Visual Recognition: Prospects for Image & Video Analytics

Jitendra Malik University of California at Berkeley

Classification & Segmentation

UC Berkeley

PASCAL Visual Object Challenge

Horse

Motorbike

Train

TV/Monitor

Potted Plant

We want to locate the object

Orig. Image

Segmentation

Orig. Image

Segmentation

Fifty years of computer vision 1963-2013

- 1960s: Beginnings in artificial intelligence, image processing and pattern recognition
- 1970s: Foundational work on image formation: Horn, Koenderink, Longuet-Higgins ...
- 1980s: Vision as applied mathematics: geometry, multi-scale analysis, probabilistic modeling, control theory, optimization
- 1990s: Geometric analysis largely completed, vision meets graphics, statistical learning approaches resurface
- 2000s: Significant advances in visual recognition, range of practical applications

UC Berkeley

Computer Vision Group

0 2 3 8 0 7 3 8 5 7

Fig. 4. Size-normalized examples from the MNIST database.

Handwritten digit recognition (MNIST,USPS)

- LeCun's Convolutional Neural Networks variations (0.8%, 0.6% and 0.4% on MNIST)
- Tangent Distance(Simard, LeCun & Denker: 2.5% on USPS)
- Randomized Decision Trees (Amit, Geman & Wilder, 0.8%)
- K-NN based Shape context/TPS matching (Belongie, Malik & Puzicha: 0.6% on MNIST)

University of California **Berkeley**

Computer Vision Group

EZ-Gimpy Results (Mori & Malik, 2003)

• 171 of 192 images correctly identified: 92 %

horse

smile

canvas

UC Berkeley

spade

join

here Computer Vision Group

Face Detection

Carnegie Mellon University

Multiscale sliding window

Paradigm introduced by Rowley, Baluja & Kanade 96 for face detection Viola & Jones 01, Dalal & Triggs 05, Felzenszwalb, McAllester, Ramanan 08

Caltech-101 [Fei-Fei et al. 04]

• 102 classes, 31-300 images/class

UC Berkeley

Computer Vision Group

Caltech 101 classification results

(even better by combining cues..)

PASCAL Visual Object Challenge

Horse

Motorbike

Train

TV/Monitor

Potted Plant

Sofa

Precision/Recall - Bicycle

AP by Class

Max AP: 58.4% (aeroplane) ... 13.0% (potted plant)

Trying to find stick figures is hard (and unnecessary!)

Geons (Biederman)

Person detection is challenging

Can we build upon the success of faces and pedestrians?

Rowley, Baluja, Kanade CVPR96 Viola and Jones, IJCV01

Dalal and Triggs, CVPR05

- Pattern matching
- Capture patterns that are common and visually characteristic
- Are these the only two common and characteristic patterns?

Poselets

We will train classifiers for these different visual patterns

Segmenting people

Best person segmentation on PASCAL 2010 dataset

[Bourdev, Maji, Brox and Malik, ECCV10]

Describing people

"A man with short hair, glasses, short sleeves and shorts"

"A man with short "A woman hair and long sleeves" glasses and

"A woman with long hair, glasses and *long pants*"(??)

"A person with long pants"

Male or female?

Gender classifier per poselet is much easier to train

Is male

Has long hair

Wears long pants

Wears a hat

Wears long sleeves

Actions in still images ...

have characteristic :

- pose and appearance
- interaction with objects and agents

Some discriminative poselets

running

walking

ridinghorse

Problem: Human Activity Recognition

Approach: Learn pose and appearance specific for an action

12/20/2011

Results : Top Confusions

phoning \rightarrow takingphoto

reading \rightarrow using computer

ridingbike \rightarrow running

takingphoto \rightarrow phoning

using computer \rightarrow reading

running \rightarrow walking

running \rightarrow ridingbike

Low-Cost Automated Tuberculosis Diagnostics Using Mobile Microscopy

Jeannette Chang¹, Pablo Arbelaez¹, Neil Switz², Clay Reber², Asa Tapley^{2,3} Lucian Davis³, Adithya Cattamanchi³, Daniel Fletcher², and Jitendra Malik¹ Department of Electrical Engineering and Computer Science, UC Berkeley¹ Department of Bioengineering, UC Berkeley² Medical School and San Francisco General Hospital, UC San Francisco³

Why Tuberculosis?

- Mortality and Treatment¹
 - TB is second leading cause of deaths from infectious disease worldwide (after HIV/AIDS)
 - Highly effective antibiotic treatment
- Current Diagnostics
 - Technicians screen microscopic images of sputum smears manually
 - Other methods include culture and PCR
 - Tremendous potential benefit from automated processing or classification

1. <u>http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf</u>

2. http://www.thehindu.com/health/rx/article21138.ece

Examples of sputum smears with TB bacteria. Brightfield (top) and fluorescent (bottom) microscopy.²

Input image from CellScope device

Sample Candidate Objects

Sample positive objects

Patches in Descending Order of Confidence

Object-Level Performance (Uganda Data)

Slide-Level Performance (Uganda Data)

