1998³â 2Çбâ
´ã´ç±³¼ö: ÀüÄ¡Çõ
(°øÇÐ4-319; 279-2197)
±è¼ö¿µ (°øÇÐ
4-427; 279-2206)
TA: ±èÁö¼ö (°øÇÐ
4-310; 279-2854)
References
R.W. Wolff, Stochastic Modeling and the Theory of Queues,
Prentice-Hall, 1989.
N. Viswanadham and Y. Narahari, Performance Modeling
of Automated Manufacturing Systems, Prentice-Hall, 1992.
H. Akimaru and K. Kawashima, Teletraffic: Theory and Applications,
Springer-Verlag, 1993.
ÀÌÈ£¿ì, ´ë±âÇà·ÄÀÌ·Ð,
µµ¼ÃâÆÇ ±â¼ú, 1996.
Topics
-
Introduction: basic elements of a queueing model, Kendall¡¯s
notation
-
Basic relations: long-run performance measures, L=l
w
-
Exponential models: M/M/1, M/M/c, relaxing the exponential
assumption, generating function approach
-
M/G/1 and related queues
-
Queueing networks
-
Queueing models in manufacturing systems
-
Queueing models in telecommunication systems¡
Grading
Homework 15% + Midterm Exam 25% + Paper Presentation
15% + Term Project 45%