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Chapter 33

Mathematical Preliminaries

In this appendix, we provide essential definitions and key results which are used at
various points in the book. We also provide a list of sources where more details
and proofs may be looked up. The topics covered include: probability, linear al-
gebra, linear programming, mathematical analysis, and computational complexity.
We have only presented key definitions and results here and for rigorous technical
details, the reader is urged to look up the references provided at the end.

33.1 Probability Theory

A probability model is a triple (2, F,P) where

e () is a set of outcomes of an experiment and is called the sample space.

o F C 2% satisfies closure under complement and countable union of sets, and
contains €2; F is called a o-algebra over {2 and the elements of F are called
events.

e P:F — [0,1] is a probability mapping that satisfies
(a) P(0)=0<PA) <PQ)=1,VAeF
(b) (Countable Additivity): Given a countably infinite number of disjoint sub-

sets A; (1=1,2,...) of Q,

P(A1UA2U):P(A1)+P(A2)+

The above two properties are also called axioms of probability. A random variable
X is a mapping X : @ — R such that the probability P{X < z} Vz € R is well
defined and can be computed.

The cumulative distribution function (CDF) of a random variable X is a mapping
Fx : R — [0, 1] defined by

Fx(z) = P{X < x}

The CDF is monotone non-decreasing and right continuous and satisfies

lim FX (l’) =0
T—r—00

lim Fx(z)=1
T—00

475



January 7, 2014 12:23 World Scientific Book - 10.25in x 7.5in book

476 Game Theory and Mechanism Design

A random variable where range is countable is called a discrete random variable
while, a random variable whose CDF is continuous is called a continuous random
variable. Clearly the range of a continuous random variable is uncountably infinite.

If X is a discrete random variable with range {1,2,...} we define its probability
mass function as

P{X =i} fori=1,2,...
It can be shown easily that >, P{X =i} = 1. If X is a continuous random variable,

we define its probability density function, if it exists, as

fx(x) = dF§;$); Va € range(X)

It is a simple matter to show that
o0
/ fx(x)dx =1
—o0
Two events E and F' are said to be mutually exclusive if £ N F = () which means
P(EFUF)=P(E)+P(F)

The events F and F are called independent if the probability of occurrence of F
does not depend on the occurrence of F'. It can be shown that independence of
events I/ and F is equivalent to:

P(E N F) = P(E)P(F)

If E1, Eo, ..., E, are mutually disjoint events such that £y U Ey--- U E, =  and
P(E;) > 0 Vi, then for any event F' € F, we can write

P(F) =Y P(F|E)P(E;)
=1

The Bayes Rule is an important result on conditional probabilities which states that
for any two events E, F' € F such that P(E) > 0 and P(F) > 0,

P(F|E)P(E)

P(F)
P(FE) is called the prior; P(E|F) is called the posterior; P(F|E)P(E) represents the
support F provides to E.

P(E|F) =

An immediate extension of Bayes’ rule is when the sets Fq, Fo, ..., F, are mu-
tually exclusive such that U, E; =  and P(E;) > 0 Vi. In such a case, we have for
1=1,...,n,

P(F|E;)P(E;

XL P(FIE)P(E)
Suppose we have a random vector X7, ..., X,. Define the random variable X as:

P{X = (s1,...,80)} = P{X1 =s15...; X, = s}
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This is called a joint probability distribution. If X7i,..., X, are mutually indepen-
dent, then V(sy,..., sp), we will have:

P{X = (s1,...,80)} =P{X1 =s1}...P{X,, = s}
The probabilities P{X; = s;} are called the marginal probabilities. Also, given that
X1,..., X, are mutually independent random variables, we can define the following
joint distributions with the probability mass functions:
P{Xl = l‘l}P{XQ = 172}
P{X1 = 21}P{ X2 = 22}P{ X3 = 23}

33.2 Linear Algebra

We present here a few key concepts in linear algebra. For the sake of brevity, we
avoid defining a vector space here. The books [1, 2] must be consulted for more
details.

Suppose V' = {v1,v9,...} is a set of vectors and I is the index set {1,2,...} for
V. We say a vector x can be expressed as a linear combination of vectors in V if
there are real numbers \; (i € I) such that not all \; are zero and

xr = Z >\i'Ui
el

The set of all vectors that can be expressed as a linear combination of vectors in V'
is called the span of V' and denoted by span(V).

Linear Independence and Linear Dependence

A finite set of vectors V' = {v1,v9,...,v,} is said to be linearly dependent if there
exist A\;(i € I), not all zero, such that

Z )\i'Uz' =0.

el
A finite set of vectors V' = {v1,ve,...,v,} is said to be linearly independent if they
are not linearly dependent.

Example 33.1. The set {(1,0,0),(0,1,0),(0,0,1)} is linearly independent. The
set {(5,0,0),(0,1,0),(0,0,10)} is linearly independent. The set {(1,0,0), (0,1,0),
(1,1,0)} is linearly dependent. The set {(1,0,0), (0,1,0), (5,6,0)} is also linearly
dependent. O

Rank

The rank of a set of vectors V is the cardinality of a largest subset of linearly
independent vectors in V.
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Basis

Let V be a set of vectors and B a finite linearly independent subset of V. The set
B is said to be a maximal linearly independent set if

B U {z} is linearly dependent Vo € V' \ B

A basis of V' is a maximal linearly independent subset of V. It can be shown that
every vector space V' C R"™ has a basis and if B is a basis of V, then span(V) =
span(B). Moreover if B and B’ are two bases of V, then |B| = |B’| = rank(V'). The
cardinality of the set B is called the dimension of V.

33.3 Linear Programming and Duality

A linear program (LP) consists of

e a set of variables z1,xz9,...,z, € R,
e a linear objective function

n
g CiZq
i=1

where ¢1,ca,..., ¢, € R are known real numbers (called weights), and
e a set of linear constraints that weighted sums of variables must satisfy.

A linear program in canonical form is described by
minimize cx
subject to Az >

x>0
where

c=le1...cn); x=]x1.. .xn]T; A = [aijlmxn; b=1[b1.. .bm]T.

A linear program in standard form is described by
minimize cx
subject to Az =10
x>0
The following is a typical maximization version of a linear program:

maximize czx
subject to Az <b
x>0
A linear programming problem without an objective function is called a feasibility

problem. A vector x = (1 ...z,)" which satisfies the constraints is called a feasible
solution. A feasible solution x that optimizes (minimizes or maximizes as the case
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may be) the objective function is called an optimal solution and is usually denoted
by the vector z* = (x%,...,25)T.

The set of all feasible solutions of a linear program corresponds to a convex
polyhedron in n-dimensional space. The constraints which are linear correspond to
hyperplanes in the n-dimensional space.

As a consequence of the objective function being linear, any local optimum in the
feasible space is also a global optimum. Furthermore, at least one optimal solution
will exist at a vertex of the polyhedron.

The well known simplex algorithm for solving linear programs works as follows.
The algorithm starts from a vertex and proceeds to neighboring vertices, each time
improving the value of the objective function (“decreasing” in the case of minimiza-
tion and “increasing” in the case of maximization) until an optimum is found. The
worst case time complexity of the simplex algorithm is exponential in the number
of variables and constraints.

Interior point methods solve linear programs by exploring the interior region
of the polyhedron rather than vertices. Interior point methods with worst case
polynomial time complexity have also been developed.

Duality in Linear Programs
Example 33.2. First we consider an example of an LP in canonical form:

minimize 6x7 + 8ry — 10x3

subject to 31 + 1o —x3 >4
Sx1 + 2x90 — Txg > 7
x1,T2,23 >0

The dual of this LP is given by

maximize 4w + Tws
subject to 3wi 4+ bwy < 6

wy + 2wy < 8
—wi — 711)2 S —10
wy,wz > 0
We now generalize this example in the following discussion. ]

Given
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the primal LP in canonical form is:
minimize cx
subject to Ax > b
xz > 0.
The dual of the above primal is given by
maximize wb
subject to wA < ¢
w > 0.
A primal LP in standard form is
minimize cx
subject to Ax = b
xz > 0.
The dual of the above primal is:
maximize wb
subject to wA < ¢
w unrestricted
The above forms appear in the maxminimization and minmaximization problems in
matrix games (Chapter 9). It is a simple matter to show that the dual of the dual

of a (primal) problem is the original (primal) problem itself. We now state a few
important results concerning duality, which are relevant to our requirements.

Weak Duality Theorem

If the primal is a maximization problem, then the value of any feasible primal
solution is less than or equal to the value of any feasible dual solution. If the primal
is a minimization problem, then the value of any feasible primal solution is greater
than or equal to the value of any feasible dual solution.

Strong Duality Theorem

Given a primal and its dual, if one of them has an optimal solution then the other
also has an optimal solution and the values of the optimal solutions are the same.
Note that this is the key result which is used in proving the minimax theorem:.

Fundamental Theorem of Duality

Given a primal and its dual, exactly one of the following statements is true.

(1) Both possess optimal solution (say x* and w*) with cz* = w*b.

(2) One problem has unbounded objective value in which case the other must be
infeasible.

(3) Both problems are infeasible.
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33.4 Mathematical Analysis

Metric Space

A metric space (V,d) consists of a set V and a mapping d : V x V' — R such that
Vz,y,z € V, the following holds.

(1) d(z,y) >

(2) (xy)—olff T=y

(3) d(z,y) = d(y, z)

(4) d(x,z) < d(z,y) +d(y, 2)

The mapping d is called a metric or distance function. It may be noted that the
first condition above follows from the other three.

Open Ball

Given a metric space (V,d), an open ball of radius > 0 and center z € V, is the
set B(z,r) ={y eV :d(z,y) <r}.

Open Set

An open set X in a metric space (V,d) is a subset of V' such that we can find, at
each x € X, an open ball that is contained in X.

Bounded Set

A subset X of a metric space (V, d) is said to be bounded if X is completely contained
in some open ball, around 0, with a finite radius.

Closed Set

A subset X of a metric space V' is said to be a closed set iff every convergent sequence
in X converges to a point which lies in X. That is, for all sequences {zj} in X such
that xp — x for some x € V, it will happen that x € X. It may be noted that a set
X is closed iff the complement set X¢ =V \ X is an open set.

Compact Set

Given a subset X of a metric space (V,d), X is said to be compact if every sequence
of points in X has a convergent subsequence. A key result is that if the metric space
V is R™ (under the Euclidean metric), then a subset X is compact iff it is closed
and bounded.

Example 33.3 (Compact Sets). The closed interval [0,1] is compact. None of the
sets [0,00), (0,1), (0,1], [0,1), (—o0,00) is compact. Observe that the sets [0,00) and
(—00,00) are closed but not bounded. Any finite subset of R is compact. [l
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A Useful Result

Let X € R™ and let f : X — R* be a continuous function. Then the image of a
compact set under f is also compact.

Wezerstrass Theorem

Let X C R™ and let f : X — R be a continuous function. If X is compact, then f
has and attains a maximum and a minimum in X.

Convezxity
Convex Combination

Given x1,...,Tm, € R, a point y € R" is called a convex combination of x1,...,zm
if there exist numbers Aq,..., A, € R such that

(1) N>0, i=1,...,m
(2) X =1
(3) y=1221" Niwi

Convez Set

A set X C R” is said to be convex if the convex combination of any two points in
X is also in X. The above definition immediately implies that a finite set with two
or more elements cannot be convex. Intuitively, the set X is convex if the straight
line segment joining any two points in X is completely contained in X.

Example 33.4 (Convex Sets). A singleton set is always convex. The intervals (0, 1),
(0,1], [0,1), [0,1] are all convex. The set X = {z € R? : ||z|| < 1} is convex. The set
X ={z € R?: ||z|| = 1} is not convex. O

Concave and Convexr Functions

Let X C R™ be a convex set. A function f : X — R is said to be concave iff
Vz,y € X and VA € (0,1),

fz+ (1= Ny] > Af(x)+ (1 =N f(y)
f is said to be convex iff Vx,y € X and VX € (0,1)
fAz+ (1 =Nyl < Af(x) + (1 =) f(y)

An alternative definition for convex and concave functions is as follows.
If X C R™is a convex set and f: X — R is a function, define

sub f = {(z,y) v € X,y € R, f(z) > y}
epif:{(x,y) IZL‘EX,yGR,f(ﬁ) Sy}

fis concave if sub f is convex ; f is convex if epi f is convez.
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Example 33.5 (Convex and concave sets). The function fi(z) = 2%,z € R is nei-
ther convex nor concave. The function fao(x) = axz + b,z € R™ and a,b € R is both convex
and concave. The function f3 : RT™ — R defined by f3(z) = 2 where RT is the set of all
positive real numbers is concave for 0 < o < 1 and convex for o > 1. If & = 1, then f3 is
both concave and convex. O

Some Results on Converity
Suppose X C R" is a convex set. Then:

(1) A function f: X — R is concave iff the function — f is convex.
(2) Let f: X — R be concave or convex. If X is an open set, then f is continuous
on X. If X is not an open set, then f is continuous on the interior of X.

Quasi-Concavity and Quasi-Convexity

Let X C R” be a convex set and let f : X — R be a function. The upper contour
set of f at a € R is defined as

Upla) ={z € X : f(z) = a}
The lower contour set of f at a € R is defined as
Li(a) ={x e X : f(z) <a}

A function f : X — R is said to be quasi-concave if Us(a) is convex for all a € R
and is said to be quasi-convex if L¢(a) is convex for all a € R.
Alternatively, f : X — R is quasi-concave on X iff Vz,y € X and V \ € (0, 1),

fAz + (1= A)y] = min(f(z), f(y))

and quasi-conver on X iff Vz,y € X and VA € (0,1),

Az + (1= A)y] < max(f(z), f(y))

It can be immediately noted that every convex (concave) function is quasi-convex
(quasi-concave).

Example 33.6 (Quasi-concave and Quasi-convex sets). The function f(z) =
23 on R is quasi-convex and also quasi-concave on R. But it is neither convex nor concave
on R. Note that the upper contour set and also the lower contour set are both convex and
hence the function is both quasi-convex and quasi-concave. Also, for every pair of points
and xo, the values of the function for points between x1 and x5 lie between min(f(x1), f(z2))
and max(f(z1), f(x2)) and therefore the function is both quasi-convex and quasi-concave.
Any non-decreasing function f : R — R is quasi-convex and quasi-concave. But it need not
be convex and need not be concave. ([l
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33.5 Computational Complexity Classes

P, NP, and NPC

The notion of NP-completeness is studied in the framework of decision problems.
Most problems we are typically interested in are optimization problems. In order to
apply the theory of NIP-completeness, we have to recast optimization problems as
decision problems.

Example 33.7. Consider the problem SPATH that finds, given an unweighted, undirected
graph G = (V, E) and two vertices u,v € V, a shortest path between u and v. An instance
of SPATH consists of a particular graph and two vertices of that graph. A given instance
may have no solution, exactly one solution, or multiple solutions. A decision problem PATH
related to optimization problem SPATH will be : given a graph G = (V, E) and two vertices
u,v € V, and a non-negative integer k, does there exist a path between u and v of length at
most k7 The decision problem PATH is one way of transforming the original optimization
problem into a decision problem. ]

If an optimization problem is easy, then its related decision problem is easy as
well. Similarly, if there is evidence that a decision problem is hard, then its related
optimization problem is hard.

The classes P and NP

The complexity of an algorithm is said to be polynomially bounded if its worst case
complexity is bounded by a polynomial function of the input size. The common
reference model used here is a deterministic Turing machine. P is the set of all
problems which are solvable in polynomial time on a deterministic Turing machine.

NP represents the class of decision problems which can be solved in polynomial
time by a non-deterministic Turing machine. A non-deterministic Turing machine
makes the right guesses on every move and races towards the solution much faster
than a deterministic Turing model. An equivalent definition of NP is : NP is the set
of all decision problems whose solutions can be verified in polynomial time. More
specifically, given a candidate solution to the problem (call it certificate), one can
verify in polynomial time (on a deterministic Turing machine) whether the answer
to the decision problem is YES or NO.

Clearly, P C NIP. However it is unknown whether NIP = IP. This is currently the
most celebrated open problem in computer science.

Reducibility of Problems

Suppose we have an algorithm for solving a problem Y. We are given a problem X
and assume that there is a function T that takes an input z for X and produces
T'(x) which is an input for Y, such that the correct answer for X on z is YES if
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and only if the correct answer for Y on T'(x) is YES. Then by using 7" and the
algorithm for Y, we have an algorithm for X. If the function T' can be computed
in polynomially bounded time (on a deterministic Turing machine), we say X is
polynomially reducible to Y and we write

X<pY
If X <p Y, the implication is that Y is at least as hard to solve as X. That is, X
is no harder to solve than Y. Clearly

X<pYandY eP— XeP

NP-hard and NP-complete Problems

A decision problem Y is said to be NP-hard if X <p Y, VX € NP. An NP-hard
problem Y is said to be NPP-complete if Y € NPP. The set of all NP-complete problems
is denoted by NPC.

Note. Informally, an NP-hard problem is a problem that is at least as hard as
any problem in NP. If in addition, the problem belongs to NP, it would be called
NP-complete.

Note. In order to show that a decision problem Y is NP-complete, it is enough we
find a decision problem X € NPPC such that X <p Y and Y € NP.

Note. If it turns out that any single problem in NIPC is in P, then NP = P.
Note. An alternative way of characterizing NIPC is that it is the set of all decision
problems Y € NP such that X <p Y where X is any NIP-complete problem.

A List of NIP-complete Problems

Here is a list of popular problems whose decision versions are NPP-complete.

1) 3-SAT (Boolean satisfiability problem with three variables)

2) Knapsack problem

w

Traveling salesman problem

N

Vertex cover problem

(=2

Steiner tree problem
7
8

(
(
(
(
(
(
(7) Weighted set packing problem
(

)
)
)
) Graph coloring problem
)
)
)

Weighted set covering problem

33.6 Summary and References

In this appendix, we have provided key definitions and results from probability the-
ory, linear algebra, linear programming, mathematical analysis, and computational
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complexity. While these definitions and results serve as a ready reference, the reader

is urged to look up numerous scholarly textbooks which are available in the area.

We

only mention a few sample texts here:

Probability [3]

Linear Algebra |1} 2

Linear Programming [4]
Mathematical Analysis [5]
Computational Complexity |6, 7]

The books by Vohra [§], Sundaram [9], and by Mas-Colell, Whinston, and Green

[10] are excellent references as well for many of the mathematical preliminaries.
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