

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Incentive Compatible Broadcast in Ad hoc Wireless Networks

Rama Suri Narayananam

Dept. of Computer Science and Automation
Indian Institute of Science

March 2, 2008

Outline of the Talk

1 Introduction

2 Motivation

- An Illustration
- Modeling as Game

3 Broadcast

- Relevant Work
- Limitations
- Bayesian Setting
- Goal

4 The Model

5 Important Results

6 Simulations

7 Conclusions

- Future Work

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Quick Recap

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions
Future Work

- *Gibbard-Satterthwaite* impossibility theorem states that, under some fairly reasonable conditions, a social choice function is truthfully implementable if and only if it is dictatorial

Quick Recap

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- *Gibbard-Satterthwaite* impossibility theorem states that, under some fairly reasonable conditions, a social choice function is truthfully implementable if and only if it is dictatorial
- Two possible approaches to overcome the consequence of *Gibbard-Satterthwaite* impossibility theorem

Quick Recap

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- *Gibbard-Satterthwaite* impossibility theorem states that, under some fairly reasonable conditions, a social choice function is truthfully implementable if and only if it is dictatorial
- Two possible approaches to overcome the consequence of *Gibbard-Satterthwaite* impossibility theorem
 - to work with restricted environments (eg: *quasi-linear environments*)

Quick Recap

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- *Gibbard-Satterthwaite* impossibility theorem states that, under some fairly reasonable conditions, a social choice function is truthfully implementable if and only if it is dictatorial
- Two possible approaches to overcome the consequence of *Gibbard-Satterthwaite* impossibility theorem
 - to work with restricted environments (eg: *quasi-linear environments*)
 - to weaken the implementation concept and look for an SCF which is *ex-post efficient, non-dictatorial, and Bayesian incentive compatible*

Quick Recap

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- *Gibbard-Satterthwaite* impossibility theorem states that, under some fairly reasonable conditions, a social choice function is truthfully implementable if and only if it is dictatorial
- Two possible approaches to overcome the consequence of *Gibbard-Satterthwaite* impossibility theorem
 - to work with restricted environments (eg: *quasi-linear environments*)
 - **to weaken the implementation concept and look for an SCF which is ex-post efficient, non-dictatorial, and Bayesian incentive compatible**

Introduction to Ad hoc Wireless Networks

Rama Suri
Narayananam

Agenda

Introduction

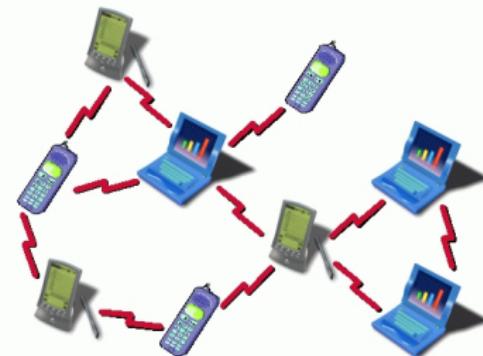
Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

- Autonomous system of nodes connected through wireless links
- No fixed infrastructure
- Each node is also router
- Applications of ad hoc networks:
 - Military Applications,
 - Wireless Sensor Networks,
 - Mesh Networks

Introduction to Ad hoc Wireless Networks

Rama Suri
Narayananam

Agenda

Introduction

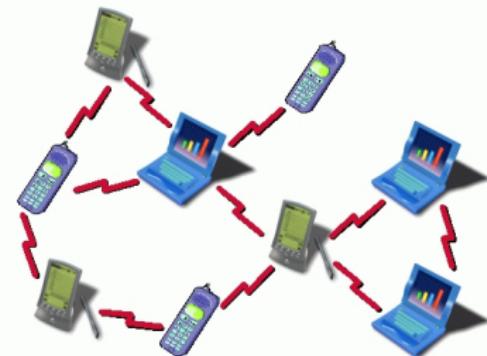
Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

- Autonomous system of nodes connected through wireless links
- No fixed infrastructure
- Each node is also router
- Applications of ad hoc networks:
 - Military Applications,
 - Wireless Sensor Networks,
 - Mesh Networks

Introduction to Ad hoc Wireless Networks

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- Autonomous system of nodes connected through wireless links
- No fixed infrastructure
- Each node is also router
- Applications of ad hoc networks:
 - Military Applications,
 - Wireless Sensor Networks,
 - Mesh Networks

Introduction to Ad hoc Wireless Networks

Rama Suri
Narayananam

Agenda

Introduction

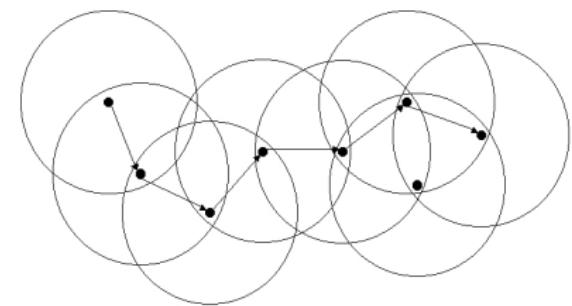
Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

- Autonomous system of nodes connected through wireless links
- No fixed infrastructure
- Each node is also router
- Applications of ad hoc networks:
 - Military Applications,
 - Wireless Sensor Networks,
 - Mesh Networks

Introduction to Ad hoc Wireless Networks

Rama Suri
Narayananam

Agenda

Introduction

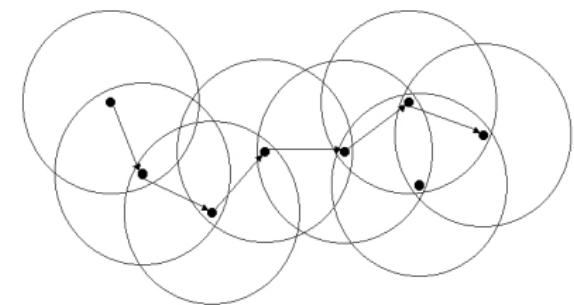
Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

- Autonomous system of nodes connected through wireless links
- No fixed infrastructure
- Each node is also router
- Applications of ad hoc networks:
 - Military Applications,
 - Wireless Sensor Networks,
 - Mesh Networks

Selfish Behavior of Wireless Nodes

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast
Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- nodes are owned by individuals in many applications
- source nodes communicate with far off destinations by using intermediate nodes as relays
- limitation of finite energy supply concerns the nodes to relay packets for other nodes
- if every node behaves selfishly, throughput of individual nodes go down
- tradeoff between throughput and resources of nodes such as battery energy, CPU cycles, bandwidth, etc.

Forwarder's Dilemma

Rama Suri
Narayananam

Agenda

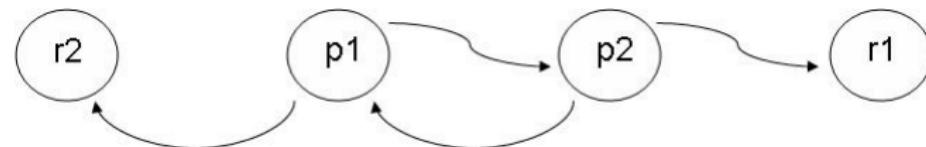
Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal


The Model

Important
Results

Simulations

Conclusions

Future Work

- p_1 wants to send a packet to r_1 and p_2 wants to send a packet to r_2

Forwarder's Dilemma

Rama Suri
Narayananam

Agenda

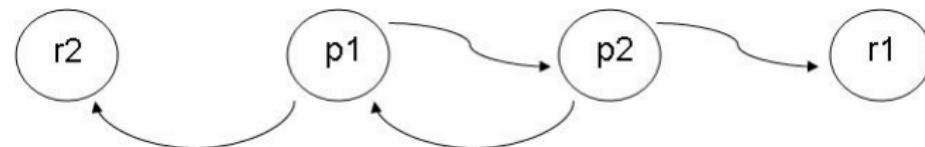
Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal


The Model

Important
Results

Simulations

Conclusions

Future Work

- p_1 wants to send a packet to r_1 and p_2 wants to send a packet to r_2
- value of communication for both nodes is 1 unit

Forwarder's Dilemma

Rama Suri
Narayananam

Agenda

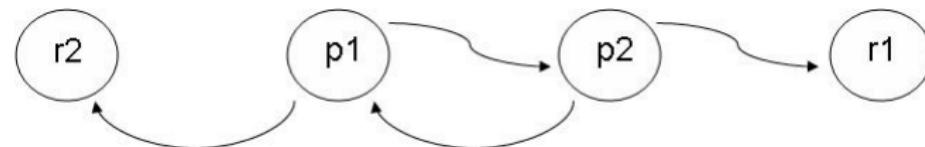
Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal


The Model

Important
Results

Simulations

Conclusions

Future Work

- p_1 wants to send a packet to r_1 and p_2 wants to send a packet to r_2
- value of communication for both nodes is 1 unit
- forwarding incurs p_1 and p_2 a fixed cost $0 < c < 1$ units

Forwarder's Dilemma

Rama Suri
Narayananam

Agenda

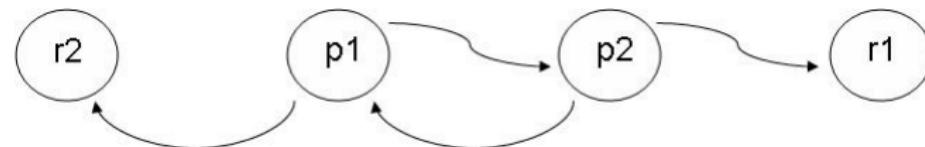
Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal


The Model

Important
Results

Simulations

Conclusions

Future Work

- p_1 wants to send a packet to r_1 and p_2 wants to send a packet to r_2
- value of communication for both nodes is 1 unit
- forwarding incurs p_1 and p_2 a fixed cost $0 < c < 1$ units
- utility to each node: $(1 - c)$

Forwarder's Dilemma

Rama Suri
Narayananam

Agenda

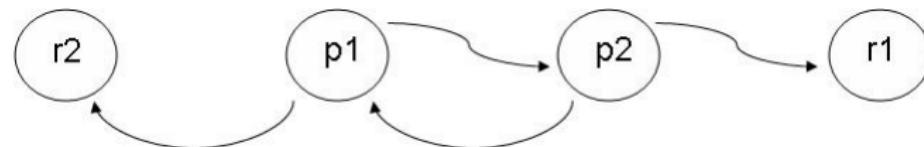
Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal


The Model

Important
Results

Simulations

Conclusions

Future Work

- p_1 wants to send a packet to r_1 and p_2 wants to send a packet to r_2
- value of communication for both nodes is 1 unit
- forwarding incurs p_1 and p_2 a fixed cost $0 < c < 1$ units
- utility to each node: $(1 - c)$
- *Dilemma:* Each node is tempted to drop the forwarding packet to save its resources such as battery power, CPU cycles, bandwidth resulting in zero utility. But they could do better by relaying packets.

Observation

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration

Modeling as
Game

Broadcast

Relevant Work

Limitations

Bayesian Setting

Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Consequence of Rational Behavior of Nodes

Rational behavior of a node suggests that forwarding the transit traffic is not a best strategy, since the forwarding activity consumes its own resources.

Mechanism Design Approach is a Solution

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration

Modeling as
Game

Broadcast

Relevant Work

Limitations

Bayesian Setting

Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- cooperation among nodes in terms of forwarding packets can be triggered, if nodes are reimbursed appropriately to compensate the incurred costs

Mechanism Design Approach is a Solution

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- cooperation among nodes in terms of forwarding packets can be triggered, if nodes are reimbursed appropriately to compensate the incurred costs
- incurred cost of a node is known to itself. so it is private information !!!!

Mechanism Design Approach is a Solution

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- cooperation among nodes in terms of forwarding packets can be triggered, if nodes are reimbursed appropriately to compensate the incurred costs
- incurred cost of a node is known to itself. so it is private information !!!!
- nodes may not announce their true incurred cost since they are rational and intelligent

Mechanism Design Approach is a Solution

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- cooperation among nodes in terms of forwarding packets can be triggered, if nodes are reimbursed appropriately to compensate the incurred costs
- incurred cost of a node is known to itself. so it is private information !!!!
- nodes may not announce their true incurred cost since they are rational and intelligent
- by providing incentives to the nodes appropriately, we can make them reveal their true costs

Mechanism Design Approach is a Solution

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast
Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- cooperation among nodes in terms of forwarding packets can be triggered, if nodes are reimbursed appropriately to compensate the incurred costs
- incurred cost of a node is known to itself. so it is private information !!!!
- nodes may not announce their true incurred cost since they are rational and intelligent
- by providing incentives to the nodes appropriately, we can make them reveal their true costs
- Game Theory** and **Mechanism Design** are useful to address the problem

Modeling Ad hoc Networks as Games

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration

Modeling as
Game

Broadcast

Relevant Work

Limitations

Bayesian Setting

Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Components of a Game	Elements of ad hoc network
players	wireless nodes
strategy	decision to forward
utility function	performance measures

players

wireless nodes

strategy

decision to forward

utility function

performance measures

Incentive Compatible Broadcast (ICB) Problem

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- broadcast is useful in many contexts such as route discovery, paging a particular host, sending alarm signal
- successful broadcast requires appropriate forwarding of packets by nodes
- need to provide incentives to compensate the forwarding costs of the nodes
- an incentive mechanism needs to be built into the broadcast protocol
- we refer to the problem of designing robust broadcast protocols with appropriate incentive schemes as *Incentive Compatible Broadcast (ICB)* problem

Relevant Work

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions
Future Work

- incentive compatible unitcast (or truthful unicast) and incentive compatible multicast (or truthful multicast) problems exist already

Relevant Work

Rama Suri
Narayananam

Agenda

Introduction

Motivation
An Illustration
Modeling as
Game

Broadcast
Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions
Future Work

- incentive compatible unitcast (or truthful unicast) and incentive compatible multicast (or truthful multicast) problems exist already
- several mechanism design based solutions are proposed based on VCG mechanisms

Relevant Work

Rama Suri
Narayananam

Agenda

Introduction

Motivation
An Illustration
Modeling as
Game

Broadcast
Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions
Future Work

- incentive compatible unitcast (or truthful unicast) and incentive compatible multicast (or truthful multicast) problems exist already
- several mechanism design based solutions are proposed based on VCG mechanisms
- ICB problem is different from incentive compatible unicast and multicast !!!!
 - no notion of intermediate nodes
 - all nodes are intended recipients except the source

Relevant Work

Rama Suri
Narayananam

Agenda

Introduction

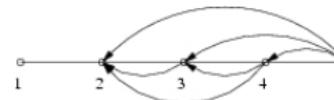
Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

- incentive compatible unitcast (or truthful unicast) and incentive compatible multicast (or truthful multicast) problems exist already
- several mechanism design based solutions are proposed based on VCG mechanisms
- ICB problem is different from incentive compatible unicast and multicast !!!!!
 - no notion of intermediate nodes
 - all nodes are intended recipients except the source
- borrowing solution techniques from incentive compatible unicast and multicast problems may lead to inefficient solutions to the ICB problem

Limitations of the VCG Based Protocols

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work

Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- *Limitation 1:* network needs to be bi-connected to design the incentive mechanism

Limitations of the VCG Based Protocols

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- *Limitation 1:* network needs to be bi-connected to design the incentive mechanism
- *Limitation 2:* may not be self-sustaining

Bayesian Setting for ICB Problem

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions
Future Work

- network need not be bi-connected

Bayesian Setting for ICB Problem

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions
Future Work

- network need not be bi-connected
- self sustaining protocols can be designed

Bayesian Setting for ICB Problem

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- network need not be bi-connected
- self sustaining protocols can be designed
- cost of the protocol is less

Bayesian Setting for ICB Problem

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- network need not be bi-connected
- self sustaining protocols can be designed
- cost of the protocol is less
- payment computations can be done in a single round

Our Goal

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Our Goal

Design of an incentive mechanism for the ICB problem using Bayesian incentive compatible mechanisms and build it as part of the broadcast protocol for ad hoc wireless networks with rational nodes

Such a broadcast protocol is called *Bayesian Incentive Compatible Broadcast (BIC-B)* protocol

The Model for ICB Problem

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- ad hoc network is modeled as *node weighted graph*
- similar to our mechanism design framework developed so far
- *assumption:* types of the nodes are statistically independent

Important Results

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration

Modeling as
Game

Broadcast

Relevant Work

Limitations

Bayesian Setting
Goal

The Model

**Important
Results**

Simulations

Conclusions

Future Work

Payment Rule

$$t_i(\theta) = \left(\frac{1}{n-1} \right) \sum_{j \neq i} E_{\theta_{-j}} \left[\sum_{I \in R, I \neq j} \theta_I \right] - E_{\theta_{-i}} \left[\sum_{I \in R, I \neq i} \theta_I \right]$$

- the payment rule is such that $\sum_{i=1}^n t_i(\theta) = 0$

An Illustrative Example

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

**Important
Results**

Simulations

Conclusions

Future Work

- a linear network with $N = \{1, 2, 3, 4\}$ being the set of nodes

An Illustrative Example

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

**Important
Results**

Simulations

Conclusions

Future Work

- a linear network with $N = \{1, 2, 3, 4\}$ being the set of nodes
- types of nodes are their incurred costs

An Illustrative Example

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- a linear network with $N = \{1, 2, 3, 4\}$ being the set of nodes
- types of nodes are their incurred costs
- assume the type sets of nodes are discrete for ease of understanding. $\Theta_1 = \{10, 11\}$, $\Theta_2 = \{15, 16\}$, $\Theta_3 = \{12, 13\}$, and $\Theta_4 = \{7, 8\}$

An Illustrative Example

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Computation of payment to node 1:

$$\begin{aligned} t_1(\theta) &= \left(\frac{1}{4-1}\right) \sum_{j \neq 1} E_{\theta_{-j}} \left[\sum_{I \in R, I \neq j} \theta_I \right] \\ &\quad - E_{\theta_{-1}} \left[\sum_{I \in R, I \neq 1} \theta_I \right] \\ &= \left(\frac{1}{3}\right) \left[E_{\theta_{-2}} \left[\sum_{I \in R, I \neq 2} \theta_I \right] + E_{\theta_{-3}} \left[\sum_{I \in R, I \neq 3} \theta_I \right] \right] \\ &\quad + \left(\frac{1}{3}\right) \left[E_{\theta_{-4}} \left[\sum_{I \in R, I \neq 4} \theta_I \right] \right] - E_{\theta_{-1}} \left[\sum_{I \in R, I \neq 1} \theta_I \right] \\ &= \left(\frac{1}{3}\right) \left[E_{\theta_{-2}} [\theta_3] + E_{\theta_{-3}} [\theta_2] + E_{\theta_{-4}} [\theta_2 + \theta_3] \right] \\ &\quad - E_{\theta_{-1}} [\theta_2 + \theta_3] \\ &= \left(\frac{1}{3}\right) \left[E_{\theta_{-2}} [\theta_3] + E_{\theta_{-3}} [\theta_2] + E_{\theta_{-4}} [\theta_2] + E_{\theta_{-4}} [\theta_3] \right] \\ &\quad - \left[E_{\theta_{-1}} [\theta_2] + E_{\theta_{-1}} [\theta_3] \right] \\ &\qquad\qquad\qquad \text{(since types are statistically independent)} \\ &= \left(\frac{1}{3}\right) [12.5 + 15.5 + 15.5 + 12.5] - [15.5 + 12.5] \\ &= -9.33 \end{aligned}$$

An Illustrative Example

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

**Important
Results**

Simulations

Conclusions

Future Work

- Similarly we can compute the payments to the remaining nodes:
 - $t_2(\theta) = 11.33$
 - $t_3(\theta) = 7.33$
 - $t_4(\theta) = -9.33$

An Illustrative Example

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations

Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- Similarly we can compute the payments to the remaining nodes:

- $t_2(\theta) = 11.33$
- $t_3(\theta) = 7.33$
- $t_4(\theta) = -9.33$

- Now sum of the payments is:

$$\begin{aligned}\sum_{i=1}^{i=4} t_i(\theta) &= -9.33 + 11.33 + 7.33 - 9.33 \\ &= 0.\end{aligned}$$

Payments to Non-Router Nodes

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

Lemma 1

For any $i \in R$ and for any $j \notin R$, we have

$$E_{\theta_{-i}} \left[\sum_{l \in R, l \neq i} \theta_l \right] = E_{\theta_{-j}} \left[\sum_{l \in R, l \neq i} \theta_l \right]$$

Lemma 2

In the *BIC-B* protocol,

$$t_i(\theta) = \left(\frac{1}{n-1} \right) \sum_{j \in R} (\gamma_j - \Gamma) < 0, \forall i \notin R, \forall \theta \in \Theta.$$

That is, non-router nodes pay for receiving the packet.

Lemma 3

The payments by the non-router nodes, i.e., $t_i(\cdot)$, $\forall i \notin R$ are all the same.

Optimality of the BIC-B Protocol

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

**Important
Results**

Simulations

Conclusions

Future Work

Theorem 1

If the given SRBT is optimal for the underlying graph G of the ad hoc wireless network under consideration, then the BIC-B mechanism minimizes the payment to be made to each node

Experimental Analysis

Rama Suri
Narayanan

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

Average Payment Ratio (APR): Average payment to the routers for forwarding packet(s)

Experimental Analysis

Rama Suri
Narayanan

Agenda

Introduction

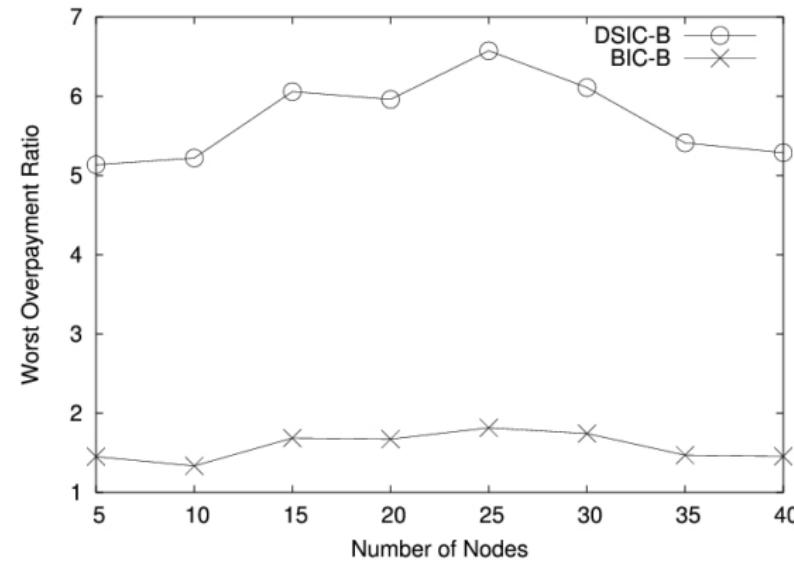
Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model


Important
Results

Simulations

Conclusions

Future Work

Worst Overpayment Ratio (WOR): $\max_{i \in N}$ (Ratio of payment made by node i to its least cost path from s)

Conclusions

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- the problem of designing an incentive mechanism for the broadcast task (ICB problem) in ad hoc wireless network is considered
- a Bayesian incentive compatible mechanism is developed
- BIC-B protocol has several nice properties such as equal payments to all the non-routers

Future Work

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- how to go about with the prior probability distributions?
Jason D. Hartline, *Optimal Mechanism Design without Priors*
- it would be interesting to design a distributed algorithm for the payments computation in BIC-B protocol since ad hoc wireless networks are distributed in nature
- another pointer for future work would be to explore the design of Bayesian incentive compatible protocols for the truthful unicast problem and truthful multicast problems

References

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- N. Rama Suri, Y. Narahari. *Design of Incentive Compatible Protocols for Wireless Networks: A Game Theoretic Approach*. In the Proceedings of IEEE INFOCOM Student's Workshop, 2006.
- V. Srinivasan, N. Pavan, C.F. Chiasserini, R.R. Rao. *Cooperation in Wireless Ad hoc Networks*. In Proceedings of IEEE Infocom 2003.
- N. Rama Suri, Y. Narahari. *Design of Optimal Bayesian Incentive Compatible Broadcast Protocol for Ad hoc Networks with Rational Nodes*. Communicated to IEEE Journal on Selected Areas of Communication.

References

Rama Suri
Narayananam

Agenda

Introduction

Motivation

An Illustration
Modeling as
Game

Broadcast

Relevant Work
Limitations
Bayesian Setting
Goal

The Model

Important
Results

Simulations

Conclusions

Future Work

- S. Zhong, L.E. Li, Y.R. Yang, and Y. Liu. *On designing incentive-compatible routing and forwarding protocols in wireless ad hoc networks – an integrated approach using game theoretical and cryptographic techniques*. In ACM/Baltzer Wireless Networks (WINET), 2006.
- W. Wang, X.Y. Li, and Y. Wang. *Truthful multicast in selfish wireless networks*. In the Proceedings of ACM MOBICOM, 2004.
- V. Srinivasan, J. Neel, A.B. MacKenzie, R. Menon, L.A. DaSilva, J. Hicks, J.H. Reed, and R. Giles. *Using game theory to analyze wireless ad hoc networks*. In IEEE Communications Surveys and Tutorials, 7(4):46-56, 2005.