |   |                               |
|           |           |            |      |           |            | / |                               |

|           | Mod               | el B       | Mode      | el AI      | Model AII |            |  |
|-----------|-------------------|------------|-----------|------------|-----------|------------|--|
|           | Predicted Correct |            | Predicted | Correct    | Predicted | Correct    |  |
| Threshold | Adoption          | Percentage | Adoption  | Percentage | Adoption  | Percentage |  |
| 1         | 8385              | 52.88%     | 7671      | 52.76%     | 8129      | 53.72%     |  |
| 3         | 5658              | 55.07%     | 6439      | 55.71%     | 6752      | 56.80%     |  |
| 5         | 6609              | 54.18%     | 6359      | 55.56%     | 6672      | 56.01%     |  |
| 8         | 6707              | 54.96%     | 6333      | 55.35%     | 6700      | 57.48%     |  |
| 10        | 6182              | 55.26%     | 7344      | 54.10%     | 6242      | 55.43%     |  |
| 20        | 6213              | 54.45%     | 5977      | 55.19%     | 6693      | 55.22%     |  |

#### Precision – Top-K

|           | Mod      | el B     | Mode     | el AI    | Model AII |          |  |
|-----------|----------|----------|----------|----------|-----------|----------|--|
| Threshold | Top 1000 | Top 2000 | Top 1000 | Top 2000 | Top 1000  | Top 2000 |  |
| 1         | 66.00%   | 65.80%   | 65.90%   | 62.25%   | 66.30%    | 65.35%   |  |
| 3         | 69.80%   | 64.60%   | 68.60%   | 64.90%   | 72.00%    | 68.00%   |  |
| 5         | 69.80%   | 67.00%   | 69.60%   | 65.10%   | 73.10%    | 68.75%   |  |
| 8         | 71.10%   | 67.05%   | 67.50%   | 64.65%   | 73.80%    | 68.55%   |  |
| 10        | 71.40%   | 65.55%   | 68.70%   | 65.25%   | 71.70%    | 67.40%   |  |
| 20        | 70.50%   | 66.40%   | 73.50%   | 66.90%   | 72.40%    | 67.10%   |  |

>Much higher precision than individual-based predictions

➤Model All is still the best

>Almost twice the accuracy of a naïve model

➢Performance again the best for medium threshold values

#### Benchmark Precision – Top-K

|           | Model BM1 |          | Model BM2 |          | Model BM3 |          |
|-----------|-----------|----------|-----------|----------|-----------|----------|
| Threshold | Top 1000  | Top 2000 | Top 1000  | Top 2000 | Top 1000  | Top 2000 |
| 1         | 34.20%    | 34.05%   | 59.60%    | 56.25%   | 62.20%    | 60.25%   |
| 3         | 36.10%    | 35.90%   | 55.70%    | 53.90%   | 60.50%    | 57.90%   |
| 5         | 35.80%    | 35.80%   | 54.50%    | 52.45%   | 61.50%    | 59.00%   |
| 8         | 35.70%    | 37.75%   | 55.50%    | 53.90%   | 61.40%    | 60.00%   |
| 10        | 36.00%    | 38.70%   | 54.10%    | 53.25%   | 60.50%    | 59.45%   |
| 20        | 36.80%    | 38.15%   | 54.90%    | 52.15%   | 63.60%    | 62.85%   |

Logistic-regression based models not nearly as good

#### Benchmark Precision – Top-K

|           | Model    | BM4      | Model BM5 |          |  |
|-----------|----------|----------|-----------|----------|--|
| Threshold | Top 1000 | Top 2000 | Top 1000  | Top 2000 |  |
| 1         | 68.10%   | 66.25%   | 71.10%    | 67.05%   |  |
| 3         | 69.30%   | 65.25%   | 70.10%    | 65.90%   |  |
| 5         | 70.50%   | 65.70%   | 71.80%    | 66.70%   |  |
| 8         | 67.10%   | 66.80%   | 69.70%    | 67.50%   |  |
| 10        | 68.80%   | 65.60%   | 70.40%    | 66.80%   |  |
| 20        | 70.30%   | 68.25%   | 74.60%    | 67.40%   |  |

SVM-based models almost as good, but still lower

#### In Pictures...



### Varying Training Dataset Size

|                 | Model AII  |          |          | Model BM5  |          |          |
|-----------------|------------|----------|----------|------------|----------|----------|
| TrainingPortion | Individual | Top 1000 | Top 2000 | Individual | Top 1000 | Top 2000 |
| 90%             | 56.85%     | 69.40%   | 62.20%   | 64.55%     | 66.10%   | 61.55%   |
| 80%             | 56.17%     | 71.60%   | 68.05%   | 66.11%     | 73.70%   | 67.55%   |
| 70%             | 55.30%     | 73.10%   | 69.25%   | 65.03%     | 72.10%   | 68.60%   |
| 60%             | 54.83%     | 74.90%   | 70.30%   | 63.46%     | 71.80%   | 68.55%   |
| 50%             | 53.86%     | 74.60%   | 71.85%   | 63.14%     | 73.90%   | 69.55%   |
| 40%             | 54.32%     | 76.50%   | 73.80%   | 61.31%     | 74.20%   | 70.90%   |
| 30%             | 53.64%     | 73.60%   | 69.75%   | 61.74%     | 74.40%   | 70.35%   |
| 20%             | 52.86%     | 72.30%   | 69.70%   | 61.92%     | 72.80%   | 69.25%   |
| 10%             | 52.74%     | 69.70%   | 68.40%   | 56.17%     | 69.30%   | 64.80%   |

Result and comparison both stable

➢Precision has an "inverted-U" shape w.r.t. training data size

➢ Fewer good candidates when test dataset is smaller

### Future Extensions

Dynamic Model

- Repeat purchase decisions
- Product choice decisions

Incorporate Influence
 We have communication data!

Endogenize network formation

### Key take aways

Modeling the correlation of latent product tastes
 In a large-scale social network
 Using Gaussian Markov Random Field (GMRF)

- Estimation confirms positive correlation among connected consumers
  - We have communication data! Higher correlation for stronger ties
- Predictive precision better than logistic regression based and SVM based benchmark models









NGAPORE MANAGEMENT

INTVERSITY.



Launch of SMU-CMU LIVING ANALYTICS RESEARCH CENTRE 7 March 2011

#### ANALYSE, PREDICT

- Analyse Traces
- Understand Behavioural Patterns Over Time & Context
- Predict Behaviour



#### EXPERIMENTS

#### Changes to

- Attributes of products, services
   & experiences
- Individual level interaction & information
- Group & network level interaction
  - & information

#### OBSERVE



The "Digital Traces" of Behaviour and Living

### HUMAN ACTION

Individual responses; group & network responses

#### LA RESEARCH AREAS

Area A: Intelligent Systems for Mining & Analytics

Dynamic Network Science

Adaptive Decision Analytics Area B: Social & Management Science

Understanding and Predicting Behaviour in Real-Time Context

Design of Guidance and Incentives for Influencing Behaviour Area D: Data Fusion & Privacy

> Data Privacy & Protection

Data Fusion & Record Linkage Area E: Systems & Infrastructure

> Basic Computing, Storage, & Network Infrastructure

Cloud Computing for Real-Time LA

Next-Gen Mobile Sensing and Analytics

Area C: Network Experimentation

Randomisation and optimal design in networked environments

# Experiments with network data

 Statistical theory of design of experiments assumes independence between test and control

 This independence is violated in network settings since observations are affected by network interaction and influences

• This is work to be done and one of the key areas of focus of the Living Analytics Center