
December 27, 2013 11:21 World Scientific Book - 10.25in x 7.5in book

Chapter 33

Mathematical Preliminaries

In this appendix, we provide essential definitions and key results which are used at
various points in the book. We also provide a list of sources where more details
and proofs may be looked up. The topics covered include: probability, linear al-
gebra, linear programming, mathematical analysis, and computational complexity.
We have only presented key definitions and results here and for rigorous technical
details, the reader is urged to look up the references provided at the end.

33.1 Probability Theory

A probability model is a triple (Ω,F,P) where

• Ω is a set of outcomes of an experiment and is called the sample space.

• F ⊆ 2Ω satisfies closure under complement and countable union of sets, and

contains Ω; F is called a σ-algebra over Ω and the elements of F are called

events.

• P : F −→ [0, 1] is a probability mapping that satisfies

(a) P(∅) = 0 ≤ P(A) ≤ P(Ω) = 1, ∀A ∈ F
(b) (Countable Additivity): Given a countably infinite number of disjoint sub-

sets Ai (i = 1, 2, . . .) of Ω,

P(A1 ∪A2 ∪ . . .) = P(A1) + P(A2) + . . .

The above two properties are also called axioms of probability. A random variable

X is a mapping X : Ω −→ R such that the probability P{X ≤ x} ∀x ∈ R is well

defined and can be computed.

The cumulative distribution function (CDF) of a random variable X is a mapping

FX : R −→ [0, 1] defined by

FX(x) = P{X ≤ x}

The CDF is monotone non-decreasing and right continuous and satisfies

lim
x→−∞

FX(x) = 0

lim
x→∞

FX(x) = 1

475
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A random variable where range is countable is called a discrete random variable

while, a random variable whose CDF is continuous is called a continuous random

variable. Clearly the range of a continuous random variable is uncountably infinite.

If X is a discrete random variable with range {1, 2, . . . } we define its probability

mass function as

P{X = i} for i = 1, 2, . . .

It can be shown easily that
∑

i P{X = i} = 1. If X is a continuous random variable,

we define its probability density function, if it exists, as

fX(x) =
dFX(x)

dx
; ∀x ∈ range(X)

It is a simple matter to show that∫ ∞
−∞

fX(x)dx = 1

Two events E and F are said to be mutually exclusive if E ∩ F = ∅ which means

P(E ∪ F ) = P(E) + P(F )

The events E and F are called independent if the probability of occurrence of E

does not depend on the occurrence of F . It can be shown that independence of

events E and F is equivalent to:

P(E ∩ F ) = P(E)P(F )

If E1, E2, . . . , En are mutually disjoint events such that E1 ∪ E2 · · · ∪ En = Ω and

P(Ei) > 0 ∀i, then for any event F ∈ F, we can write

P(F ) =
n∑
i=1

P(F |Ei)P(Ei)

The Bayes Rule is an important result on conditional probabilities which states that

for any two events E,F ∈ F such that P(E) > 0 and P(F ) > 0,

P(E|F ) =
P(F |E)P(E)

P(F )

P(E) is called the prior; P(E|F ) is called the posterior; P(F |E)P(E) represents the

support F provides to E.

An immediate extension of Bayes’ rule is when the sets E1, E2, . . . , En are mu-

tually exclusive such that ∪ni=1Ei = Ω and P(Ei) > 0 ∀i. In such a case, we have for

i = 1, . . . , n,

P(Ei|F ) =
P(F |Ei)P(Ei)∑n
i=1 P(F |Ei)P(Ei)

Suppose we have a random vector X1, . . . , Xn. Define the random variable X as:

P{X = (s1, . . . , sn)} = P{X1 = s1; . . . ;Xn = sn}
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This is called a joint probability distribution. If X1, . . . , Xn are mutually indepen-

dent, then ∀(s1, . . . , sn), we will have:

P{X = (s1, . . . , sn)} = P{X1 = s1} . . .P{Xn = sn}
The probabilities P{Xi = si} are called the marginal probabilities. Also, given that

X1, . . . , Xn are mutually independent random variables, we can define the following

joint distributions with the probability mass functions:

• P{X1 = x1}P{X2 = x2}
• P{X1 = x1}P{X2 = x2}P{X3 = x3}
• . . .

• P{X1 = x1} . . .P{Xn = xn}

33.2 Linear Algebra

We present here a few key concepts in linear algebra. For the sake of brevity, we

avoid defining a vector space here. The books [1, 2] must be consulted for more

details.

Suppose V = {v1, v2, . . . } is a set of vectors and I is the index set {1, 2, . . . } for

V . We say a vector x can be expressed as a linear combination of vectors in V if

there are real numbers λi (i ∈ I) such that not all λi are zero and

x =
∑
i∈I

λivi

The set of all vectors that can be expressed as a linear combination of vectors in V

is called the span of V and denoted by span(V ).

Linear Independence and Linear Dependence

A finite set of vectors V = {v1, v2, . . . , vn} is said to be linearly dependent if there

exist λi(i ∈ I), not all zero, such that∑
i∈I

λivi = 0.

A finite set of vectors V = {v1, v2, . . . , vn} is said to be linearly independent if they

are not linearly dependent.

Example 33.1. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly independent. The

set {(5, 0, 0), (0, 1, 0), (0, 0, 10)} is linearly independent. The set {(1, 0, 0), (0, 1, 0),

(1, 1, 0)} is linearly dependent. The set {(1, 0, 0), (0, 1, 0), (5, 6, 0)} is also linearly

dependent. �

Rank

The rank of a set of vectors V is the cardinality of a largest subset of linearly

independent vectors in V .
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Basis

Let V be a set of vectors and B a finite linearly independent subset of V . The set

B is said to be a maximal linearly independent set if

B ∪ {x} is linearly dependent ∀x ∈ V \B

A basis of V is a maximal linearly independent subset of V . It can be shown that

every vector space V ⊆ Rn has a basis and if B is a basis of V , then span(V ) =

span(B). Moreover if B and B′ are two bases of V , then |B| = |B′| = rank(V ). The

cardinality of the set B is called the dimension of V .

33.3 Linear Programming and Duality

A linear program (LP) consists of

• a set of variables x1, x2, . . . , xn ∈ R,

• a linear objective function
n∑
i=1

cixi

where c1, c2, . . . , cn ∈ R are known real numbers (called weights), and

• a set of linear constraints that weighted sums of variables must satisfy.

A linear program in canonical form is described by

minimize cx

subject to Ax ≥ b
x ≥ 0

where

c = [c1 . . . cn]; x = [x1 . . . xn]T ; A = [aij ]m×n; b = [b1 . . . bm]T .

A linear program in standard form is described by

minimize cx

subject to Ax = b

x ≥ 0

The following is a typical maximization version of a linear program:

maximize cx

subject to Ax ≤ b
x ≥ 0

A linear programming problem without an objective function is called a feasibility

problem. A vector x = (x1 . . . xn)T which satisfies the constraints is called a feasible

solution. A feasible solution x that optimizes (minimizes or maximizes as the case
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may be) the objective function is called an optimal solution and is usually denoted

by the vector x∗ = (x∗1, . . . , x
∗
n)T .

The set of all feasible solutions of a linear program corresponds to a convex

polyhedron in n-dimensional space. The constraints which are linear correspond to

hyperplanes in the n-dimensional space.

As a consequence of the objective function being linear, any local optimum in the

feasible space is also a global optimum. Furthermore, at least one optimal solution

will exist at a vertex of the polyhedron.

The well known simplex algorithm for solving linear programs works as follows.

The algorithm starts from a vertex and proceeds to neighboring vertices, each time

improving the value of the objective function (“decreasing” in the case of minimiza-

tion and “increasing” in the case of maximization) until an optimum is found. The

worst case time complexity of the simplex algorithm is exponential in the number

of variables and constraints.

Interior point methods solve linear programs by exploring the interior region

of the polyhedron rather than vertices. Interior point methods with worst case

polynomial time complexity have also been developed.

Duality in Linear Programs

Example 33.2. First we consider an example of an LP in canonical form:

minimize 6x1 + 8x2 − 10x3

subject to 3x1 + x2 − x3 ≥ 4

5x1 + 2x2 − 7x3 ≥ 7

x1, x2, x3 ≥ 0

The dual of this LP is given by

maximize 4w1 + 7w2

subject to 3w1 + 5w2 ≤ 6

w1 + 2w2 ≤ 8

−w1 − 7w2 ≤ −10

w1, w2 ≥ 0

We now generalize this example in the following discussion. �

Given

c = [c1 . . . cn]; x = [x1 · · ·xn]T

A = [aij ]m×n; b = [b1 · · · bm]T

w = [w1 · · ·wm]
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the primal LP in canonical form is:

minimize cx

subject to Ax ≥ b
x ≥ 0.

The dual of the above primal is given by

maximize wb

subject to wA ≤ c
w ≥ 0.

A primal LP in standard form is

minimize cx

subject to Ax = b

x ≥ 0.

The dual of the above primal is:

maximize wb

subject to wA ≤ c
w unrestricted

The above forms appear in the maxminimization and minmaximization problems in

matrix games (Chapter 9). It is a simple matter to show that the dual of the dual

of a (primal) problem is the original (primal) problem itself. We now state a few

important results concerning duality, which are relevant to our requirements.

Weak Duality Theorem

If the primal is a maximization problem, then the value of any feasible primal

solution is less than or equal to the value of any feasible dual solution. If the primal

is a minimization problem, then the value of any feasible primal solution is greater

than or equal to the value of any feasible dual solution.

Strong Duality Theorem

Given a primal and its dual, if one of them has an optimal solution then the other

also has an optimal solution and the values of the optimal solutions are the same.

Note that this is the key result which is used in proving the minimax theorem.

Fundamental Theorem of Duality

Given a primal and its dual, exactly one of the following statements is true.

(1) Both possess optimal solution (say x∗ and w∗) with cx∗ = w∗b.

(2) One problem has unbounded objective value in which case the other must be

infeasible.

(3) Both problems are infeasible.
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33.4 Mathematical Analysis

Metric Space

A metric space (V, d) consists of a set V and a mapping d : V × V → R such that

∀x, y, z ∈ V , the following holds.

(1) d(x, y) ≥ 0

(2) d(x, y) = 0 iff x = y

(3) d(x, y) = d(y, x)

(4) d(x, z) ≤ d(x, y) + d(y, z)

The mapping d is called a metric or distance function. It may be noted that the

first condition above follows from the other three.

Open Ball

Given a metric space (V, d), an open ball of radius r > 0 and center x ∈ V , is the

set B(x, r) = {y ∈ V : d(x, y) < r}.

Open Set

An open set X in a metric space (V, d) is a subset of V such that we can find, at

each x ∈ X, an open ball that is contained in X.

Bounded Set

A subset X of a metric space (V, d) is said to be bounded if X is completely contained

in some open ball, around 0, with a finite radius.

Closed Set

A subset X of a metric space V is said to be a closed set iff every convergent sequence

in X converges to a point which lies in X. That is, for all sequences {xk} in X such

that xk → x for some x ∈ V , it will happen that x ∈ X. It may be noted that a set

X is closed iff the complement set Xc = V \ X is an open set.

Compact Set

Given a subset X of a metric space (V, d), X is said to be compact if every sequence

of points in X has a convergent subsequence. A key result is that if the metric space

V is Rn (under the Euclidean metric), then a subset X is compact iff it is closed

and bounded.

Example 33.3 (Compact Sets). The closed interval [0, 1] is compact. None of the

sets [0,∞), (0, 1), (0, 1], [0, 1), (−∞,∞) is compact. Observe that the sets [0,∞) and

(−∞,∞) are closed but not bounded. Any finite subset of R is compact. �
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A Useful Result

Let X ⊂ Rn and let f : X → Rk be a continuous function. Then the image of a

compact set under f is also compact.

Weierstrass Theorem

Let X ⊂ Rn and let f : X → R be a continuous function. If X is compact, then f

has and attains a maximum and a minimum in X.

Convexity

Convex Combination

Given x1, . . . , xm ∈ Rn, a point y ∈ Rn is called a convex combination of x1, . . . , xm
if there exist numbers λ1, . . . , λm ∈ R such that

(1) λi ≥ 0, i = 1, . . . ,m

(2)
∑m

i=1 λi = 1

(3) y =
∑m

i=1 λixi

Convex Set

A set X ⊂ Rn is said to be convex if the convex combination of any two points in

X is also in X. The above definition immediately implies that a finite set with two

or more elements cannot be convex. Intuitively, the set X is convex if the straight

line segment joining any two points in X is completely contained in X.

Example 33.4 (Convex Sets). A singleton set is always convex. The intervals (0, 1),

(0, 1], [0, 1), [0, 1] are all convex. The set X = {x ∈ R2 : ||x|| < 1} is convex. The set

X = {x ∈ R2 : ||x|| = 1} is not convex. �

Concave and Convex Functions

Let X ⊂ Rn be a convex set. A function f : X → R is said to be concave iff

∀x, y ∈ X and ∀λ ∈ (0, 1),

f [λx+ (1− λ)y] ≥ λf(x) + (1− λ)f(y)

f is said to be convex iff ∀x, y ∈ X and ∀λ ∈ (0, 1)

f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y)

An alternative definition for convex and concave functions is as follows.

If X ⊂ Rn is a convex set and f : X → R is a function, define

sub f = {(x, y) : x ∈ X, y ∈ R, f(x) ≥ y}
epi f = {(x, y) : x ∈ X, y ∈ R, f(x) ≤ y}

f is concave if sub f is convex ; f is convex if epi f is convex .
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Example 33.5 (Convex and concave sets). The function f1(x) = x3, x ∈ R is nei-

ther convex nor concave. The function f2(x) = ax + b, x ∈ Rn and a, b ∈ R is both convex

and concave. The function f3 : R+ → R defined by f3(x) = xα where R+ is the set of all

positive real numbers is concave for 0 < α < 1 and convex for α > 1. If α = 1, then f3 is

both concave and convex. �

Some Results on Convexity

Suppose X ⊂ Rn is a convex set. Then:

(1) A function f : X → R is concave iff the function − f is convex.

(2) Let f : X → R be concave or convex. If X is an open set, then f is continuous

on X. If X is not an open set, then f is continuous on the interior of X.

Quasi-Concavity and Quasi-Convexity

Let X ⊂ Rn be a convex set and let f : X → R be a function. The upper contour

set of f at a ∈ R is defined as

Uf (a) = {x ∈ X : f(x) ≥ a}

The lower contour set of f at a ∈ R is defined as

Lf (a) = {x ∈ X : f(x) ≤ a}

A function f : X → R is said to be quasi-concave if Uf (a) is convex for all a ∈ R
and is said to be quasi-convex if Lf (a) is convex for all a ∈ R.

Alternatively, f : X → R is quasi-concave on X iff ∀ x, y ∈ X and ∀ λ ∈ (0, 1),

f [λx+ (1− λ)y] ≥ min(f(x), f(y))

and quasi-convex on X iff ∀x, y ∈ X and ∀λ ∈ (0, 1),

f [λx+ (1− λ)y] ≤ max(f(x), f(y))

It can be immediately noted that every convex (concave) function is quasi-convex

(quasi-concave).

Example 33.6 (Quasi-concave and Quasi-convex sets). The function f(x) =

x3 on R is quasi-convex and also quasi-concave on R. But it is neither convex nor concave

on R. Note that the upper contour set and also the lower contour set are both convex and

hence the function is both quasi-convex and quasi-concave. Also, for every pair of points x1

and x2, the values of the function for points between x1 and x2 lie between min(f(x1), f(x2))

and max(f(x1), f(x2)) and therefore the function is both quasi-convex and quasi-concave.

Any non-decreasing function f : R→ R is quasi-convex and quasi-concave. But it need not

be convex and need not be concave. �
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33.5 Computational Complexity Classes

P,NP, and NPC

The notion of NP-completeness is studied in the framework of decision problems.

Most problems we are typically interested in are optimization problems. In order to

apply the theory of NP-completeness, we have to recast optimization problems as

decision problems.

Example 33.7. Consider the problem SPATH that finds, given an unweighted, undirected

graph G = (V,E) and two vertices u, v ∈ V , a shortest path between u and v. An instance

of SPATH consists of a particular graph and two vertices of that graph. A given instance

may have no solution, exactly one solution, or multiple solutions. A decision problem PATH

related to optimization problem SPATH will be : given a graph G = (V,E) and two vertices

u, v ∈ V , and a non-negative integer k, does there exist a path between u and v of length at

most k? The decision problem PATH is one way of transforming the original optimization

problem into a decision problem. �

If an optimization problem is easy, then its related decision problem is easy as

well. Similarly, if there is evidence that a decision problem is hard, then its related

optimization problem is hard.

The classes P and NP

The complexity of an algorithm is said to be polynomially bounded if its worst case

complexity is bounded by a polynomial function of the input size. The common

reference model used here is a deterministic Turing machine. P is the set of all

problems which are solvable in polynomial time on a deterministic Turing machine.

NP represents the class of decision problems which can be solved in polynomial

time by a non-deterministic Turing machine. A non-deterministic Turing machine

makes the right guesses on every move and races towards the solution much faster

than a deterministic Turing model. An equivalent definition of NP is : NP is the set

of all decision problems whose solutions can be verified in polynomial time. More

specifically, given a candidate solution to the problem (call it certificate), one can

verify in polynomial time (on a deterministic Turing machine) whether the answer

to the decision problem is YES or NO.

Clearly, P ⊆ NP. However it is unknown whether NP = P. This is currently the

most celebrated open problem in computer science.

Reducibility of Problems

Suppose we have an algorithm for solving a problem Y . We are given a problem X

and assume that there is a function T that takes an input x for X and produces

T (x) which is an input for Y , such that the correct answer for X on x is YES if
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and only if the correct answer for Y on T (x) is YES. Then by using T and the

algorithm for Y , we have an algorithm for X. If the function T can be computed

in polynomially bounded time (on a deterministic Turing machine), we say X is

polynomially reducible to Y and we write

X ≤P Y
If X ≤P Y , the implication is that Y is at least as hard to solve as X. That is, X

is no harder to solve than Y . Clearly

X ≤P Y and Y ∈ P =⇒ X ∈ P

NP-hard and NP-complete Problems

A decision problem Y is said to be NP-hard if X ≤P Y, ∀X ∈ NP. An NP-hard

problem Y is said to be NP-complete if Y ∈ NP. The set of all NP-complete problems

is denoted by NPC.

Note. Informally, an NP-hard problem is a problem that is at least as hard as

any problem in NP. If, in addition, the problem belongs to NP, it would be called

NP-complete.

Note. In order to show that a decision problem Y is NP-complete, it is enough we

find a decision problem X ∈ NPC such that X ≤P Y and Y ∈ NP.

Note. If it turns out that any single problem in NPC is in P, then NP = P.

Note. An alternative way of characterizing NPC is that it is the set of all decision

problems Y ∈ NP such that X ≤P Y where X is any NP-complete problem.

A List of NP-complete Problems

Here is a list of popular problems whose decision versions are NP-complete.

(1) 3-SAT (Boolean satisfiability problem with three variables)

(2) Knapsack problem

(3) Traveling salesman problem

(4) Vertex cover problem

(5) Graph coloring problem

(6) Steiner tree problem

(7) Weighted set packing problem

(8) Weighted set covering problem

33.6 Summary and References

In this appendix, we have provided key definitions and results from probability the-

ory, linear algebra, linear programming, mathematical analysis, and computational
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complexity. While these definitions and results serve as a ready reference, the reader

is urged to look up numerous scholarly textbooks which are available in the area.

We only mention a few sample texts here:

• Probability [3]

• Linear Algebra [1, 2]

• Linear Programming [4]

• Mathematical Analysis [5]

• Computational Complexity [6, 7]

The books by Vohra [8], Sundaram [9], and by Mas-Colell, Whinston, and Green

[10] are excellent references as well for many of the mathematical preliminaries.
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