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Abstract

Mechanism design has emerged as an important tool to model, analyze, and solve decentralized
design problems in engineering involving multiple agents that interact strategically in a rational
and intelligent way. Mechanism design is concerned with settings where a social planner faces the
problem of aggregating the announced preferences of multiple agents into a collective decision when
the actual preferences are not publicly known. The objective of this paper is to provide a tutorial
introduction to the foundations and key results in mechanism design theory.

Acronyms
SCF Social Choice Function
IC Incentive Compatibility (Compatible)
DSIC Dominant Strategy Incentive Compatible
BIC Bayesian Nash Incentive Compatible
AE Allocative Efficiency (Allocatively Efficient)
BB Budget Balance
IR Individual Rationality
IIR Interim Individually Rational
DSIC Dominant Strategy Incentive Compatibility (Compatible)
VCG Vickrey-Clarke-Groves Mechanisms
BIC Bayesian Incentive Compatibility (Compatible)
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Notation

n Number of agents

N Set of agents: {1,2,...,n}

0; Type set of Agent ¢

(C] =01 x...x0,

O, =01 X...X0; 1 X041 X... X0,
0; Actual type of agent i, 6; € 6;

6 :(017"'70n)

0_1' = (01,...,Oi_1,9i+1,...,0n)

6; Reported type of agent i, 6; € ©;
0 = (61,...,60n)

0_; = (91,...,gi_1,9i+1,...,9n)

D,(.) A CDF on 0;

@i(.) A PDF on ©;

d(.) A CDF on ©

#(.) A PDF on ©

X Outcome Set

T A particular outcome, z € X
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Utility function of agent ¢

fQ) A social choice function

M An indirect mechanism

7 A direct revelation mechanism

g(.) Outcome rule of an indirect mechanism

Si Set of actions available to agent 4 in an indirect mechanism
S = Sl X ... X Sn

b; Bid of agent %

b = (b1,...,bn)

b_; :(bla---’bi—lgbi+17---,bn)

bk) k" highest element in (by, ..., b,)

(b_;)®) || k* highest element in (by,...,b;_1,bit1,---,bn)

()

Strategy of agent ¢

= (s1(.),---,sn(.)

K Set of project choices

k A particular project choice, k € K
t; Monetary transfer to agent i

v;i(.) Valuation function of agent i

Ui(.) Expected utility function of agent i
w(.) Social welfare function

F Set of social choice functions

Xy Set of feasible outcomes




1 Introduction

In the second half of the twentieth century, game theory and mechanism design have found widespread
use in a gamut of applications in engineering. More recently, game theory and mechanism design have
emerged as an important tool to model, analyze, and solve decentralized design problems in engineering
involving multiple autonomous agents that interact strategically in a rational and intelligent way. The
agents are rational in the game theoretic sense of making decisions consistently in pursuit of their own
individual objectives. Each agent’s objective is to maximize the expected value of his/her own payoff
measured in some utility scale. selfishness or self-interest is an important implication of rationality.
Each agent is intelligent in the game theoretic sense of knowing everything about the underlying game
that a game theorist knows and each agent can make any inferences about the game that a game
theorist can make. In particular, each agent is strategic, that is, takes into account his/her knowledge
or expectation of behavior of other agents and is capable of doing the required computations.

The theory of mechanism design is concerned with settings where a policy maker (or social planner)
faces the problem of aggregating the announced preferences of multiple agents into a collective (or
social) decision when the actual preferences are not publicly known. Mechanism design theory uses the
framework of non-cooperative games with incomplete information and seeks to study how the privately
held preference information can be elicited and the extent to which the information elicitation problem
constrains the way in which social decisions can respond to individual preferences. The main focus of
mechanism design is the design of institutions or protocols that satisfy certain objectives, assuming
that the individual agents, interacting through the institution, will act strategically and may hold
private information that is relevant to the decision at hand.

1.1 Examples of Mechanism Design Problems

There are numerous examples of design problems where mechanism design has come to play a key
role. These include: auctions and markets in electronic commerce; routing protocols in wired and
wireless networks; resource allocation in computational grids; sponsored search auctions on the web;
algorithms for selfish agents; cryptographic protocols for networks with selfish agents; etc. We describe
some of these design problems in a succinct way below.

1.1.1 Mechanism Design and Algorithms for Selfish Agents

In distributed settings, there are certain algorithmic problems where the agents cannot be assumed
to follow the algorithm but are driven by selfish goals [1]. In such situations, the agents are capable
of manipulating the algorithm. For example, in a shortest path problem where edges are owned
by individual agents and the costs of the edges are known only to the owning agents, the algorithm
designer is faced with the challenge of eliciting the true costs of the edges from the owning agents before
applying an algorithm for computing the shortest paths. The objective of the algorithm designer in
such situations should be to come up with a scheme which ensures that the agents’ interests are best
served by behaving truthfully. Mechanism design theory provides a handle for studying and designing
such algorithms. The mechanism is designed in a way that all agents are motivated to act truthfully
and according to the wishes of the algorithm designer.



1.1.2 Mechanism Design and Selfish Routing

A major difficulty that is faced by networks such as road transportation networks, communication
networks, and the Internet is that most of the time, the demand of the users for the network resources
exceeds the available supply of the resources. This phenomenon causes congestion in the network. The
traffic congestion can be avoided or mitigated if the arrival rates can be controlled and/or the traffic
can be routed across the network in an effective manner. However, in most of these networks, the
users of such networks are free to act according to their own interests and moreover, they are rational
and intelligent in the sense that they care more for their own individual welfare and less for the health
or performance of the overall network. Game theory and mechanism design can play an important
role in the analysis and design of protocols in such networks. Indeed, in the past few years, there has
been a spurt of research activities in this direction. See, for example, the work of Roughgarden [2, 3],
Feigenbaum et al [4, 5], Hershberger and Suri [6], and Nisan et al [7, 8].

1.1.3 Mechanism Design and Ad-hoc Networks

Wireless ad-hoc networks also face the traffic congestion problem just like other wired networks such as
communication networks and the Internet. However, due to the wireless nature of the communication
medium, the physics of the problem is somewhat different. In the case of wireless ad-hoc networks,
conservation of battery power by the individual nodes is of primary importance. Individual nodes are
required to forward packets so as to ensure connectivity in an ad-hoc network and nodes therefore
double up as routers. Forwarding of packets involves draining battery power and it may not always
be in the self-interest of a node to forward packets. Design of protocols that stimulate cooperative
actions from the nodes uses game theory and mechanism design in a significant way. There are
several recent efforts in this direction. See, for example, the work of Anderegg and Eidenbenz [9]
in unicast environment, where they use the VCG (Vickrey-Clarke-Groves) mechanism to compute a
power efficient path using which the nodes transmit or forward the packets. Eidenbenz, Santi, and
Resta [10] further generalize this model to achieve budget balance property. Wang and Li [11] propose
strategy-proof pricing schemes for multicast environment. Suri [12] has generalized the model of Wang
and Li and has proposed incentive compatible broadcast protocols in ad-hoc wireless networks.

1.1.4 Mechanism Design and Grid Computing

One of the most important issues concerned with grid computing is that of application scheduling. In a
global grid setting, the individual users must be provided with an incentive to offer their resources. The
situation becomes non-trivial because of the fact that these entities are rational and intelligent resource
providers who, for strategic reasons, may not provide truthful information about their processing power
and cost structure. Thus, resource allocation decisions in computational grids and other general
grids have to take into account the rationality of the grid resource providers. In particular, there
is a need for providing appropriate incentives to the nodes to stimulate their participation in grid
computing. Mechanism design is extremely useful in designing incentives and also in coming up
with auction based mechanisms for grid resource allocation. There are several recent efforts in this
direction. See, for example, the work of Grosu and Chronopoulos [13, 14], Das and Grosu [15],
Wellman, Walsh, Wurman, and Mackie-Mason [16], and Buyya [17]. Prakash [18] has recently proposed
several innovative mechanisms for resource procurement in computational grids with rational resource
providers.



1.1.5 Mechanism Design and Cryptography

Mechanism design can be viewed as a science of synthesis of protocols for selfish parties to achieve
certain properties. In mechanism design, it is often assumed that the central authority (or social
planner) can be trusted by the parties, but this might not always be true, especially in an Internet
environment. If the social planner is corrupt, then it may misuse the information received from the
agents. Privacy is therefore essential in order to ensure the social planner’s credibility [19]. This prob-
lem was first stated by Varian [20]. Because cryptography deals with preserving privacy and integrity
of data in computer and communication systems, it is obvious that techniques from cryptography may
help implementing the mechanism design protocols in the real word. There has been some progress in
the recent past in applying cryptographic tools and techniques to the problems of mechanism design.
For example, see the work related to privacy preserving auctions by Noar et al [21] and Brandt [22].

1.1.6 Mechanism Design and the World Wide Web

We know that the world wide web has become an integral part of our day-to-day life. As engineers and
scientists are making progress in developing innovative web based services, the hackers and spammers
are bent on making such services collapse. Examples of such services include search engines page
ranking system, recommender systems, and reputation systems. Note that it is not always the case
that these hackers and spammers invest their energy and efforts just for nothing. More often than not,
they do have a stake in not letting such systems run smoothly. The only solution for such a problem
is to design the system in a way that there is no incentive for the hackers and spammers to put their
energy and time in destroying it. Game theory and mechanism design theory play an important role in
designing such systems. For example see the work of Altman and Tennenholtz [23, 24] for a mechanism
design view of page ranking systems, and Gyongyi and Molina [25] for a kind of threat to the page
ranking system, namely link spam.

1.1.7 Mechanism Design and Electronic Commerce

Electronic commerce is an area where the rationality in general and self-interest in particular of the
participating agents is a significant factor to be taken into account. Game theory and mechanism
design, therefore, have come to play a natural role here. For example, in a bargaining problem
between a buyer and a seller, the seller would like to act as if the item is very expensive thus raising
its price and the buyer would like to pretend to have a low value for the object to keep the price
down. In this context, mechanism design helps to come up with a bargaining protocol that ensures
an efficient trade of the good, so that successful trade occurs whenever the buyer’s valuation exceeds
that of the seller.

There are a variety of game theoretic design problems currently being explored in the area of
electronic commerce. These design problems are well documented in the literature; the following is a
representative listing:

e Auctions for selling spectrum [26]
e Mechanisms for selling advertising space through keyword auctions [27, 28, 29]

e Auctions for selling products/services as part of private marketplaces set up by e-business com-
panies [30]

e Bandwidth exchanges [31]



1.2

Procurement auctions and private marketplaces for e-procurement [32]
Logistics and transportation marketplaces [33]

Mechanisms for supply chain formation [34, 35, 36]

Outline of the Paper

We start with definition of the mechanism design problem, the concept of a social choice function,
the concept of a mechanism, and the notion of implementation of a social choice function by a
mechanism. We also distinguish between direct revelation mechanisms and indirect mechanisms.
These constitute the fundamental setup for mechanism design theory. We illustrate the concepts
through several examples: bilateral trade, auctions for selling a single indivisible item, and a
combinatorial auction. These examples are used throughout the rest of the paper for bringing
out important insights.

Next, we describe the desirable properties of a social choice function, which include ex-post
efficiency, non-dictatorial-ness, dominant strateqy incentive compatibility and Bayesian Nash
incentive compatibility. We then state and prove a fundamental result in mechanism design
theory, the revelation theorem.

We then describe a landmark result - Gibbard-Satterthwaite impossibility theorem, which says
that under fairly general conditions, no social choice function can satisfy the three properties -
ex-post efficiency, non-dictatorial, and dominant strategy incentive compatibility simultaneously.
This impossibility theorem, while ruling out implementability of certain desirable mechanisms,
suggests two alternative routes to the design of useful mechanisms.

The first of these two routes is to restrict the utility functions to what is known as a quasi-
linear environment, and then investigating the properties of the social choice function. Here we
show that ex-post efficiency is equivalent to a combination of two properties, namely, allocative
efficiency and budget balance. The important result here is the existence of the classic VCG
(Vickrey- Clarke- Groves) social choice functions (also known as VCG mechanisms), which are
non-dictatorial, dominant strategy incentive compatible, and allocatively efficient.

We next explore the second route suggested by the Gibbard-Satterthwaite impossibility theo-
rem. Here we look for Bayesian incentive compatibility instead of dominant strategy incentive
compatibility. We show that a class of social choice functions, known as dAGVA social choice
functions are ex-post efficient, non-dictatorial, and Bayesian Nash incentive compatible. We
then develop a characterization of Bayesian incentive compatible social choice functions in linear
environment.

The next topic we discuss is the celebrated Revenue Equivalence Theorem which states that
the expected revenue produced by the English auction, Dutch auction, first price auction, and
second price auction is the same, in the context of selling of a single indivisible item.

This is followed by a discussion of the concept of individual rationality and the well known
Myerson-Satterthwaite impossibility theorem.



e We next focus on design of optimal mechanisms. Here, we first define the notion of optimal
mechanism design and then describe the seminal work of Myerson [37] on design of optimal
auctions.

e Finally, we suggest several pointers to the literature to delve deeper into mechanism design
theory.

2 The Mechanism Design Problem

The theory of mechanism design concerns with settings where a social planner (or policy maker) faces
the problem of aggregating the individual preferences into a collective (or social) decision and the
individuals’ actual preferences are not publicly known. The mechanism design problem provides a
good starting point for this theory. A formal description of the mechanism design problem is provided
below.

1. There are n individuals (or agents), indexed by i = 1,2,...,n, who must make a collective choice
from some set X, called the outcome set or choice set.

2. Prior to the choice, however, each agent ¢ privately observes his preferences over X. Formally,
this is modeled by supposing that agent ¢ observes a parameter, or signal 6; that determines his
preferences. The parameter 6; is referred to as agent i’s type. The set of possible types of agent
1 is denoted by ©;.

3. The agents’ types, denoted by 6 = (61, ...,6,,) are drawn according to a probability distribution
function ® € A©®, where © = 01 x ... x 0,, and AO is the set of all the probability distribution
functions over the set ©. Let ¢ be the corresponding probability density function.

4. Each agent ¢ is rational and intelligent and this fact is modeled by assuming that the agents
always try to maximize a utility function u; : X x ©; — R.

5. The probability density ¢(-), the type sets O1,...,0,, and the utility functions u;(-) are assumed
to be common knowledge among the agents. Note that the utility function u;(-) of agent i depends
on both the outcome z and the type 6;. Even though, the type 6; is not common knowledge, by
saying that u;(-) is common knowledge we mean that for any given type 6;, the social planner
and every other agent can evaluate the utility function of agent i.

In the above situation, the social planner faces two problems:

1. Preference Aggregation Problem: The first problem that is faced by the social planner is
the following: “For a given type profile § = (61,...,60,) of the agents, which outcome z € X
should be chosen?”

2. Information Revelation (Elicitation) Problem: Assuming that the preference aggregation
problem has been solved, the next problem that is faced by the social planner is the following:

“How do we extract the true type 6; of each agent i, which is the private information of agent
,l'?”

In what follows, we will address both these problems one by one. Let us first look at the preference
aggregation problem. The social planner or policy maker can solve the preference aggregation problem
by choosing an appropriate function known as social choice function, which is defined next.



3 Social Choice Function

Definition 3.1 A social choice function (SCF) is a function f : ©® — X, which a social planner or

policy maker uses to assign a collective choice f(61,-..,60y) to each possible profile of the agents’ types
0= (91,...,0n) € 0.

Figure 1 illustrates the idea behind social choice function. In what follows, we present a few examples

Individual Type Sets
Individual Types

Reported Types

Social Choice Function

X—F (‘91;’ : -,(9,,) Qutcome
Figure 1: The idea behind social choice function

of the mechanism design problem and the social choice function that is being used by the social
planner. Most of these examples are taken from [38].

3.1 Example: Allocation of a Single Unit of an Indivisible Private Good

Consider a situation where there is a set N of n agents and one of them is owning one unit of an
indivisible good. The owner wants to trade this good with other agents by means of money. The other
agents are interested in trading with him. Let us assume that there is an outside agent who plays the
role of a broker and facilitates the trading activities among these agents. Each of the n agents interact
directly with the broker agent in a personal manner but they do not interact among themselves. This
broker agent can be viewed as a social planner. Here the problem of the broker agent is to decide
whom to allocate the good and how much money to charge (or pay) from each agent. This can be
viewed as a mechanism design problem and the various building blocks of the underlying mechanism
design structure can be given in following manner.

1. Outcome Set X: An outcome in this case may be represented by a vector = (y1, ..., Yn, t1,---,pn),
where y; = 1 if the agent ¢ receives the object, y; = 0 otherwise, and ¢; is the monetary transfer
received by the agent 7. The set of feasible alternatives is then

n n
X = {(y177y’nat177t’n)‘yle{071}7tz€RVzazyzzlaztlgﬂ}
i=1 i=1

2. Type Set ©;: In this example, the type 6; of an agent i can be viewed as his valuation of the
good. We can take the set of possible valuations for agent ¢ to be ©; = [&, Hi] C R, where 6; is
the least valuation and theta; is the highest valuation the agent may have for the item.



3. Utility Function u;(-): The utility function of agent 7 can be given by
uz(xaez) = ui(yb'"ay’natla'"7tn79i)
= O+t

4. Social Choice Function f(-): The general structure of the social choice function for this case
is

F0) = (y1(0),---,yn(0),1(6),...,tn(0)) VO €O

Two special cases of this example have received a great deal of attention in the literature - bilateral
trading and auctions. In what follows, we discuss each of these two.

3.2 Example: Bilateral Trade

This is a special case of the previous example. In this setting, we have n = 2. Agent 1 is interpreted
as the initial owner of the good (the “seller”), and agent 2 is the potential purchaser of the good (the
“buyer”). A few facts are in order. Note that

1. If 6, < 0 there are certain gains for both the agents from the trade regardless of 6; and 0.
2. If 6, < 01 then it is certain there are no gains for both the agents from the trade.

3. If 63 < 01 or 01 < 0y or both, then there may or may not be gains for the agents from trade,
depending on the realization of 6.

We will develop this example further in this paper as and when required.

3.3 Example: Single Unit - Single Item Auction

This is a special case of the example 3.1. For the purpose of illustration, we assume that there are
n+1 agents instead of n agents. Note that there is no loss of generality in doing so. Let agent 0 be the
owner of the good with the rest of the n agents interested in buying the good. In this case, the owner
of the good is known as auctioneer and the rest of the agents are known as bidders. The distinguishing
feature of this example which makes it a special case of the Example 3.1 is the following:

The type set of the seller is a singleton set, that is ©g = {6y}, which is commonly known to all the
buyers.

If 6y = 0 then it implies that the auctioneer has no value for the good and he just wants to sell it
off. We call such a scenario as single unit single item auction without reserve price. For this example,
the various building blocks of the underlying mechanism design structure are the following.

X = {(yO’yl""yn,thtl’""t’n)'yO:OatOZani6{0,1},tiSOVi:la"-,na

n n
ZyFLZti:o}
=0 =0
©y = {6, =0}
0,0] CRVi—1,...,n
wo(Y0s Y1 - - - s YUny t0s Ty - - -, tny B0) = to
Wi(Y0s Y1 -« 5 Yny t0s b1y e -« ytny 60) = Ojys +t; Yi=1,...,n
= (yo(0),...,yn(0),10(0),...,t,(0)) VO €O

o
[

S
—
8
s
—_ —
I



3.4 Example: Single Unit - Single Item Auction with Reserve Price

This is the same example as the previous one except that now auctioneer has some positive value for
the good, that is, 8y > 0. The auctioneer announces a reserve price r > 0, which need not be the same
as #y. All the other agents treat this reserve price as the valuation of the auctioneer for the good.
This scenario is known as single unit - single item auction with reserve price. For this example, the
various building blocks of the underlying mechanism design structure are the following.

X = {(yo,yl""yn’tO,tla""tn”yOE{O’]‘}’to207yi€{0a1},tiSOVi:la"'an,

n n
1=0 2=0

Oy = {90 > 0}

0, = [0i.0;] CRVi=1,...,n
ug(z,00) = Ooyo +to
ui(z,0;) = Oy +t;Vi=1,...,n
£O) = (¥o(0),---,yn(0),%0(0),---,n(0))

3.5 Example: A Combinatorial Auction

This is a generalization of Example 3.3. Imagine a setting where an individual, say agent 0, is holding
one unit of each of m different items and wants to sell these items. Let there be n agents who are
interested in buying all the items or a non-empty subset (bundle) of the items. As before, the owner
of the good is known as auctioneer and the rest of the agents are known as bidders. The auctioneer
has no value for these items and just wants to sell them and this fact is a common knowledge among
the bidders. Below are a few distinguishing features of this example which make it a generalization of
Example 3.3.

1. The type set of the auctioneer is a singleton set, that is ©g = {fy = 0}. This means that
auctioneer has no value for any of the bundle S C M.

2. The auctioneer’s type 6y (also known as seller’s valuation for the bundles) is commonly known
to all the bidders.

3. The type of a bidder ¢ consists of his valuation for every bundle of the items. Obviously, there
are 2™ — 1 possible bundles of the items, therefore, a type 6; of a bidder 4 consists of 2™ — 1
numbers.

For this example, the various building blocks of the underlying mechanism design structure are the
following.

1. Outcome Set X: An outcome in this is a vector z = (y;(S),to,t1,---,tn)i=1,...n,5c M, Where
yi(S) = 1 if bidder i receives the bundle S C M, y;(S) = 0 otherwise. %; is the monetary
transfer received by the auctioneer and ¢; is the monetary transfer received by the bidder i. The
feasibility conditions require that each bidder ¢ must be allocated at most one bundle, that is,
Y scm vi(S) < 1. Also, each object 5 € M must be allocated to at most one bidder, that is,

10



Yscmjes izt Yi(S) < 1. The set of feasible alternatives is then

X = {(wi(S),to,t1,-.,tn)ien,scmlyi(S) € {0,1} Vi€ N, S C M;

DowlS) SIVieN; Y Y wi(S)<1VjeM;

ScM ScM|jes i=1

n
to > 0:t; SOVieN;Zti:O}
1=0

2. Type Set O;: In this example, the type set of the auctioneer is a singleton set ©y = {6y = 0}.
However, the type 6; of each of the bidders ¢ is a tuple (6;(S))scm, where 6;(S) € [Vi,Vi] C
R V S C M represents the value of agent ¢ for bundle S. Here we are assuming that bidder #’s
valuation for each bundle S lies in the interval [E, VZ} Therefore, the set ©; can be defined in
the following manner:

0; = {(0:(S))scm|0:i(S) € [Vi, Vi] CRVS C M} = [V, V] (2m-1)

3. Utility Function wu;(-): The utility function of the auctioneer and bidders can be given by

’u,():t()

ui(z,0;) = ti+ Y 0;(S)yi(S) VieN
ScM

4. Social Choice Function f(-): The general structure of the social choice function for this case
is

f(0) = ((yi(S,0))ien,scm, to(0), - . -, tn(0))

3.6 Need for a Mechanism

All the above examples illustrate the concept of social choice function (SCF). However, as we mentioned
before, the problem of mechanism design does not end just by choosing some SCF. The social planner
still needs to address the problem of information elicitation. Having decided about the SCF f(-), a
trivial solution for the information elicitation problem seems to be to request the agents to reveal their
types 0; and then use them directly to compute the social outcome z = f(6). However, given the fact
that an outcome z yields a utility of u;(z,6;) to agent 7 and agent 7 is a utility maximizing agent, the
agents’ preferences over the set X depend on the realization of their type profile § = (61,...,60,). For
any given realization 6, different agents may prefer different outcomes. Therefore, it is not surprising
if agent 7 reveals untruthful type, say éi, to the social planner because doing so may help him drive the
social outcome towards his most favorable choice, say . This phenomenon is known as the information
revelation (or elicitation) problem and it is depicted in Figure 2. One way in which social planner can
tackle this problem is the use of an appropriate mechanism.

4 Mechanisms

Definition 4.1 A mechanism # = ((Si)ien,9(-)) is a collection of action sets (Si,...,Syp) and an
outcome function g : S — X, where C =851 x ... X S,.

11
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Figure 2: Information elicitation problem

The set S; for each agent 7 describes the set of actions available to that agent. Based on his actual
type 0;, each agent ¢ will choose some action, say s; € S;. Once all the agents choose their actions,
the social planner uses this profile of the actions s = (s1,...,s,) to pick a social outcome z = g(c).
This phenomenon is depicted in Figure 3. In view of the above definition, the trivial scheme of asking
the agents to reveal their types becomes a special case; this special case is called a direct revelation
mechanism (DRM).

Definition 4.2 Given a social choice function f : © — X, a mechanism 2 = ((©;)ien, f(-)) is known
as a direct revelation mechanism (DRM) corresponding to f(-).

e Given a social choice function f(-), note that a direct revelation mechanism is a special case of
a mechanism .# = ((S;)ien,g(:)) with S; =0; Vi€ N and g = f.

e Mechanisms that are not direct revelation mechanisms are typically referred to as indirect mech-
anisms.

The Figure 4 illustrates the idea behind direct revelation mechanism. In what follows, we present a
few examples of both direct revelation mechanism and indirect mechanism.

4.1 Example: Fair Bilateral Trade

Consider the previous bilateral trade example Example 3.2. Let us assume that the broker agent
invites the seller (agent 1) to report his type 6; directly to him in a confidential manner. 6, is the
minimum amount at which agent 1 is willing to sell the item. The broker agent also invites the buyer
(agent 2) to report his type 6y directly to him in a confidential manner. 5 is the maximum amount
that agent 2 is willing to pay for the item. Let us assume that seller reports his type to be 6; which

12
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Figure 3: Abstract view of a mechanism

Utility Values

may be different from actual type 61 and buyer reports his type to be 65 which also may be different
from actual type 6. Now the broker agent uses these reported types 6, and 65 in order to decide an
outcome in the following manner. If 0, < 0, then the broker assigns the good to agent 2. The broker
charges an amount equal to @ from agent 2 and pays the same amount to the agent 1. However,
if §5 < 6; then no trade takes place.

In this example, the mechanism that is being used by the broker agent is a direct revelation mecha-
nism 2 = (01, 09, f(-)), where the social choice function f(-) is given by f(0) = (y1(0),y2(0),t1(8),12(0)),
where § = (601,62). The functions y;(-) are known as winner determination rules and the functions
t;(-) are known as payment rules. The winner determination and payment rules are given as follows

@) = {é zih;ffise
yi(0) = 1-—12(0)

uo) = ne) (5%
t2(0) = —t:(0)

4.2 Example: First-Price Sealed Bid Auction

Consider the Example 3.3 of single unit-single item auction without reserve price. Let us assume that
the auctioneer himself is a social planner and he invites each bidder ¢ to bid an amount b; > 0 directly
to him in a confidential manner. The bid b; means that bidder 7 is ready to pay an amount b; if he
receives the good. The agent i decides bid b; based on his actual type ;. The bids are opened by the
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Figure 4: Abstract view of a direct revelation mechanism

auctioneer and the bidder with the highest bid gets the good and pays to the auctioneer an amount
equal to his bid. The other bidders pay nothing. If there are several highest bids, we suppose that
the lowest numbered of these bids gets the good. We could also break the tie by randomly selecting
one of the highest bidders.

In this example, the mechanism that is being used by the auctioneer is an indirect mechanism
M = ((Si)ien,g(+)), where S; C RT is the set of bids that bidder i can submit to the auctioneer and
g(+) is the outcome rule given by g(b) = (y1(b),...,yn(b),t1(b),-..,t,(b)), where b = (by,...,by,). The
functions y;(-) are known as winner determination rules and the functions ¢;(-) are known as payment
rules. Tf we define b*) to be the k*» highest element in (b1, ..., b,) and (b_;)*) to be the k** highest
element in (by,...,b;—1,bi41,...,by), then winner determination and payment rule can be written in
following manner.

1 ifp =0
w(b) = { 0 : otherwise
ti(b) = —biyi(b)
A few remarks are in order with regard to this example.

e While writing the above winner determination and payment rule, we have assumed that any two
bidders bidding the same bid value is a zero probability event.

o If 5, = 6, = [&, 9_,] V 4 € N then this indirect mechanism becomes a direct revelation
mechanism.
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4.3 Example: Second-Price Sealed Bid (Vickrey) Auction

The setting is the same as the first-price auction. The only difference here is in terms of the allocation
and payment rules invoked by the auctioneer. In the second-price sealed bid auction, the bidder with
the highest bid gets the good and pays to the auctioneer an amount equal to the second highest bid.
The winner determination and payment rules for this auction can be given as follows.

, _ 1 :  ifb =0
vih) = { 0 : otherwise
tid) = —(0-))Pyi(b)

This auction is also called as Vickrey auction, after the Nobel prize winning work of Vickrey [39].

4.4 Example: Generalized Vickrey Auction (GVA)

Once again, consider the example 3.5 of single unit-multi item auction without reserve price. Let us
assume that auctioneer himself is a social planner and he invites each bidder ¢ to report hid bid b;
directly to him in a confidential manner. In this example, the bid structure is as follows:

bi = (b:(S))gcar:bi(S) >0 VS C M

The bids are opened by the auctioneer and the bidders are allocated to the bundles in such a way that
sum of the valuations of all the allocated bundles is maximized. Each bidder pays to the auctioneer
an amount equal to his marginal contribution to the trade.

In this example, the mechanism that is being used by the auctioneer is an indirect mechanism
M = ((S:)ien,g(:)), where S; C (]RﬂL)Tn_1 is the set of bids that bidder 7 can submit to the auctioneer
and g(-) is the outcome rule given by g(b) = ((y}(S,b))ien,scm,t1(D),...,tn(b)), whereb = (b1,...,by).
The functions y;(-,+) are known as winner determination rules and the functions ¢;(-) are known as
payment rules. The winner determination rule y;(-,-) for this auction is basically solution of the
following optimization problem.

Maximize

subject to

(1) YXscmvi(S,0) <1 VieN
(ii) ZScMUeS 2?21 yi(S,0) <1 VjeM
(iii) v;(S,b) € {0,1} Vie N,SC M
The payment rule ¢;(-) for this auction is given by the following relation
Z vi(k*(b Z vj(k b;)
J#i J#i

where v;(k*(b),b;) = > gcar 0i(S)yj (S, ) is total value of the bundle which is allocated to the bidder
j. The quantity v;(kZ;(b—;),b;) = >-gcr bj(S)y; (S,b-) is the total value of the bundle that will be
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allocated to the bidder j # i if the bidder ¢ were not present into the system. It is easy to verify that
if set M consists of just one item then above winner determination and payment rule will precisely
be the same as winner determination and payment rule of the Vickrey auction, therefore, the name
Generalized Vickrey Auction.

4.5 Bayesian Game Induced by a Mechanism

In view of the definition of the indirect mechanism and direct revelation mechanism, we can say
that a social planner can either use an indirect mechanism .# or a direct mechanism % to elicit
the information about the agents’ preferences in an indirect or a direct manner, respectively. As
we assumed earlier, all the agents are rational and intelligent. Therefore, after knowing about the
mechanism # = ((S;)ien,9(-)) chosen by the social planner, each agent i starts doing an analysis
regarding which action s; will result in his most favorable outcome and comes up with a strategy
s; : ©; — S; to take the action. This phenomenon indeed leads to a game among the agents. A
mechanism .# = ((S;)ien,g(+)) combined with possible types of the agents (01,...,0,), probability
density ¢(+), and utility functions (u1(-),...,u,(-)) defines a Bayesian game of incomplete information
that gets induced among the agents when the social planner invokes this mechanism as a means to
solve the information elicitation problem. The induced Bayesian game I'® is given in the following
manner:

% = (N, (Sien, (Oi)ien, ¢(-), (W@)ien)
where %; : C' x © — R is the utility function of agent ¢ and is defined in following manner

ui(c, 0) = ui(g(c), 0:)

where C = Zé\] S;, and © = ze)S\J O;.

Knowing the fact that choosing any mechanism .# = ((S;)ien, g(:)) will induce the game among
the agents, and the agents will respond to it in a way suggested by the corresponding equilibrium
strategy of the game, the social planner now worries about whether or not the outcome of the game
matches with the outcome of the social choice function f(0) (if all the agents had revealed their true
types when asked directly). This notion is captured in the definition that follows.

5 Implementing a Social Choice Function

Definition 5.1 We say that the mechanism .# = ((Si)ien,g(-)) implements the social choice function
f() if there is a pure strategy equilibrium s*(-) = (s3(-),--.,55(-)) of the Bayesian game T'° induced
by M such that g (s5(01),...,55(0n)) = f(01,...,6,) V(b1,...,0,) € O.

The Figure 5 explains the idea behind what we mean by mechanism implementing a social choice

function. Depending on the underlying equilibrium concept, two ways of implementing an SCF f(-)
are standard in the literature.
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Figure 5: Mechanism .# = ((S;)ien,g(-)) implements the social choice function f(-)

5.1 Implementing a Social Choice Function in Dominant Strategy Equilibrium

First, we define the notion of a weakly dominant strategy equilibrium of the Bayesian game T'°.

Definition 5.2 (Weakly Dominant Strategy Equilibrium) A pure strategy profile
s4(-) = (5(-),...,8%()) of the game T'® induced by the mechanism M , is said to be a weakly dominant
strateqy equilibrium iff it satisfies the following condition.

!

ui(g(s(0:),5-:(0-4)),0;) > wi(g(s;(6:),5-4(0—:)),6;)
Vi € N,V0; € ©;,V0_; € O_;,Vs;(-) € 8i,Vs_i() € S_; (1)

where S; is the set of pure strategies of the agent i in the induced Bayesian game I'*, and S_; is the
set of pure strategy profiles of all the agents except agent 4.

Definition 5.3 We say that the mechanism M = ((S;)ien,g(-)) implements the social choice func-
tion f(-) in dominant strategy equilibrium if there is a weakly dominant strategqy equilibrium s4(-) =
(s4(-),-..,8%(")) of the game I'® induced by A such that

g (s‘f(el),...,sg(en)) — f(61,..,0,) Y (61,....0,) €O
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5.2 Implementing a Social Choice Function in Bayesian Nash Equilibrium

Definition 5.4 We say that the mechanism # = ((Si)ien,g(:)) implements the social choice func-
tion f(-) in Bayesian Nash equilibrium if there is a pure strategy Bayesian Nash equilibrium s*(-) =
(s3(),...,8%5(-)) of the game T® induced by .M such that

g(s1(61);---,53(0n)) = f(01,...,0n) V(01,...,0,) €O
Following is the definition of Bayesian Nash equilibrium of the Bayesian game I'°.

Definition 5.5 (Bayesian Nash Equilibrium) A pure strategy profile s*(-) = (s7(:),...,s5(-)) of

the game T induced by the mechanism # , is a Bayesian Nash equilibrium iff it satisfies the following
condition.

Eo_,[ui(g(s}(8:),5"4(0-:)),0)0:] > Eg_ui(g(s;(6:), 5% 5(0-3)),6:)6:]
Vi € N,V0; € ©;,Vs,(-) € S; (2)

Following is a proposition that establishes the relationship between two equilibrium concepts defined
above. The proof is straightforward.

Proposition 5.1 A weakly dominant strategy equilibrium s¢(-) = (sﬁi(-),...,sg(-)) of the Bayesian

game T induced by ., is always a pure strategy Bayesian Nash equilibrium of the same Bayesian
game T, If the condition (2) holds for all s_;(-) € S_; also, then the proposition holds in the other
direction also.

Corollary 5.1 If the mechanism A = ((Si)ien,g(:)) implements the social choice function f(-) in
dominant strategy equilibrium, then it also implements f(-) in Bayesian Nash equilibrium.

In what follows, we offer a few caveats to these definitions of implementing a social choice function.

1. The game I'® induced by the mechanism .# may have more than one equilibrium, but the above
definition requires only that one of them induces outcomes in accordance with the SCF f(-).
Implicitly, then, the above definition assumes that, if multiple equilibria exist, the agents will
play the equilibrium that the mechanism designer (social planner) wants.

2. Another implicit assumption of the above definition is that the game induced by the mechanism
is a simultaneous move game, that is all the agents, after learning their types, choose their
actions simultaneously. However, it is quite possible that the mechanism forces some agent(s)
to lead the show, taking the action first followed by the actions of the remaining agents. In such
a case, the game induced by the mechanism becomes a Stackelberg game.

6 Properties of a Social Choice Function

We have seen that a mechanism provides a solution to both the problem of information elicitation and
the problem of preferences aggregation if it can implement the desired social choice function f(-). It
is obvious that some SCF's are implementable and some are not. Before we look into the question of
characterizing the space of implementable social choice functions, it is important to know which social
choice function ideally a social planner would prefer to be implemented. In this section, we highlight
a few properties of an SCF which ideally a social planner would wish the SCF to have.
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Note that the fundamental characteristic of a social planner is that he is neutral to all the agents.
Therefore, it is obvious for the social planner to be concerned about whether the outcome f(61,...,0;)
is socially fair or not. For this, a social planner would always like to use an SCF f(-) which satisfies
as many desirable properties from the perspective of fairness as possible. A few important properties,
which ideally a social planner would want an SCF f(-) to satisfy, are the following.

6.1 Ex-Post Efficiency

Definition 6.1 The SCF f : © — X is said to be ex-post efficient (or Paretian) if for any profile of
agents’ types 0 = (01,...,0y), and any pair of alternatives x,y € X, such that u;(x,0;) > ui(y,0;) V1
and ui(z,0;) > u;(y,0;) for some i, we have y # f(61,...,0n).

An alternative definition of ex-post efficiency can be given in the following manner.

Definition 6.2 The SCF f: © — X is said to be ex-post efficient if for no profile of agents’ type 6 =
(01,...,0y) does there exist an © € X such that ui(z,0;) > u;(f(6),6;) Vi and ui(z,0;) > u;(f(0),6;)
for some 1.

6.2 Non-Dictatorial SCF
We define this through a dictatorial SCF.

Definition 6.3 The SCF f : © — X is said to be dictatorial if for every profile of agents’ type
0=(01,...,6,), we have f(01,...,6y) € {z € X|ug(z,04) > uq(y,0q4) Yy € X}, where d is a particular
agent known as dictator.

An SCF f: ©® — X is said to be non-dictatorial if it is not dictatorial.

6.3 Incentive Compatibility (IC)

Definition 6.4 The SCF f(-) is said to be incentive compatible (or truthfully implementable) if the di-
rect revelation mechanism 9 = ((0;)ien, f(-)) has a pure strategy equilibrium s*(-) = (s7(-),...,s:(-))
in which s}(0;) = 6;,V0; € ©;,Vi € N

That is, truth telling by each agent constitutes an equilibrium of the game induced by 2. It is
easy to verify that if an SCF f(-) is incentive compatible then the direct revelation mechanism 2 =
((©;)ien, f(+)) can implement it. That is, directly asking the agents to report their types and plugging
this information in f(-) to get the social outcome will solve both the problem of information elicitation
and the problem of preferences aggregation.

Based on the type of equilibrium concept used, two types of incentive compatibility are given
below.

6.4 Dominant Strategy Incentive Compatibility (DSIC)

Definition 6.5 The SCF f(-) is said to be dominant strategy incentive compatible (or truthfully im-
plementable in dominant strategies)' if the direct revelation mechanism 9 = ((0;)icn, f(*)) has a
dominant strategy equilibrium s¢(-) = (s4(-),...,s%(-)) in which s&(6;) = 0;,V0; € ©;,Vi € N.

!Strategy-proof, cheat-proof, straightforward are the alternative phrases used for this property.
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That is, truth telling by each agent constitutes a dominant strategy equilibrium of the game induced
by %. Following is a necessary and sufficient condition for an SCF f(-) to be dominant strategy
incentive compatible:

wi (f (05,0-4) ,0:) > ui(f(0;,0-4),0;), Vi € N,Vb; € ©;,V0_; € ©_,V0; € O (3)
The above condition says that if the SCF f(.) is DSIC, then, irrespective of what the other agents are
doing, it is always in the best interest of agent 7 to report his true type ;.

6.5 Bayesian Incentive Compatibility (BIC)

Definition 6.6 The SCF f(-) is said to be Bayesian incentive compatible (or truthfully implementable
in Bayesian Nash equilibrium) if the direct revelation mechanism 9 = ((©;)ien, f(-)) has a Bayesian
Nash equilibrium s*(:) = (s7(:),...,s5(+)) in which s}(0;) = 6;,V6; € ©;,Vi € N.

That is, truth telling by each agent constitutes a Bayesian Nash equilibrium of the game induced by 2.
Following is a necessary and sufficient condition for an SCF f(-) to be Bayesian incentive compatible:

Ep_ [ui (f (6;,6-),6:)0:) > Eg_,[ui(f(6:,0-:),0;)|6:), Vi € N,V6; € ©;,¥6; € ©; (4)

The following proposition illustrates the relationship between these two notions of incentive compati-
bility of a social choice function. The proof of this proposition is quite straightforward.

Proposition 6.1 If a social choice function f(-) is dominant strategy incentive compatible then it is
also Bayesian incentive compatible.

7 The Revelation Principle

This is one of the most fundamental results in the theory of mechanism design. This principle basically
illustrates the relationship between an indirect mechanism .# and a direct revelation mechanism %
for any SCF f(-). This result enables us to restrict our inquiry about truthful implementation of an
SCF to the class of direct revelation mechanisms only.

7.1 The Revelation Principle for Dominant Strategy Equilibrium

Proposition 7.1 Suppose that there ezists a mechanism M4 = (S1,...,Sn,9(:)) that implements the
social choice function f(-) in dominant strategy equilibrium. Then f(-) is truthfully implementable in
dominant strategy equilibrium (dominant strategy incentive compatible).

Proof: If # = (S1,...,5n,9(-)) implements f(-) in dominant strategy, then there exists a profile of
strategies s¢(-) = (s¢(-),...,sd(-)) such that

g (s401), ., 52(00)) = £ (B1,...,00) ¥ (B1,...,0n) €O (5)

?

and

ui(g(s8(0:),5-3(0-4)),0;) > wilg(s;(0:),5—i(6—:)),6:)
Vi e N,V0; € ©;,Y0 ; € © ;,Vs;(-) € Si,Vs 4(-) € 54 (6)
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Condition (6) implies, in particular, that
wi(g(s(0:),52:(0-0)),6:) > wilg(s{(6i),5%:(0-3)), ;)
Vi € N,V6; € ©,;,¥0;, € ©,;,,Y0_; € ©_; (7)
Conditions (5) and (7) together implies that
ui (f (0:,0-),0;) > ui(£(0;,0-),6;),Yi € N,¥9; € ©;,Y0_; € ©_;,V6; € ©;

But this is precisely condition (3), the condition for f(-) to be truthfully implementable in dominant
strategies.
Q.E.D.

The idea behind the revelation principle can be understood with the help of Figure 6. The set Ipsg

SCFs implementable
by an indirect mechanism in DSE

(Iose)

SCFs Truthfully Implementable
by a Direct Revelation
Mechanism in DSE

(psic)

Figure 6: Revelation principle for dominant strategy equilibrium

consists of all the social choice functions that are implementable by some indirect mechanism . in
dominant strategy equilibrium. The set DSIC consists of all the social choice functions that are
truthfully implementable by some direct mechanism % in dominant strategy equilibrium. Recall that
a direct mechanism 2 can also be viewed as an indirect mechanism. Therefore, it is obvious that we
must have

DSIC C Ipsg (8)

In view of relation 8, we can say that the revelation principle for dominant strategy equilibrium
basically says that Ipgg C DSIC, which further implies that Ipsg = DSIC.

Thus, the revelation principle for dominant strategy equilibrium says that an SCF f(-) is imple-
mentable by an indirect mechanism .# = (S1,...,Sy,9(-)) in dominant strategy equilibrium iff it is
truthfully implementable by the mechanism 2 = ((0;);en, f(-)) in dominant strategy equilibrium.

7.2 The Revelation Principle for Bayesian Nash Equilibrium

Proposition 7.2 Suppose that there exists a mechanism M = (S1,...,Sn,g(+)) that implements the
social choice function f(-) in Bayesian Nash equilibrium. Then f(-) is truthfully implementable in
Bayesian Nash equilibrium (Bayesian incentive compatible).
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Proof: If .# = (S1,...,Sn,9(-)) implements f(-) in Bayesian Nash equilibrium, then there exists a
profile of strategies s*(-) = (s7(-),...,s:(+)) such that

9(33{(01)5--' ,S;(gn)) = f(gla,gn) v(glaagn) €0 (9)

and

!

By, [ui(g(s;(6:),5%;(0-4)),0:)160:]] > Ep, [ui(g(si(ei)’S*—i(efi))’ei)wi]
Vi € N,Vb; € ©;,Vs,(-) € S; (10)

Condition (10) implies, in particular, that
By, [us(o(s3 (@), 520-0).0010:] > By, [wila(si (6), s2,(0-:)),0:) 0]
Vi € N,V6; € ©,;,V6; € ©; (11)
Conditions (9) and (11) together implies that
By, [ui (F (6:,9-3),6:)16.] > Bo_, |wi(f(6,,0-),0)16:] ,Vi € N,¥0, € ©;,v0; € 6,

But this is precisely condition (4), the condition for f(-) to be truthfully implementable in Bayesian

Nash equilibrium.
Q.E.D.

In a way similar to the revelation principle for dominant strategy equilibrium, the revelation principle
for Bayesian Nash equilibrium can be explained with the help of Figure 7. Following the similar line

SCFs implementable
by an indirect mechanism in BNE

(I BNE )

SCFs Truthfully Implementable
by a Direct Revelation
Mechanism in BNE

(BIC)

Figure 7: Revelation principle for Bayesian Nash equilibrium

of arguments, we can get the following relation for this case also
BIC C IgnEg (12)

In view of relation 12, we can say that the revelation principle for Bayesian Nash equilibrium basically
says that Igyg C BIC, which further implies that Igyg = BIC.
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Thus, the revelation principle for Bayesian Nash equilibrium says that an SCF f(-) is implementable
by an indirect mechanism .# = (Si,...,S5,9(-)) in Bayesian Nash equilibrium iff it is truthfully
implementable by the mechanism 2 = ((0;);en, f(-)) in Bayesian Nash equilibrium.

In view of the above revelation principle, from now onwards, we will be just focusing on direct
revelation mechanisms without loss of any generality.

8 The Gibbard-Satterthwaite Impossibility Theorem

Ideally, a social planner would prefer to implement a social choice function f(-) which is ez-post
efficient, non-dictatorial, and dominant strategy incentive compatible. Now the question is: does there
exist any such social choice function? The answer is no.

The Gibbard-Satterthwaite impossibility theorem shows that for a very general class of problems
there is no hope of implementing any satisfactory social choice function in dominant strategies. This is
an important landmark result which has shaped the course of research on incentives and implementa-
tion to a great extent and it was discovered independently by Gibbard in 1973 [40] and Satterthwaite
in 1975 [41]. To understand the precise statement of this theorem, we need to build up a few concepts.

8.1 Preference Relation

In the mechanism design problem, the preference behavior of an agent i, over the set of outcomes
X, can be summarized in the form of a preference relation, which is denoted by ;. The preference
relation 2~ ; is a binary relation on the set of alternatives X. We read z 7; y as “z is at least as
preferred to agent i as y.”

Definition 8.1 (Rational Preference Relation) We say that the preference relation - ; is ratio-
nal if it possesses the following three properties:

1. Reflezivity: For all z € X, we have x 7~ ; x
2. Completeness: For all z,y € X, we have that © - ; y or y - ; x (or both).

3. Transitivity: For all z,y,z € X, ifx Z;y andy = ; 2z, then © 7= ; 2.

Definition 8.2 (Strict-total Preference Relation) We say that the preference relation 77 ; is strict-
total if it possesses the following four properties:

1. Reflexivity: For all x € X, we have x 7~ ;

2. Completeness: For all xz,y € X, we have that © - ;y ory = ; x (or both).

3. Transitivity: For all z,y,z € X, ifx = ;y andy = ; z, then z 7~ ; 2.

4. Antisymmetry: For any x,y € X such that x # y, we have either x 2~ ; y or y = ;  but not both.

The set of all the rational preference relations and strict-total preference relations over the set X are
denoted by #Z and .¥, respectively. It is easy to see that . C Z#. The strict-total order relation is
also known as linear order relation because it satisfies the properties of the usual “greater than or
equal to” order in the real line.
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8.2 Utility Function and Preference Relation

We have already seen that a given preference of an agent i, over the outcome set X, can also be
described by means of a utility function u; : X — R which assigns a numerical value to each element
in X. A utility function u; always induces a unique preference relation - ; on X which can be described
in following manner

T 50y & ui(T) > ui(y)

The following proposition establishes the relationship between these two ways of expressing the pref-
erences of an agent 4 over the set X - preference relation and utility function.

Proposition 8.1

1. If a preference relation = ; over X can be induced by some utility function u;(-), then it will be

~

a rational preference relation.

2. For every preference relation - ;€ X, there need not exist a utility function which will induce it.
However, it is true when the set X 1is finite.

3. For a given preference relation = ;€ X, if there exists a utility function which induces it, then this
need not be the unique one. Indeed, if the utility function u;(-) induces 7 ;, then v(z) = f(u(x))

~ %
is another utility function which will also induce 7 ;, where f : R — R is a strictly increasing
function.

8.3 Set of Ordinal Preference Relations

In the mechanism design problem, for agent i, the preference over the set X is described in the form
of a utility function u; : X x ©; — R. That is, for every possible type 8; € ©; of agent i, we can
define a utility function u;(., ;) over the set X. Let this utility function induce a rational preference
relation 2~ ; (0;) over X. The set Z; = {7 i:7 i=2 i (6;)for some 6; € ©;} is known as the set of ordinal
preference relations for agent 3. It is easy to see that Z; CZVi=1,...,n.

Now we can state the Gibbard-Satterthwaite impossibility theorem without the proof. For proof,
refer to Proposition 23.C.3 of [38].

Theorem 8.1 (Gibbard-Satterthwaite Impossibility Theorem) Suppose that
1. The outcome set X is finite and contains at least three elements
2. %=SNi=1,...,n
3. f(®) =X, that is, the image of SCF f(-) is the set X.

Then the social choice function f(-) is truthfully implementable in dominant strategies iff it is dicta-
torial.

The Gibbard-Satterthwaite impossibility theorem gives a disappointing piece of news and the
question facing a social planner is what kind of SCF to look for in the face of this impossibility result.
There are two possible routes that one may take:

1. The first route is to focus on some restricted environment where at least one of the three re-
quirements of the Gibbard-Satterthwaite impossibility theorem is not fulfilled. Quasi-linear
environment is one such environment where the second condition of this theorem is not satisfied
and in fact all the social choice functions in such environments are non-dictatorial.
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2. The other route is to weaken the implementation concept and look for an SCF which is ex-post
efficient, non-dictatorial, and Bayesian incentive compatible.

We now elaborate on each of these two routes.

9 Quasi-Linear Environments

This is a special and much studied class of environments where the Gibbard-Satterthwaite theorem
does not hold. In this environment, an alternative z € X is a vector of the form z = (k,t1,...,%,),
where k is an element of a set K, to be called as “project choice.” The set K is a compact subset of
a topological space. t; € R is a monetary transfer to agent ¢. If £; > 0 then agent ¢ will receive the
money and if ¢; < 0 then agent ¢ will pay the money. We assume that we are dealing with a closed
system in which n agents have no outside source of funding, i.e. > 7 ; ¢; < 0. This condition is known
as weak budget balance condition. The set of alternatives X is therefore

X:{(k,tl,...,tn):keK,tieRVizl,...,n,ZtiSO}
i

A social choice function in this quasi-linear environment takes the form f(0) = (k(0),t1(0),-..,tn(0))
where V 8 € ©, k(f) € K and ), ¢;(9) < 0.2 For a direct revelation mechanism 9 = ((®z)z€N7 f()
in this environment, the agent ¢’s utility function takes the quasi-linear form

ui(2,0;) = ui(k,t1,. .. tn,0;) = vi(k,0;) + m; +1;

where m; is agent i’s initial endowment of the money and the function v;(-) is known as agent i’s
valuation function. Recall condition 5 in the definition of mechanism design problem given in Section
2. This condition says that the utility function wu;(-) is common knowledge. In the context of a
quasi-linear environment, this implies that for any given type 6; of any agent i, the social planner
and every other agent j have a way to figure out the function v;(.,6;). In many cases, the set ©;
of the direct revelation mechanism 2 = ((©;)ien, f(-)) is actually the set of all feasible valuation
functions v; : K — R of agent ¢. That is, each possible function represents each possible type of agent
i. Therefore, in such settings reporting a type is the same as reporting a valuation function.

As far as examples of quasi-linear environment are concerned, all the previously discussed ex-
amples, such as fair bilateral trade (Example 4.1), first price auction (Example 4.2), second-price
auction (Example 4.3), and Generalized Vickrey Auction (Example 4.4) are all natural examples of
the mechanism in quasi-linear environment.

In the quasi-linear environment, we can define two important properties of a social choice function.

Definition 9.1 (Allocative Efficiency (AE)) We say that SCF f(-) = (k(-),t1(-),---,tn(")) is al-
locatively efficient if for each 6 € ©, k(0) satisfies the following condition®

k(6) € a;gem;" sz (k, 6;) (13)

*Note that here we are using symbol k for both as an element of the set K and as a function going from © to K. Tt
should be clear from the context as to which of these two we are referring.
3 We will keep using the symbol k*(-) for a function k(-) that satisfies the Equation (13).
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Note that the above definition will make sense only when we ensure that for any given 6, the function
Yoy vi(.,60;) : K — R attains a maximum over the set K. The simplest way to do this is to put a
restriction that the function v;(.,6;) : K — R is an upper semi-continuous function for each 6; € ©;
and foreach i =1,...,n.

Definition 9.2 (Budget Balance (BB)) We say that SCF f(-) = (k(-),t1(:),...,tn(")) is budget
balanced if for each 0 € ©, t1(0),...,t,(0) satisfy the following condition*

En:ti(e) =0 (14)

The following lemma, establishes an important relationship of these two properties of an SCF with the
ex-post efficiency of the SCF.

Lemma 9.1 A social choice function f(-) = (k(-),t1(-),---,tn()) is ezx-post efficient in quasi-linear
environment if and only if it is allocatively efficient and budget balanced.

Proof: Let us assume that f(-) = (k(-),%1(),...,t,()) is allocatively efficient and budget balanced.
This implies that for any 8 € ©, we have
n n n
D ui(£(0),0) = > vi(k(0),8:) + > t:i(0)
i=1 i i=1

n

= > wi(k(6),6;) + 0

i=1

sz(kaez) +Ztl Vz= (katla"'atn)
i=1 =1

Y

n
= Zuz(waaz) v (katla"'atn) eX
i=1

That is if the SCF is allocatively efficient and budget balanced then for any type profile 8 of the
agent the outcome chosen by the social choice function will be such that it maximizes the total utility
derived by all the agents. This will automatically imply that the SCF is ex-post efficient.

To prove the other part, we will first show that if f(-) is not allocatively efficient then it cannot be
ex-post efficient and next we will show that if f(-) is not budget balanced then it cannot be ex-post
efficient. These two facts together will imply that if f(-) is ex-post efficient then it will have to be
allocatively efficient and budget balanced, thus completing the proof of the lemma.

To start with, let us assume that f(-) is not allocatively efficient. This means that 3 6 € ©, and
k € K such that

> wilk,0:) > > vi(k(6),06)

i=1 i=1

This implies that there exists at least one agent j for whom v;(k,0;) > v;(k(0),0;). Now consider the
following alternative x

5= (K, (8 = t:(6) + vi(k(0),0) — vi(k, 00)),15 15 = 15(0))

4 Many authors prefer to call this property as strong budget balance and they refer the property of having > ti(0) <0
as weak budget balance. In this thesis, we will use the term budget balance to refer to strong budget balance.
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It is easy to verify that w;(z,6;) = u;(f(8),6;) Vi # j and u;(z,0;) > u;(f(0),6;) implying that f(-)
is not ex-post efficient.

Next, we assume that f(-) is not budget balanced. This means that there exists at least one agent
j for whom ¢;(0) < 0. Let us consider the following alternative

2= (k (t; = 1(0)); 4, ) = o)

It is easy to verify that for the above alternative x, we have wu;(x,6;) = u;(f(0),6;) V i # j and
uj(x,6;) > u;(f(0),0;) implying that f(-) is not ex-post efficient.
Q.E.D.

The next lemma summarizes another fact about the social choice function in quasi-linear environment.

Lemma 9.2 All social choice functions in quasi-linear environment are non-dictatorial.

Proof: If possible assume that SCF f(-) is dictatorial. This means that for each 6 € ©, we have
ug(f(0),04) > ua(z,04) Vo € X

where d is a dictatorial agent. However, because of quasi-linear environment, we have uq(f(0),04) =
vq(k(0),04) + t4(0). Now consider the following alternative z € X :

- { (k(0), (t: = i(0))izata = ta(0) — 251 :(0)) = Di_, t:(6) <O
(k(0), (t: = ti(0))izaj, ta = ta(0) + &, =1;(0) —€¢) = D0 ti(0) =0

where € > 0 is any arbitrary number and j is any agent other than d. It is easy to verify that for
the above constructed z, we have ug(z,03) > uq(f(0),64) contradicting the assumption that f(-) is
dictatorial.

Q.E.D.
In view of the Lemma, 9.2, the social planner need not have to worry about the non-dictatorial property
of the social choice function in quasi-linear environments and he can simply look for whether there
exists any SCF which is both ex-post efficient and dominant strategy incentive compatible. Further in
the light of Lemma 9.1, we can say that the social planner can look for an SCF which is allocatively
efficient, budget balanced, and dominant strategy incentive compatible. Once again the question arises
whether there exists any such social choice function which satisfies all these three properties - AE,
BB, and DSIC. We explore the answer to this question in what follows.

10 Groves Mechanisms

The following theorem, due to Groves [42] confirms that in quasi-linear environment, there exist
social choice functions which are both allocatively efficient and truthfully implementable in dominant
strategies (dominant strategy incentive compatible).

Theorem 10.1 (Groves’ Theorem) Let the social choice function f(-) = (k*(-),t1(:),...,ta(:)) be
allocatively efficient. This function can be truthfully implemented in dominant strategies if it satisfies
the following payment structure (popularly known as Groves payment (incentive) scheme) :

t:(0) = | > v (k*(0),0;)| +hi(6_s) Vi=1,...,n (15)
J#i
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where h;(+) is any arbitrary function of 6_; up to satisfying the feasibility condition ), t;(6) <0 V@ €
O .

For proof of the Groves theorem, refer to Proposition 23.C.4 of [38]. Following are a few interesting
implications of the above theorem.

1. Given the announcements 6_; of agents j # i, agent 4’s transfer depends on his announced type
only through his announcement’s effect on the project choice k*(0).

2. The change in the monetary transfer of agent ¢ when his type changes from 6; to éZ is equal to
the effect that the corresponding change in project choice has on total value of the rest of the
agents. That is,

ti(05,0-5) — ti(05,0-5) = [Uj(k*(@'ﬁ—i)ﬁj) - Uj(k*(éiﬁ—i)aej)]
j#i

Another way of describing this is to say that the change in monetary transfer to agent ¢ reflects
exactly the externality he is imposing on the other agents.

After the famous result of Groves, a direct revelation mechanism in which the implemented SCF is
allocatively efficient and satisfies the Groves payment scheme is called as Groves Mechanism.

Definition 10.1 (Groves Mechanisms) A direct revelation mechanism, 2 = ((0;)iecn, f(*)) in
which f(-) = (k(-),t1(:),...,ta(")) satisfies (18) and (15) is known as Groves mechanism.

In practice, Groves mechanisms are popularly known as Vickrey-Clarke-Groves (VCG) mechanisms
because Clarke mechanism is a special case of Groves mechanism and Vickrey mechanism is a special
case of Clarke mechanism. We will discuss this relationship later in this paper.

Groves theorem provides a sufficiency condition under which an allocatively efficient (AE) SCF
will be DSIC. The following theorem due to Green and Laffont [43] provides a set of conditions under
which the condition of Groves theorem also becomes a necessary condition for an AE SCF to be DSIC.
In this theorem, we let % denote the set of all possible functions f : K — R.

Theorem 10.2 (First Characterization Theorem of Green-Laffont) Suppose that for each agent
i=1,....,n {vi(.,0;) : 6; € ©;} = F; that is, every possible valuation function from K to R arises
for some 6; € ©;. Then any allocatively efficient (AE) social choice function f(-) will be dominant
strategy incentive compatible (DSIC) if and only if it satisfies the Groves payment scheme given by

(15).

Note that in the above theorem, every possible valuation function from K to R arises for some 6; € ©;.
Therefore, in many cases, depending upon the structure of the compact set JZ, it is quite possible
that for some type profile = (64,...,6,), the maximum of the function )", v;(., ;) over the set %~
may not exist. In such cases, the set of AE social choice functions would be empty and the theorem
will make no sense. One possible way to get away with this difficulty is to assume that the set £ is a
finite set. Another solution is to restrict the allowable valuation functions to the class of continuous
functions. The following characterization theorem of Green and Laffont [43] fixes this problem by
replacing the .% with %, where %, denotes the set of all possible continuous functions f : K — R.

5 We will sometime abuse the terminology and simply refer to a SCF f(-) satisfying (13) and (15) as Groves mechanism.
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Theorem 10.3 (Second Characterization Theorem of Green-Laffont) Suppose that for each
agenti=1,...,n {v;(.,0;) : 6; € ©;} = F; that is, every possible continuous valuation function from
K to R arises for some 0; € ©;. Then any allocatively efficient (AE) social choice function f(-) will be
dominant strategy incentive compatible (DSIC) if and only if it satisfies the Groves payment scheme
given by (15).

10.1 Groves Mechanisms and Budget Balance

Note that a Groves mechanism always satisfies the properties of AE and DSIC. Therefore, if a Groves
mechanism is budget balanced then it will solve the problem of the social planner because it will then
be ex-post efficient and dominant strategy incentive compatible. By looking at the definition of the
Groves mechanism, one can conclude that it is the functions h;(-) that decide whether or not the
Groves mechanism is budget balanced. The natural question that arises now is whether there exists a
way of defining functions h;(-) such that the Groves mechanism is budget balanced. In what follows,
we present one possibility and one impossibility result in this regard.

10.2 Possibility and Impossibility Results for Quasi-linear Environments

Green and Laffont [43] showed that in quasi-linear environment, if the set of possible types for each
agent is sufficiently rich then ex-post efficiency and DSIC cannot be achieved together. The precise
statement is given in the form of following theorem.

Theorem 10.4 (Green-Laffont Impossibility Theorem) Suppose that for each agenti=1,...,n,
{vi(.,6;) : 0; € ©;} = F; that is, every possible valuation function from K to R arises for some 6; € ©;.
Then there is no social choice function which is ex-post efficient and DSIC.

Thus, the above theorem says that if the set of possible types for each agent is sufficiently rich then
there is no hope of finding a way to define the functions h;(-) in Groves payment scheme so that
we have Y ", t;(#) = 0. However, one special case in which a more positive result does obtain is
summarized in the form of following possibility result.

Theorem 10.5 (Possibility Result for Budge Balance of Groves Mechanisms ) If there is at
least one agent whose preferences are known (i.e. his type set is a singleton set) then it is possible to
choose the functions hi(-) so that > | t;(6) = 0.

Proof Let agent ¢ be such that his preferences are known, that is ©; = {6;}. In view of this condition,
it is easy to see that for an allocatively efficient social choice function f(-) = (k*(-),t1(-),...,tn(")),
the allocation £*(-) depends only on the types of the agents other than i. That is, the allocation k*(-)
is a mapping from ©_; to K. Let us define the functions A;(-) in the following manner.

o hi(0—j) = §#i
hj(a_j)_{ _Zméihr(e—r)_(n_l)zgzlvr(k*(é)’ei) : j:i

It is easy to see that under the above definition of the functions h;(-), we will have ¢;(0) = — >, ., ;(6).

10.3 Clarke (Pivotal) Mechanisms: Special Case of Groves Mechanisms

A special case of Groves mechanism was discovered independently by Clarke in 1971 [44] and is known
as Clarke, or pivotal mechanism. It is a special case of Groves mechanism in the sense of using
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a particular form for the function h;(-). In Clarke mechanism, the function h;(-) is given by the
following relation

hi(6_i) = = vi(k*;(0-:),0;) VO, €O_;,Vi=1,...,n (16)
J#i
where k*,(0_;) € K_; is the choice of a project which is allocatively efficient if there were only the
n — 1 agents j # i. Formally, k*,(0_;) must satisfy the following condition.

> 0i(k*i(6-3),05) = D vj(k,6;) Yk € K (17)
J#i J#i
where the set K_; is the set of project choices available when agent ¢ is absent. Substituting the value

of hi(-) from Equation (16) in Equation (15), we get the following expression for agent i’s transfer in
the Clarke mechanism

ti(0) = | D> _vi(k*(0),05) | — [ D vi(k*:(6-5),65) (18)
J#i J#i

10.4 Clarke Mechanisms and Weak Budget Balance

Recall from the definition of Groves mechanisms that, for weak budget balance, we should choose the
functions h;(6_;) in such a way that the weak budget balance condition ;" ; ¢;(8) < 0 is satisfied.
In this sense, the Clarke mechanism is a useful special-case because it achieves weak budget balance
under fairly general settings. In order to understand these general sufficiency conditions, we define
following quantities

n
" _ arg max _ ‘
B*(0) = (keKl|ke ke K 2 vj(k,0;)
7j=1
X . _ arg max ' '
B*(0-;) = {keK.ke 2 P ;v](k,ej)
JF1

where B*(0) is the set of project choices that are allocatively efficient when all the agents are present
there in the system. Similarly, B*(6_;) is the set of project choices that are allocatively efficient if
there were n — 1 agents j # 4. It is obvious that k*(0) € B*(0) and k*;(0_;) € B*(6_;).

Using the above quantities, we define the following properties of a direct revelation mechanism in
quasi-linear environment.

Definition 10.2 (No Single Agent Effect) We say that mechanism .# has no single agent effect
if for each agent i, each 0 € ©, and each k*(0) € B*(0), we have a k € K_; such that

>0k, 05) > 3 S 0(k*(6),6;)
J#i J#i
In view of the above properties, we have the following proposition that gives sufficiency condition

for Clarke mechanism to be weak budget balanced.
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Proposition 10.1 If the Clarke mechanism has no single agent effect, then transfer of each agent
would be non-positive, that is, t;(6;) <0V @8 € ©; Vi=1,...,n. In such a situation, the Clarke
mechanism would satisfy the weak budget balance property.

Proof: Note that by virtue of no single agent effect, for each agent i, each 8 € ©, and each k*(0) €
B*(6), 3k € K_; such that

> ik, 0)) = D vi(k(6),6))
J#i J#
However, by definition of k*,(6_;), given by Equation (17), we have
Z vj(k*_i(ﬂ_i), 0]) > Z ’Uj(k, 0]) VkeK_;
J# J#
Combining the above two facts, we get

Z’Uj(k‘*_i(O—i),ej) > Zvj(k*(G),Oj)
j#i J#i
=0 > t(9)

=0 > Y t(0)
=1

Q.E.D.
Now we can make following assertions with respect to these definitions. In what follows is an interesting
corollary of the above proposition.

Corollary 10.1

1. t;(0) = 0 iff k*(0) € B*(6—;). That is, agent i’s monetary transfer is zero iff his announcement
does not change the project decision relative to what would be allocatively efficient for agents
j # 1 in isolation.

2. t;(0) < 0 iff k*(0) ¢ B*(0—;). That is, agent i’s monetary transfer is negative iff his announce-
ment changes the project decision relative to what would be allocatively efficient for agents j # i
in isolation. In such situation, the agent i is known to be “pivotal” to the efficient project choice
and he pays a tax equal to his effect on the other agents.

The following picture summarizes the conclusions of this section by showing how the space of social
choice functions looks like in quasi-linear environment. In what follows we discuss a few examples
of direct revelation mechanisms in quasi-linear environment and study the various properties of the
underlying SCF.

10.5 Fair Bilateral Trade is BB+AE but not DSIC

Consider the fair bilateral trade Example 4.1 in which the good is always allocated to the agent who
values it the most. Therefore, the SCF is allocatively efficient. The SCF here is also budget balanced,
which is quite clear from the definition of SCF itself. However, it is easy to see that this SCF is not
dominant strategy incentive compatible. For example, let us assume that 6; = 50 and 65 = 100. Then,
it is easy to see that for any 50 < 6, < 100

ui(f(61,02),01) > ui(f(61,02),61)

This violates the required condition of the dominant strategy incentive compatibility.
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Figure 8: Space of social choice functions in quasi-linear environment

10.6 First-Price Sealed Bid Auction is AE but neither DSIC nor BB

Consider the Example 4.2 of first-price auction. Let us assume that S; = ©; = [&, O_Z} Vie N. In
such a case, the first-price auction becomes a direct revelation mechanism 2 = ((©;)ien, f(-)), where
f(:) is an SCF which is same as outcome rule of the first-price auction. Note that under the SCF
f(+), the good is always allocated to the bidder who values it the most. Therefore, the SCF f(-) is
allocatively efficient. It is an easy fact to note that the SCF f(-) is not budget balanced, because the
auctioneer is not considered as one of the agents. Moreover, the SCF used here is not DSIC because
truth telling is not a dominant strategy for the bidders. In order to show this, let us assume that there
are two bidders and for some instance we have 6; = 50 and 6, = 100. Then, it is easy to see that for
any 50 < 65 < 100

us(f(01,62),02) > uz(f(61,62),02)

This violates the required condition of the dominant strategy incentive compatibility.

10.7 Second-Price Sealed Bid (Vickrey) Auction is AE + DSIC but not BB

Consider Example 4.3 of second-price (Vickrey) auction. Once again we assume that S; = 0; =
[@, 0_1} V 7 € N. In such a case, the second-price auction becomes a direct revelation mechanism
2 = ((©;)ien, f(-)), where f(-) is an SCF which is same as outcome rule of the second-price auction.
We have already shown that Vickrey auction is a special case of GVA in which the auctioneer is selling
just single unit of a single item. Given that the Vickrey auction a special case of the GVA, we can
assert that the SCF f(-) used by the auctioneer in Vickrey auction is AE 4+ DSIC but not BB because
the SCF used in GVA is also AE + DSIC and not BB, which we are going to show next.
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10.8 Generalized Vickrey Auction is AE + DSIC but not BB

Consider Example 4.4 of generalized Vickrey auction. Let us assume that S; = ©; = [E, VZ] @"-1) Vie

N. In such a case, the GVA auction becomes a direct revelation mechanism 2 = ((©;);cn, f(+)), where
f(-) is an SCF which is same as outcome rule of the GVA auction. It is easy to see that the under
this SCF f(-), the bundles are allocated in such a way that total value of all the agents gets maxi-
mized. This implies that the SCF in this example is allocatively efficient. Also, note that the payment
structure is the same as the Clarke mechanism. Thus, the direct revelation mechanism used by the
auctioneer in GVA is a Clarke mechanism. Therefore, the SCF is automatically DSIC. However, note
that SCF certainly not budget balanced because we are not including the auctioneer into the system.
If auctioneer is also part of the system then by virtue of theorem 10.5, we can claim that the SCF
would be BB also.

The Table 1 summarizes the properties of the SCFs discussed in above examples. Figure 9 sum-
marizes the relationship among various SCFs discussed in above examples.

SCF AE | BB | DSIC

Fair Bilateral Trade v v X

First-Price Auction v X X
Vickrey Auction v X v
GVA v X v

Table 1: Properties of social choice functions in quasi-linear environment

11 A Variant of Quasi-linear Environment

In this section, we consider a variant of the quasi-linear environment which is commonly encountered
in applications. In this environment, we make the following change in the settings of quasi-linear
environment: we assume that K = R. Note, this new set of project choices is no more a compact set.
Next, we assume that for each agent ¢ and each of his type 8; € ©;, we have

1. v(.,0;) : K — R is a twice continuously differentiable function

8%v;(k,0;)

g, Lulkd)
8%v;(k,0;)
3. “Pra 50, > 0

4. 6; € [0;, 6;] CR
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Figure 9: Space of BIC and DSIC social choice functions in quasi-linear environment

It is easy to verify that even in this modified environment, there is no special choice function which is
dictatorial. We now define a special class % of the social choice functions in this environment.

¢ ={f:0- R"™!| f is a continuously differentiable function }

The social choice functions of this class are commonly encountered in applications and they have some
very interesting properties. In what follows we characterize the social choice functions of this class €
from the perspective of various properties satisfied by them.

Proposition 11.1 (Characterization of AE SCFs) If an SCF f € € is AE thenVi=1,...,n
and ¥V 0 € ©, k(0) is non-decreasing in 6;.

Proposition 11.2 (Characterization of DSIC SCFs) An SCF f € € is DSIC iff Vi=1,...,n
and ¥V 0 € ©, we have

1. k() is non-decreasing in 6;

2. t;(0;,0_;) = t;(0,,0—_;) — QHZ 8vi(k(g’,f_i)’s) ak(g’f_i)ds

Proposition 11.3 (Characterization of AE4+DSIC SCFs) An AE SCF f € € is DSIC iff it
satisfies the Groves payment scheme, that is, Vi=1,...,n and V 0 € ©, we have

t:i(0) = | > v (k*(0),0;)| +hi(6_s) Vi=1,...,n (19)
J#i

where hi(+) is any arbitrary function of 6_;.
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12 Bayesian Implementation

Recall that we mentioned two possible routes to get around the Gibbard-Satterthwaite impossibility
theorem. The first was to focus on restricted environments like quasi-linear environment, and the
second one was to weaken the implementation concept and look for an SCF which is ex-post efficient,
non-dictatorial, and Bayesian incentive compatible. In this section, our objective is to explore the
second route.

Throughout this section, we will once again be working within the quasi-linear environment. As
we saw earlier, the quasi-linear environments have a nice property that every social choice function in
these environments is non-dictatorial. Therefore, while working within quasi-linear environment, we
do not have to worry about non-dictatorial part of the social choice function. We can just investigate
whether there exists any SCF in quasi-linear environment, which is both ex-post efficient and BIC, or
equivalently which has three properties - AE, BB, and BIC. Recall that in the previous section, we
have already addressed the question whether there exists any SCF in quasi-linear environment which
is AE, BB, and DSIC and we found that hardly any function satisfies all these three properties. On
the contrary, in this section, we will show that a wide range of SCF in quasi-linear environment satisfy
three properties - AE, BB, and BIC.

12.1 (AE + BB + BIC) is Possible: Expected Externality Mechanisms

The following theorem, due to d’Aspremont and Gérard-Varet [45] and Arrow [46] confirms that
in quasi-linear environment, there exist social choice functions which are both ex-post efficient (al-
locatively efficient + budget balance) and truthfully implementable in Bayesian Nash equilibrium
(Bayesian incentive compatible). We refer this theorem by dAGVA theorem.

Theorem 12.1 (The dAGVA Theorem) Let the social choice function f(-) = (K*(-),t1(-), ..., tn(-))
be allocatively efficient and the agents’ types be statistically independent of each other (i.e. the den-

sity ¢(-) has the form ¢1(-) X ... X ¢n(:)). This function can be truthfully implemented in Bayesian

Nash equilibrium if satisfies the following payment structure, popularly known as dAGVA payment

(incentive) scheme.

ti(0) = Ej_,

—1

> v (k* (65,0 3),0;) | +hi(0-) Vi=1,...,n; Vtheta € Theta (20)
J#i

where h;i(-) is any arbitrary function of 6_;. Moreover, it is always possible to choose the functions
hi(:) such that ", t;(6) = 0.

Proof: Let the social choice function f(-) = (k*(-),%1(-),.--,%s(-)) be allocatively efficient, i.e. it
satisfies the condition (13), and also satisfies the dAGVA payment scheme (20). Consider

Eg_; [ui(f(0:,0-:),0;)|0;5] = Eg_, [vi(k™(6;,0_;),0;) + 1:(0;,0_;)|0;]
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Since 6; and 6_; are statistically independent, the expectation can be taken without conditioning on
0;. This will give us

Eo_; [ui(f(6:,0-:),0:)|0;]] = Ep_; [vi(k™(0:,6-:),0;) + hi(6-;) + E5 [ng 0: z,éj)]]
J#i

= Ey Zvj(k*(oi,o,,-),ej) + Eg_;[hi(0-)]

Since k*(-) is satisfies the condition (13),

n n
Zvj(k*(Hi,Q_i),Oj) > Zvj(k*(éi,ﬁ_i)ﬂj) Y éz c G)z

=1

Thus we get

lzu, (6,0 ; 0)]+E9 [hi(0 ]>Egllzvj 0:,0-:),6;)

Again by making use of statistical independence we can rewrite the above inequality in the following
form

+ By [h(0-)] V6 € ©;

Ey_, [ui(f(6:,0-:),0;)|60;] > Eg_, [Ui(f(éi,9—i),9i)|9i] Vi € ©;

This shows that when agents j # i announce their types truthfully, agent 7 finds the truth telling is
his optimal strategy, thus proving that the SCF is BIC. We now show that the functions h;(-) can be
chosen to guarantee >, ¢;(#) = 0. Let us define,

&G(6:) = Ej Zvj(k*(ei,éi),éj)] Vi=1,...,n
J#i
hz(e—z) = (?’L—l)zg] =1,...,n

J#

In view of the above definitions, we can say that

t:(0) = &(6;) — £i(05)
(H);
Zsiwz) ZZ@

—_

M=
—
St
3
A
|
/—\
\/

i=1 j#i
=300 = Zez ( 11)Z(n—1)sj<ej>
i=1 i=1
=>zn:tz(0) = 0
i=1
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Q.E.D.
The budget balanced payment structure of the agents in the above mechanism can be given a nice
graph theoretic interpretation. Imagine a directed graph G = (V, A) where V is the set of n+1 vertices,
numbered 0,1,...,n, and A is the set of [n + n(n — 1)] directed arcs. The vertices starting from 1
through n correspond to the n agents involved into the system and the vertex number 0 corresponds
to the social planner. The set A consists of two types of the directed arcs:

1. Arcs0 -1 Vi=1,...,n

2. Arcs i —j Vi,j €{1,2,...,n};i#j

Each of the arcs 0 — i carries a flow of ¢;(6) and each of the arcs ¢ — j carries a flow of %

Thus the total outflow from a node i € {1,2,...,n} is &(6;) and total inflow to the node i from nodes
jefL,2,... n}is —hi(0_;) = (L) 32, 4:€3(07) Thus for any node i, £;(8) +hi(6—;) is the net outflow

n—1

which it is receiving from node 0 in order to respect the flow conservation constraint. Thus, if ¢;(-) is
positive then the agent 7 receives the money from the social planner and if it is negative, then the agent
pays the money to the social planner. However, by looking at flow conservation equation for node 0,
we can say that total payment received by the planner from the agents and total payment made by
the planner to the agents will add up to zero. In graph theoretic interpretation, the flow from node
i to node j can be justified as follows. Each agent ¢ first evaluates the expected total valuation that
would be generated together by all his rival agents in his absence, which turns out to be &;(6;). Now,
agent ¢ divides it equally among the rival agents and pays to every rival agent an amount equivalent
to this. The idea can be better understood with the help of Figure 10 which depicts the three agents
case.

Figure 10: Payment structure in budget balance expected externality mechanism

After the results of d’Aspremont and Gérard-Varet [45] and Arrow [46], a direct revelation mech-
anism in which SCF is allocatively efficient and satisfies the dAGVA payment scheme is called as
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dAGVA mechanism/expected externality mechanism/ezpected Groves mechanism.

Definition 12.1 (dAGVA /expected externality/expected Groves Mechanisms) A direct rev-
elation mechanism, 2 = ((0;)ien, f(-)) in which f(-) = (k(-),t1(:),...,tn(:)) satisfies (13) and (20)
is known as dAGVA /expected externality/expected Groves Mechanism.5

In view of the definition of AAGVA mechanisms, the Figure 8 can be enriched by including the space
of dAAGVA mechanisms. This is shown in Figure 11.

Budget - Ex post efficient SCE
Balance

Allocatively
Efficient

Groves Mechanisms

dAGVA Mechanisms

Dominant Strategy
Incentive Compatible

Bayesian Incentive Compatible

Figure 11: Space of social choice functions in quasi-linear environment

12.2 BIC in Linear Environment

The linear environment is a special, but often-studied, subclass of quasi-linear environment. This
environment is a restricted version of the quasi-linear environment in following sense.

1. Each agent 4’s type lies in an interval ©; = [6,,60;] C R with §; < 0;

2. Agents’ types are statistically independent, that is, the density ¢(-) has the form ¢ (-) X...X @y (+)
3. ¢i(0;) >0V0;,€[0,,0:)Vi=1,...,n

4. Each agent 4’s utility function takes the following form

ui(x, QZ) = Osz(k) + m; + tz'

5 We will sometime abuse the terminology and simply refer to a SCF f(-) satisfying (13) and (20) as dAG VA /expected
externality/expected Groves Mechanisms.
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The linear environment has very interesting properties in terms of characterizing the BIC social choice
functions. Before we present Myerson’s characterization theorem for BIC social choice functions in
linear environment, we would like to define following quantities with regard to any social choice
function f(-) = (k(-),%1(:),...,tn(:)) in this environment.

o Let %;(0;) = Ey_,[ti(6:,6_;)] be agent i’s expected transfer given that he announces his type to
be 6; and that all agents j # ¢ truthfully reveal their types.

o Let 7;(6;) = Ey_.[vi(0;,0 ;)] be agent i’s expected “benefits” given that he announces his type
to be 6; and that all agents j # 1 truthfully reveal their types.

o Let Uz(éz|ez) = Eg_i[ui(f(éi,G_i),Hi)|0i] be agent i’s expected utility when his type is 6;, he
announces his type to be éi, and that all agents j # 4 truthfully reveal their types. It is easy to
verify from previous two definitions that

U;(6:16;) = 05 (6;) + %:(6;)

B)

o Let U;(6;) = U;(0;]6;) be the agent i’s expected utility conditional on his type being 6; when he
and all other agents report their true types. It is easy to verify that

Ui(0:) = 0;5;(0;) + t:(6:)
In view of the paraphernalia developed, we now present Myerson’s [37] theorem for characterizing the
BIC social choice functions in this environment.

Theorem 12.2 (Myerson’s Characterization Theorem) In linear environment, a social choice
function f(-) = (k(-),t1(:),...,tn(")) is BIC if and only if, for alli=1,...,n,

1. ©;(+) is non-decreasing
2. Uy(0:) = Ui(6:) + [, wi(s)ds V0,

For proof of the above theorem, refer to Proposition 23.D.2 of [38]. The above theorem shows that to
identify all BIC social choice functions in linear environment, we can proceed as follows: First identify
which functions k(-) lead every agent i’s expected benefit function 7;(-) to be non-decreasing. Then,

for each such function identify transfer functions #1(-),...,¢,(-) that satisfy the second condition of
the above proposition. Substituting for U;(-) in the second condition above, we get that expected
transfer functions are precisely those which satisfy, for 1 = 1,...,n,

_ 0i
E(03) = R0 + 075000 — 0,50 + [ (s}

for some constant ¢;(6;). Finally, choose any set of transfer functions ¢1(-), ..., %, (-) such that Eg_,[t;(6;,0_;)] =
t;(0;) for all 6;. In general, there are many such functions, ¢;(-,-); one, for example, is simply
ti(0;,0_;) = t:(6;)

In what follows we discuss a few examples where the environment is linear and analyze the BIC
property of the social choice function by means of Myerson’s characterization theorem.
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12.3 Fair Bilateral Trade in Linear Environment

Once again consider the Example 4.1 of fair bilateral trade. Recall that each agent i’s type lies in an
interval ©; = [6;,6;]. Let us impose the additional conditions on the environment to make it linear.
We assume that

1. Agents’ types are statistically independent, that is, the density ¢(-) has the form ¢1(-) x ¢2(-)
2. Let each agent i draw his type from the set [6;,6;] by means of a uniform distribution, that is
$i(0;) =1/(0; — 0;) V 0; € [0;,0;] Vi=1,2
Note that the utility function of the agents in this example are given by

ui(f(0),0:) = iyi(0) +1:(0) Vi =1,2

Thus, viewing y;(0) = v;(k(#)) will confirm that these utility functions also satisfy the fourth condition
required for linear environment. Now we can apply Myerson’s characterization theorem to test the
Bayesian incentive compatibility of the SCF involved here. It is easy to see that v7(01) = y1(6h) =
1 — ®4(0y) is not a non-decreasing function. Therefore, we can claim that fair bilateral trade is not
BIC.

12.4 First-Price Sealed Bid Auction in Linear Environment

Once again consider the Example 4.2 of first-price sealed bid auction. Let us assume that S; = ©; =
[&, O_Z] VY i € N. In such a case, the first-price auction becomes a direct revelation mechanism
2 = ((0;)ien, f(+)), where f(-) is an SCF which is same as outcome rule of the first-price auction.
Let us impose the additional conditions on the environment to make it linear. We assume that

1. Bidders’ types are statistically independent, that is, the density ¢(-) has the form ¢1 () x...xX¢n(-)
2. Let each bidder draw his type from the set [0;,0;] by means of a uniform distribution, that is
$i(0;) =1/(0; —0;)V0; € [6;,0;] Vi=1,...,n
Note that the utility function of the agents in this example are given by

ui(f(0),0:;) = 0imi(0) + () Vi=1,...,n

Thus, viewing y;(0) = v;(k(#)) will confirm that these utility functions also satisfy the fourth condition
required for linear environment. Now we can apply Myerson’s characterization theorem to test the
Bayesian incentive compatibility of the SCF involved here. It is easy to see that for any bidder ¢, we
have

vi(0i) = Eg_[vi(0;,0-i)]
= Ep_,[yi(0;,0-:)]
= LP((0 ) (n-1)<0;) +0.(1 =P (6; < (0 i)n-1)))
= P((0-i)n-1) < 6:) (21)

where P ((G_i)(n,l) < ﬁi) is the probability that the given type 6; of the bidder i is the highest among
all the bidders’ types. This implies that in the presence of independence assumptions made above,
77(0;) is a non-decreasing function.
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We know that for first-price sealed bid auction, t;(0) = —6;y;(#). Therefore, we can claim that for
first-price sealed bid auction, we have

ti(0;) = —0;1;(6;)V6; € O,
The above values of 73(6;) and %;(6;) can be used to compute U;(6;) in following manner.
Ui(6;) = 0:;9i(6;) +1:(6;) =0 V 6; € [0;,0;] (22)

The above equation can be used to test the second condition of the Myerson’s theorem, which require
0;
Ui(6:) = Us(6:) + / wi(s)ds
9;

In view of the Equations (21) and (22), it is easy to see that this second condition of Myerson’s
characterization theorem is not being met by the SCF used in the first-price sealed bid auction.
Therefore, we can finally claim that first-price sealed bid auction is not BIC in linear environment.

12.5 Second-Price Sealed Bid Auction in Linear Environment

Once again consider the example 4.3 of second-price sealed bid auction. Let us assume that S; = ©; =
[@, (9_1] Vi € N. In such a case, the second-price auction becomes a direct revelation mechanism
2 = ((©i)ien, f(+)), where f(-) is an SCF which is same as outcome rule of the second-price auction.
We have already seen that this SCF f(-) is DSIC in quasi-linear environment and linear environment
is a special case of quasi-linear environment, therefore, it is DSIC in the linear environment also.
Moreover, we know that DSIC implies BIC. Therefore, we can directly claim that SCF used in the
Vickrey auction is BIC in linear environment.

Table 2 summarizes the properties of the SCFs discussed in above examples in linear environments.

SCF AE | BB | DSIC | BIC
Fair Bilateral Trade v v X X
First-Price Auction v X X X
Vickrey Auction v X v v

Table 2: Properties of social choice functions in linear environment
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13 The Revenue Equivalence Theorem

There are four basic types of auctions when a single indivisible item is to be sold:

1. English auction: This is also called oral auction, open auction, open cry auction, and ascending
bid auction. Here, the price starts at a low level and is successively raised until only one bidder
remains in the fray. This can be done in several ways: (a) an auctioneer announces prices, (b)
bidders call the bids themselves, or (b) bids are submitted electronically. At any point of time,
each bidder knows the level of the current best bid. The winning bidder pays the last going
price.

2. Dutch auction: This is also called a descending bid auction. Here, the auctioneer announces an
initial (high) price and then keeps lowering the price iteratively until one of the bidders accepts
the current price. The winner pays the current price.

3. First price sealed bid auction: Recall that in this auction, potential buyers submit sealed
bids and the highest bidder is awarded the item. The winning bidder pays the price that he has
bid.

4. Second price sealed bid auction: This is the classic Vickrey auction. Recall that potential
buyers submit sealed bids and the highest bidder is awarded the item. The winning bidder pays
a price equal to the second highest bid (which is also the highest losing bid).

When a single indivisible item is to be bought or procured, the above four types of auctions can be
used in a reverse way. These are called reverse auctions or procurement auctions. In this section, we
would be discussing the revenue equivalence theorem as it applies to selling. The procurement version
can be analyzed on similar lines.

13.1 The Benchmark Model

There are four assumptions underlying the derivation of the revenue equivalence theorem: (1) risk neu-
trality of bidders (2) bidders have independent private values (3) bidders are symmetric (4) payments
depend on bids alone. These are described below in more detail.

13.1.1 Risk Neutrality of Bidders
A bidder is said to be:

o risk-averse if his utility is a concave function of his wealth; that is an increment in the wealth at
a lower level of wealth leads to an increment in utility that is higher than the increase in utility
due to an identical increment in wealth at a higher level of wealth;

e risk-loving if his utility is a convex function of his wealth; that is an increment in the wealth at
a lower level of wealth leads to an increment in utility that is lower than the increase in utility
due to an identical increment in wealth at a higher level of wealth; and

o risk-neutral if his utility is a linear function of his wealth; that is an increment in the wealth at
a lower level of wealth leads to the same increment in the utility as an identical increment would
yield at a higher level of wealth.

It is assumed in the benchmark model that all the bidders are risk neutral. This immediately implies
that the utility functions are linear.
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13.1.2 Independent Private Values Model

In the independent private values model, each bidder knows precisely how highly he values the item.
He has no doubt about the true value of the item to him. However, each bidder does not know
anyone else’s valuation of the item. Instead, he perceives any other bidder’s valuation as a draw
from some known probability distribution. Also, each bidder knows that the other bidders and the
seller regard his own valuation as being drawn from some probability distribution. More formally, let
N = {1,2,--- ,n} be the set of bidders. There is a probability distribution ®; from which bidder %
draws his valuation v;. Only bidder ¢ observes his own valuation v;, but all other bidders and the
seller know the distribution ®;. Any one bidder’s valuation is statistically independent from any other
bidder’s valuation.

An apt example of this assumption is provided by the auction of an antique in which the bidders
are consumers buying for their own use and not for resale. Another example is Government contract
bidding when each bidder known his own production cost if he wins the contract.

Common Value Model

A contrasting model is the common value model. Here, if V is the unobserved true value of the item,
then the bidders’ perceived values v;,7 = 1,2,--- ,n are independent draws from some probability
distribution H (v;|V). All the bidders know the distribution H. An example is provided by the sale of
an antique that is being bid for by dealers who intend to resell it. The item has one single objective
value, namely its market price. However, no one knows the true value. The bidders, perhaps having
access to different information, have different guesses about how much the item is objectively worth.
Another example is that of sale of mineral rights to a particular tract of land. The objective value here
is the amount of mineral actually lying beneath the ground. However no one knows its true value.

Suppose a bidder were somehow to learn another bidder’s valuation. If the situation is described
by the common value model, then the above provides useful information about the likely true value of
the item and the bidder would probably change his own valuation in the light of this. If the situation is
described by the independent private value model, the bidder knows his own mind and learning about
another’s valuation will not cause him to change his own valuation (although he may, for strategic
reasons, change his bid).

Real world auction situations are likely to contain aspects of both the independent private values
model and the common value model. It is assumed in the benchmark model that the independent
private values assumption holds.

13.1.3 Symmetry

This assumption implies that the all bidders have the same set of possible valuations and further they
draw their valuations using the same probability distribution ®. That is ¢; = Py = ... = D,,.

13.1.4 Dependence of Payments on Bids Alone

It is assumed that the payment to be made by the winner to the auctioneer is a function of bids alone.

13.2 Statement of the Revenue Equivalence Theorem

It is clear that the benchmark model leads to a Bayesian game. We have already studied the structure
of this game while discussing the first price and second price auctions earlier. Bayesian Nash equilib-
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rium is a natural outcome of such a game: each bidder bids an amount that is some function of his own
valuation, such that, given that everyone else chooses his bid in this way, no individual bidder could
do better by bidding differently. This Bayesian Nash equilibrium turns out to be a weakly dominant
strategy equilibrium for the English auction and second price auction.

Theorem 13.1 (Revenue Equivalence Theorem) : Consider a seller or an auctioneer trying to
sell a single indivisible item in which n bidders are interested. For the benchmark model (bidders are
risk neutral, bidders have independent private values, bidders are symmetric, and payments depend
only on bids), all the four basic auction types (English auction, Dutch auction, first price auction, and
second price auction) yield the same average revenue to the seller.

The result looks counter intuitive: for example, it might seen that receiving the highest bid in a
first price scaled bid auction must be better for the seller than receiving the second highest bid, as
in second price auction. However, it is to be noted that bidders act differently in different auction
situations. In particular, they bid more aggressively in a second price auction than in a first price
auction.

13.3 Proof of the Revenue Equivalence Theorem

The proof proceeds in three parts. In Part 1, we show that the first price auction and the second
price auction yield the same expected revenue in their respective equilibria. In Part 2, we show that
the Dutch auction and the first price auction produce the same outcome. In Part 3, we show that the
English auction and the second price auction yield the same outcome. Before taking up these parts,
we first state and prove an important proposition.

A Proposition on Revenue Equivalence of Two Auctions

Assume that y;(#) is the probability of agent i getting the object when the vector of announced
types is 6 = (01,...,6,). Expected payoff to the buyer i with a type profile § = (61,--- ,0,) will be
yi(0)0; + t;(0). The set of allocations is given by

n
K= {(yla ayn) 1Y € [Oﬂl]vzzla anazyz < 1}
i=1

As earlier, let 7;(6;) = Ey, [yi(6;,0;)] be the probability that agent i gets the object conditional to
announcing his type as 6;, with the rest of the agents announcing their types truthfully. Similarly,
ti(60;) = Ey,[ti(0;,0;)] denotes the expected payment received by agent i conditional to announcing his

~ ~

type as 6;, with the rest of the agents announcing their types truthfully. Let 73(6;) = 7;(6;). Then,
Ui(6:) = 5i(6:)0; +1:(6;)

denotes the payoff to agent ¢ when all the buying agents announce their types truthfully. We now
state and prove an important proposition.

Proposition 13.1 Consider an auction scenario with:
1. n risk-neutral bidders (buyers) 1,2,--- ,n

2. The valuation of bidder i (i =1,--- ,n) is a real interval [0;,0;] C R with 6; < 6;
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8. The valuation of bidder i (i = 1,--- ,n) is drawn from [6;,6;] with a strictly positive density
¢i(.) > 0. Let ®;(.) be the cumulative distribution function.

4. The bidders’ types are statistically independent.
Suppose that a given pair of Bayesian Nash equilibria of two different auction procedures are such that:

e For every bidder i, for each possible realization of (01,--- ,0,), bidder i has an identical proba-
bility of getting the good in the two auctions.

o Fvery bidder i has the same expected payoff in the two auctions when his valuation for the object
1s at its lowest possible level.

Then the two auctions generate the same expected revenue for the seller.

Proof: By the revelation principle, it is enough we investigate two Bayesian incentive compatible
social choice functions in this auction setting. It is enough we show that two Bayesian incentive
compatible social choice functions having (a) the same allocation functions (y1(0),--- ,yn(0)) VO € O,
and (b) the same values of U1(601),--- ,U,(6,) will generate the same expected revenue to the seller.

We first derive an expression for the seller’s expected revenue given any Bayesian incentive com-
patible mechanism. Expected revenue to the seller

= Z Ep[—:(0)] (23)
Now, we have:

Bo[-4(6)) = Eo,l~Eo_[t:(60)]
/ 5 (6:)6; — Ui(6:))(6:)d0

=/& [—w) / ds]@ )0

The last step is an implication of Myerson’s characterization of Bayesian incentive compatible functions
in linear environment. The above expression is now equal to

9; 0;
- [/ (m(ei)ei— / m(s)ds> 6:(0:)d6;
9; 9;

Now, applying integration by parts with fg Ui(s)ds as the first function, we get

/: ( /,,0 | WS)ds) $:(0:)db;

0; 9;
_ / 7i(0:)d6; — / 75(0:):(6,)d6;
9 7]

Yi i

- Ui(6:)
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Therefore we get

since _ _
01 On

_01):/ / yi(01,--+ ,0n)  db,---db;

01 On S

- - without dé;

Therefore the expected revenue of the seller

n

I O 1_&
— L [ w0 (- 50 qus] b, -~ dby
1 On =1 !

~S i)
i=1

By looking at the above expression, we see that any two Bayesian incentive compatible social choice
functions that generate the same functions (y1(0), - - - ,y»(6)) and the same values of (U1(61),- - , Un(6n))
generate the same expected revenue for the seller.

This proves the proposition. With this in hand, we now prove the revenue equivalence theorem in
three stages.

Part 1: Revenue Equivalence of First Price Auction and Second Price Auction

The first price auction and the second price auction satisfy the conditions of the above proposition.
e In both the auctions, the bidder with the highest valuation wins the auction

e bidders’ valuations are drawn from [6;,6;] and a bidder with valuation at the lower limit of the
interval has a payoff of zero in both the auctions.

Thus the proposition can be applied to the equilibria of the two auctions: Note that in the case of first
price auction, it is a Bayesian Nash equilibrium while in the case of second price auction, it is a weakly
dominant strategy equilibrium. In fact, it can be shown in any symmetric auction setting (where the
bidders’ valuations are independently drawn from identical distributions) that the conditions of the
above proposition will be satisfied by any Bayesian Nash equilibrium of first price auction and the
weakly dominant strategy equilibrium of the second price scaled bid auction.
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Part 2: Equivalence of Dutch Auction and First Price Auction

To prove this, consider the situation facing a bidder in these two auctions. In each case, the bidder
must choose how high to bid without knowing the other bidders’ decisions. If he wins, the price he
pays equals his own bid. This result is true irrespective of which of the assumptions in the benchmark
model apply. Note that the equilibrium in the underlying Bayesian game in the two cases here is a
Bayesian Nash equilibrium.

Part 3: Equivalence of English Auction and Second Price Auction

First we analyze the English auction. Note that a bidder drops out as soon the going price exceeds his
valuation. The second last bidder drops out as soon as the price exceeds his own valuation. This leaves
only one bidder in the fray and he wins the auction. Note that the winning bidder’s valuation is the
highest among all the bidders and he earns some payoff in spite of the monopoly power of the seller.
Only the winning bidder knows how much payoff he receives because only he knows his own valuation.
Suppose the valuations of the n bidders are v(1),v(2), - , V(). Since the bidders are symmetric, these
valuations are draws from the same distribution and without loss of generality, assume that these are
in descending order. The winning bidder gets a payoff of v(1) — v(a).

Next we analyze the second price auction. In the second price auction, the bidder’s choice of bid
determines only whether or not he wins; the amount he pays if he wins is beyond his control. Suppose
the bidder considers lowering his bid below his valuation. The only case in which this changes the
outcome occurs when this lowering of his bid results in his bid now being lower than someone else’s.
Because he would have earned non-negative payoff if he won, lowering his bid cannot make him better
off. Suppose the bidder considers raising his bid above his valuation. The only case in which this
changes the outcome occurs when some other bidder has submitted a bid higher than the first bidder’s
valuation but lower than his new bid. Thus raising the bid causes this bidder to win but he must pay
more for the item than it is worth to him; raising his bid beyond his valuation cannot make him better
off. Thus, each bidder’s equilibrium best response strategy is to bid his own valuation for the item.
The payment here is equal to the actual valuation of the bidder with the second highest valuation
(i.e., realization of the second order statistic). Thus the expected payment and payoff are the same in
English auction and the second price auction. This establishes Part 3 and therefore proves the revenue
equivalence theorem.

Note that the outcomes of the English auction and the second price auction satisfy a weakly
dominant strategy equilibrium. That is, each bidder has a well defined best bid regardless of how high
he believes his rivals will bid. In the second price auction, the weakly dominant strategy is to bid time
valuation. In the English auction, the weakly dominant strategy is to remain in the bidding until the
price reaches the bidder’s own valuation.

13.4 Some Observations on the Revenue Equivalence Theorem

We now make a few important observations.

e The theorem does not imply that the outcomes of the four auction forms are always exactly the
same. They are only equal on average.

— Note that in the English auction or the second price auction, the price exactly equals the
valuation of the bidder with the second highest valuation, v(3). In Dutch auction or the first
price auction, the price is the expectation of the second highest valuation conditional on
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the winning bidder’s own valuation. The above two prices will be equal only by accident,
however they are equal on average.

e Bidding logic is very simple in the English auction and second price auction. In the former, a
bidder remains in bidding until the price reaches his valuation. In the latter, he submits a sealed
bid equal to his own valuation.

e On the other hand, the bidding logic is quite complex in the Dutch auction and the first price
auction. Here the bidder bids some amount less than his true valuation. Exactly how much less
depends upon the probability distribution of the other bidders’ valuations and the number of
competing bidders. Finding the Nash equilibrium bid is a non-trivial computational problem.

e The revenue equivalence theorem is devoid of empirical predictions about which type of auction
will be chosen by the seller in any particular set of circumstances. However when the assumptions
of the benchmark model are relaxed, particular auction forms emerge as being superior.

e The variance of revenue is lower in English auction or second price auction than in Dutch auction
or first price auction. Hence if the seller were risk averse, he would choose English or second
price rather than Dutch or first price.

e For more details on the revenue equivalence theorem, the reader is referred to the classic survey
paper by McAfee and McMillan [47], and the books by Milgrom [48] and Krishna [49].

14 Concept of Individual Rationality

Note that if a social choice function is BIC then each agent ¢ finds it in his best interest to tell truth
if all the other agents are also doing so. However, note that neither agent ¢ nor the social planner has
any control over the types that are being revealed by the agents other than i. Therefore, agent ¢ may
wonder what if any one or more of his rival agents announce untruthful types. In such a situation,
telling truth should not result in any kind of loss to the agent 7. Otherwise, either agent ¢ will also
start lying or, alternatively, he may quit the mechanism itself because participation in the mechanism
is voluntary. Thus, in order to avoid such a situation, the social planner needs to ensure that each
agent, despite what the rival agents are reporting, will be better off telling truth than not participating
in the mechanism. These constraints are known as participation constraints or individual rationality
constraints. Thus, individual rationality adds one more dimension to the desirable properties of a
social choice function.

There are three stages at which participation constraints may be relevant in any particular appli-
cation.

14.1 Ex-Post Individual Rationality Constraints

These constraints become relevant when any agent 7 is given a choice to withdraw from the mechanism
at the ex-post stage that arise after all the agents have announced their types and an outcome in X
has been chosen. Let %;(6;) be the utility that agent ¢ receives by withdrawing from the mechanism
when his type is 6;. Then, to ensure agent #’s participation, we must satisfy the following ez-post
participation (or individual rationality) constraints

ui(f(65,0-i),0;) > ui(0;) V (6;,6—;) € ©
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14.2 Interim Individual Rationality Constraints

Let the agent ¢ be allowed to withdraw from the mechanism only at an interim stage that arises after
the agents have learned their type but before they have chosen their actions in the mechanism. In
such a situation, the agent ¢ will participate in the mechanism only if his interim expected utility
Ui(0i|f) = Eg_,[ui(f(6:,6-:),6;)|6;] from social choice function f(-), when his type is 6;, is greater
than w;(0;). Thus, interim participation (or individual rationality) constraints for agent i require that

Ui(0:|f) = Eo_,[ui(f(0:,0_5),0;)|60;] > w;(0;) V0; € ©;

14.3 Ex-Ante Individual Rationality Constraints

Let agent ¢ be allowed to refuse to participate in the mechanism only at ex-ante stage that arises
before the agents learn their type. In such a situation, the agent ¢ will participate in the mechanism
only if his ex-ante expected utility U;(f) = Eglu;(f(0;,0—;),0;)] from social choice function f(-) is
greater than Ejy, [u;(6;)]. Thus, ez-ante participation (or individual rationality) constraints for agent i
require that

Ui(f) = Eplui(f(0:,0-:),0:)] > Ep,[wi(0:)]

The following proposition establishes a relationship among the three different participation constraints
discussed above.

Proposition 14.1 For any social choice function f(-), we have
f(+) is ez-post IR = f(-) is interim IR = f(-) is ez-ante IR

The next proposition establishes the individual rationality of Clarke mechanism. First, we provide
two definitions.

Definition 14.1 (Choice Set Monotonicity) We say that a mechanism .# is choice set monotone
if the the set of feasible outcomes X (weakly) increases as additional agents are introduced into the
system. An implication of this property is K_; C KVYi=1,...,n.

Definition 14.2 (No Negative Externality) Consider a choice set monotone mechanism .#. We
say that the mechanism A has no negative externality if for each agent i, each 6 € ©, and each
k*,(0_;) € B*(0_;), we have

vi(k*;(0-4),6;) >0

It is easy to verify that the mechanisms in all the previous examples - fair bilateral trade, first-price
sealed bid auction, Vickrey auction, and G VA satisfy all the three properties described above.

Proposition 14.2 (Ex-Post Individual Rationality of Clarke Mechanism ) Let us consider a
Clarke mechanism in which

1. w(0;) =0V, €0, Vi=1,...,n
2. The mechanism satisfies choice set monotonicity property

3. The mechanism satisfies no negative externality property
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Then the Clarke mechanism is ex-post individual rational.

Proof: Recall that utility u;(f(6),0;) of an agent 7 in Clarke mechanism is given by
w(f(0),00) = wi(k*(0),0) + | > v (K (0),05) | = | > vs(k"(0-.),05)
JF#i JF#i

= Z’Uj(k*(e),o]') - Zvj(kii(o—i)’ej)

J#i

By virtue of choice set monotonicity, we know that k*,(0_;) € K. Therefore, we have

wi(£(0),0) > |D vk i(0-0),05) | — | D vi(k7,(0-5),6))
J j#i
= (k" ;(60-:),6;)
> 0=14(6)

The last step follows due to the fact that mechanism has no negative externality.

Q.E.D.
Let us now investigate the individual rationality of the social choice functions of the examples discussed
earlier.

14.4 Individual Rationality in Fair Bilateral Trade

Let us consider the example of fair bilateral trade. Let us assume that utility w;(6;) derived by the
agents ¢ from not participating into the trade, when his type is 6;, is as follows.

u_1(91) = 0, Vb € [&79_1]

u_2(92) = 0V6Hye [@,0,]

In view of the above definitions, it is now easy to see that the SCF used in this example is ex-post IR.

14.5 Individual Rationality in First-Price Sealed Bid Auction

Let us consider the example of first-price sealed bid auction. If for each possible type 6;, the utility
u;(6;) derived by the agents 4 from not participating into the auction is 0, then it is easy to see that
the SCF used in this example would be ex-post IR.

14.6 Individual Rationality in Vickrey Auction

Let us consider the example of second-price sealed bid auction. If for each possible type 8;, the utility
u;(0;) derived by the agents 4 from not participating into the auction is 0, then it is easy to see that
the SCF used in this example would be ex-post IR. Moreover, the ex post IR of this example also
follows directly from Proposition 14.2 because this is a special case of Clarke mechanism satisfying all
the required conditions in the proposition.
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14.7 Individual Rationality in GVA

Let us consider the example of generalized Vickrey auction. If for each possible type 6;, the utility
u;(6;) derived by the agents i from not participating into the auction is 0, then by virtue of Proposition
14.2, we can claim that SCF used here would be ex-post IR.

By including the above facts regarding individual rationality in Tables 1 and 2, we get Tables 3
and 4.

SCF AE | BB | DSIC | Ex-Post IR
Fair Bilateral Trade v v X v
First-Price Auction v X X v
Vickrey Auction v X v v
GVA v X v v

Table 3: Properties of social choice functions in quasi-linear environment

SCF AE | BB | DSIC | BIC | Ex-Post IR
Fair Bilateral Trade v v X X v
First-Price Auction v X X X v
Vickrey Auction v X v v v

Table 4: Properties of social choice functions in linear environment

14.8 The Myerson-Satterthwaite Theorem

In the previous section, we saw that we did not even have a single example where we have all the
desired properties in a SCF - AE, BB, BIC, and IR. This provides a motivation to study the feasibility
of having all these properties in a social choice function.

The Myerson-Satterthwaite theorem is one disappointing news in this direction, which tells us that
in a bilateral trade setting, whenever the gains from the trade are possible but not certain, then there
is no SCF which satisfies AE, BB, BIC, and Interim IR all together. The precise statement of the
theorem is as follows.
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Theorem 14.1 (Myerson-Satterthwaite Impossibility Theorem) Consider a bilateral trade set-
ting in which the buyer and seller are risk neutral, the valuations 601 and 0y are drawn independently

from the intervals [01,0:] C R and [0y, 0] C R with strict positive densities, and (01,0:) ((02,02) # 0.

Then there is no Bayesian incentive compatible social choice function that is ex-post efficient and gives

every buyer type and every seller type non-negative expected gains from participation.

For proof of the above theorem, refer to Proposition 23.E.1 of [38].

15 Optimal Mechanism Design

So far, we have studied the various properties of a mechanism. We have also studied a set of possibility
and impossibility results. An obvious problem that faces a social planner is to decide which direct
revelation mechanism (or equivalently, social choice function) is optimal for a given problem. In the
rest of this paper, our objective is to familiarize the reader with a couple of techniques which social
planner can adopt to design an optimal direct revelation mechanism for a given problem at hand.

One notion of optimality in multi-agent systems is that of Pareto efficiency. We now define three
different notions of efficiency: ex-ante, interim, and ex-post.

Definition 15.1 (Ex-Ante Efficiency) For any given set of social choice functions F, and any
member f(-) € F, we say that f(-) is ex-ante efficient in F if there is no other f(-) € F having the
following two properties

Eplus(f(0),0:;)] > Eplui(f(6),6;)] YVi=1,...,n

N

Ep[ui(f(0),0;)] > Eglui(f(0),0;)] for some i

Definition 15.2 (Interim Efficiency) For any given set of social choice functions F, and any mem-
ber f(-) € F, we say that f(-) is interim efficient in F if there is no other f(-) € F having the following
two properties

Ey_,[ui(f(0),0:)|0:] > Ey_[ui(f(0),0:)]6:] Yi=1,...,n, V6 €O,
Ey_,[ui(f(0),0)|0:] > Ey_[ui(f(),0:)|0:] for some i and some 6; € ©;

Definition 15.3 (Ex-Post Efficiency) For any given set of social choice Junctions F, and any
member f(-) € F, we say that f(-) is ex-post efficient in F if there is no other f(-) € F having
the following two properties

~

uz(f(O),Hz) > u,(f(@),@z) Vi= 1,...,n, VOeco
>

ui(f(9),6;) u;i(f(0),6;) for some i and some 6 € ©

Using the above definition of ex-post efficiency, we can say that a social choice function f(-) is ex-post
efficient in the sense of definition 6.1 if and only if it is ex-post efficient in the sense of definition 15.3
when we take F' = {f : © — X}.

The following proposition establishes a relationship among these three different notions of efficiency.

Proposition 15.1 Given any set of feasible social choice functions F and f(-) € F, we have

f(-) is ez-ante efficient = f(-) is interim efficient = f(-) is ez-post efficient
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For proof of the above proposition, refer to Proposition 23.F.1 of [38]. Also, compare the above
proposition with the Proposition 14.1.

With this setup, we now try to formalize the design objectives of a social planner. For this, we
need to define the concept known as social welfare function.

Definition 15.4 (Social Welfare Function) A social welfare function (SWF) is a function w :
R® — R that aggregates the profile (u1,...,un) € R" of individual utility values of the agents into a
social utility.

15.1 Social Welfare Function and Mechanism Design

Consider a mechanism design problem and a direct revelation mechanism 2 = ((0©;)ien, f(+)) proposed
for it. Let (61,...,6,) be the actual type profile of the agents and assume for a moment that they will
all reveal their true types when requested by the planner. In such a case, the social utility that would
be realized by the social planner for every possible type profile 8 of the agents is given by:

However, recall the implicit assumption behind a mechanism design problem, namely, that the agents
are autonomous and they would report a type as dictated by their rational behavior. Therefore,
the assumption that all the agents will report their true types is not true in general. In general,
rationality implies that the agents report their types according to a strategy suggested by a Bayesian
Nash equilibrium s*(-) = (s3(+), ..., sk (-)) of the underlying Bayesian game. In such a case, the social
utility that would be realized by the social planner for every possible type profile § of the agents is

given by

w(ui(f(57(0)),01), - -, un(f(s7(6)), 0n)) (25)

In some instances, the above Bayesian Nash equilibrium may turn out to be a dominant strategy equi-
librium. Better still, truth revelation by all agents could turn out to be a Bayesian Nash equilibrium
or a dominant strategy equilibrium.

15.2 Optimal Mechanism Design Problem

In view of the above notion of social welfare function, it is clear that the objective of a social planner
would be to look for a social choice function f(-) that would maximize the expected social utility for
a given social welfare function w(-). However, being the social planner, it is always expected of him
to be fair to all the agents. Therefore, the social planner would first put a few fairness constraints on
the set of social choice functions which he can probably choose from. The fairness constraints may
include any combination of all the previously studied properties of a social choice function, such as
ex-post efficiency, incentive compatibility, and individual rationality. This set of social choice functions
is known as set of feasible social choice functions and is denoted by F. Thus, the problem of a social
planner can now be cast as an optimization problem where the objective is to maximize the expected
social utility and the constraint is that the social choice function must be chosen from the feasible
set F. This problem is known as the optimal mechanism design problem and the solution of the
problem is some social choice function f*(-) € F which is used to define the optimal mechanism
2* = ((©)ien, f*(+)) for the problem that is being studied.
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Depending on whether the agents are loyal or autonomous entities, the optimal mechanism design
problem may take two different forms.

maximize

1) e F Polw(i(f©0):01),..,un(f(0), 0n))] (26)
??ji?i? Eg [w(u1 (f(5"(0)),01); -, un(f(5(6)), 6n))] 27)

The problem (26) is relevant when the agents are loyal and always reveal their true types whereas
the problem (27) is relevant when the agents are rational. At this point of time, one may ask how to
define the set of feasible social choice functions F'. There is no unique definition of this set. The set
of feasible social choice functions is a subjective judgment of the social planner. The choice of the set
F depends on what all fairness properties the social planner would wish to have in the optimal social
choice function f*(-). If we define

Frse = {f:0—=>X|f
Fpro = {f®_>X|f
Fropostin {f:©-X|f

() is dominant strategy incentive compatible}
()
()
F. .n {f:0 — X|f(-) is interim individual rational}
()
()
()
()

is Bayesian incentive compatible}

is ex-post individual rational}

is ex-ante individual rational}

Fopanterr {f:0=X|f
Fro antenss {f:©—>X|[f
F sy {f:0—=X|f
FEm—PostEff = {f 10 — X|f

is ex-ante efficient }

is interim efficient }

is ex post efficient }

The set of feasible social choice functions F' may be either any one of the above sets or intersection of
any combination of the above sets. For example, the social planner may choose F' = F,,, ( F,,,;»- In
the literature, this particular feasible set is known as incentive feasible set due to Myerson [50]. Also,
note that if the agents are loyal then the sets F',.,, and F,, will be equal to the whole set of all the
social choice functions.

If the environment is quasi-linear, then we can also define the set of allocatively efficient social
choice functions F,,, and the set of budget balanced social choice functions F,,. In such an environ-
ment, we will have F’ =F,,NFsp-

Exz—PostEff

15.3 Myerson’s Optimal Auction: An Example of Optimal Mechanism

Let us consider Example 3.3 of single unit - single item auction without reserve price and discuss
an optimal mechanism developed by Myerson [37]. The objective function here is to maximize the
auctioneer’s revenue.

Recall that each bidder ¢’s type lies in an interval ©; = [6;, 0;]. We impose the following additional
conditions on the environment.

1. The auctioneer and the bidders are risk neutral
2. Bidders’ types are statistically independent, that is, the joint density ¢(-) has the form ¢;(-) x
e X P ()
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3. ¢i()>0Vi=1,....n

4. We generalize the outcome set X relative to that considered in Example 3.3 by allowing a random
assignment of the good. Thus, we now take y;(#) to be buyer i’s probability of getting the good
when the vector of announced types is 0 = (61,...,60,). Thus, the new outcome set is given by

X = {(y()ayl---7y’n>t0at1a"'atn)|y0 :OatO Z anZ € [07 1]7tz S 0Vi= 11---,”;
n n
Zyi < 1,2751' 20}
1=0 =0

Recall that the utility functions of the agents in this example are given by

wi(£(0),05) = ui(yo(8), - .., yn(0),10(8), ..., 1n(6),8;) = Ois(0) + t:;(O) Yi=1,...,n

Thus, viewing y;(0) = v;(k(#)) in conjunction with the second and third conditions above, we can
claim that the underlying environment here is linear.

In the above example, we assume that the auctioneer is the social planner and he is looking for an
optimal direct revelation mechanism to sell the good. Myerson’s [37] idea was that the auctioneer must
use a social choice function which is Bayesian incentive compatible and interim individual rational and
at the same time fetches the maximum revenue to the auctioneer. Thus, in this problem, the set of
feasible social choice functions is given by F = F,, (\ F,,,....uz- Lhe objective function in this case
would be to maximize the total expected revenue of the seller which would be given by

Zti(e)

Note that in above objective function we have used f(0) not f(s*(#)). This is because in the set
of feasible social choice functions we are considering only BIC social choice functions and for these
functions we have s*(#) = 6 V 6 € ©. Thus, Myerson’s optimal auction design problem can be
formulated as the following optimization problem.

Ey [w(ul(f(g)ael)a s 7un(f(0)a9n))] =—Ey

maximize

fyer ~H

zme)] (8)
=1
where

F={f()=w(), - un(:)st1(-),---,ta(-))|f() is BIC and interim IR}

By invoking Myerson’s Characterization Theorem 12.2 for BIC SCF in linear environment, we can say
that an SCF f(-) in the above context would be BIC iff it satisfies the following two conditions

1. 7(-) is non-decreasing for alli =1,...,n
b;

2. Uz(ez) = Uz(&) +f%(8)d8 VO, e0;Vi=1,...,n
9

Also, we can invoke the definition of interim individual rationality to claim that the an SCF f(-) in
the above context would be interim IR iff it satisfies the following conditions

UZ-(GZ-) >0 V0, €e0;;Vi=1,...,n

where
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o 5;(6;) = 0 [t t;(0;,0_;)] be bidder i’s expected transfer given that he announces his type to be
6, and that all bidders j # ¢ truthfully reveal their types.

e 7;(6;) = Ey_,[yi(8;,0_;)] is the probability that bidder i would receive the object given that he
announces his type to be 6; and all bidders j # 1 truthfully reveal their types.
o Ui(0;) = 0:5:(0:) + t:(6:)

In view of the above paraphernalia, problem (28) can be rewritten as follows.

n

0, Uy 2= 9/ 0:55(0:) — Us(6:)) :(0:)d0 (29)

subject to

(1) wi(-) is non-decreasing Vi=1,...,n
(i) y(0) € [0,1],>°7 lyi(e) <1Vi=1,...,n,V0 €O

(i) Ui(6;) = Us(6; +fyz )ds ¥V 0; € ©;; Vi=1,.
9

(iV) Uz(ez) >0V0,€e0;Vi=1,...,n

We first note that if constraint (iii) is satisfied then constraint (iv) will be satisfied iff U;(6;) > 0 Vi =
1,...,n. As a result, we can replace the constraint (iv) with

(iv) Ui(6;) >0Vi=1,...,n
Next, substituting for U;(6;) in the objective function from constraint (iii), we get

0;
> / 0i(6) - Ui6:) ~ [ w(s)ds | gut0)t
=1 0 0;
Integrating by parts the above expression, the auctioneer’s problem can be written as one of choosing
the y;(-) functions and the values U1 (61),...,Uy(0n) to maximize
4 0, n n
/ / lz (0 i)] [H ¢,~(ez~)] a6, ..oy 3" Ui(6)
i=1 i=1 i=1

01

On
subject to constraints (i), (ii), and (iv’), where

Ji(0:) = (01- B %?()9)) B (91' ) j((g))>

where, we define ®;(6;) = 1—®;(;). It is evident that solution must have U;(¢;) =0 foralli =1,...,n.
Hence, the auctioneer’s problem reduces to choosing functions y;(-) to maximize

61 b,

/ /[Eyz i)] Llid’i(oi)] db, ... do,

0 n
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subject to constraints (i) and (ii).
Let us ignore constraint (i) for the moment. Then inspection of the above expression indicates

that y;(+) is a solution to this relaxed problem iff for all = 1,...,n, we have
(0) = 0 : if Jy(6;) < max{0, Maxp£; Jn(6p)} (30)
Yi 1 if J;(6;) > max {0, maxp£; Jn(0p)}

Note that J;(6;) = max {0, maxp-; J,(0p)} is a zero probability event.

In other words, if we ignore the constraint (i) then y;(-) is a solution to this relaxed problem iff the
good is allocated to a bidder who has highest non-negative vale for J;(;). Now, recall the definition
of 7;(+). It is easy to write down the following expression

yi(0:)) = Eg_, [yi(0i,0-4)] (31)

Now, if we assume that J;(-) is non-decreasing in 6; then it is easy to see that above solution y;(-), given
by (30), will be non-decreasing in #;, which in turn implies, by looking at expression (31), that 7;(-) is
non-decreasing in ;. Thus, the solution to this relaxed problem actually satisfies constraint (i) under
the assumption that J;(-) is non-decreasing. Assuming that J;(-) is non-decreasing, the solution given
by (30) seems to be the solution of the optimal mechanism design problem for single unit- single item
auction. The condition that J;(-) is non-decreasing in 6; is met by most of the distribution functions
such as Uniform and Exponential.

So far we have computed the allocation rule for the optimal mechanism and now we turn out
attention towards the payment rule. The optimal payment rule ¢;(-) must be chosen in such a way
that it satisfies

S

2

ti(0;) = Eg_,[ti(0;,0_:)] = Ui (6;) — 0% (0;) = | Wi(s)ds — 0:7; (65) (32)

|

Looking at the above formula, we can say that if the payment rule ¢;(-) satisfies the following formula
(33), then it would also satisfy the formula (32).

0;
ti(0:,0_;) = /yi(sae—i)ds —b;y; (0:,0—;) VOe€O (33)
0

The above formula can be rewritten more intuitively, as follows. For any vector 6_;, let we define
zi(0—;) = inf {0;|J;(0;) > 0 and J;(0;) > J_,-(Gj) Vi #i}
Then z;(6_;) is the infimum of all winning bids for bidder ¢ against 6_;, so

" N 1 if6; > z(0-;)
vi(0;,0_;) = { 0 : ifg; < Zi(gfi)

This gives us

0;
. N f Oi—zi(0-) : if0; > z(0-;)
/yZ(S,H_Z)dS - { 0 : iff; < Zi(eﬂ')
0;
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Finally, the formula (33) becomes

non oy —z(0=) i 0; > 2(0-)
tl(ez’eiz) N { 0 : iff; < Zz(e—z)

That is bidder ¢ must pay only when he gets the good, and then he pays the amount equal to his
lowest possible winning bid.
A few interesting observations are worth mentioning here.

1. When the various bidders have differing distribution function ®;(-) then, the bidder who has
the largest value of J;(6;) is not necessarily the bidder who has bid the highest amount for the
good. Thus Myerson’s optimal auction need not be allocatively efficient and therefore, need not
be ex-post efficient.

2. If the bidders are symmetric, that is,

L ®1::®n:®
« 2()=...= 2,() = B()

then the allocation rule would be precisely the same allocation rule of first-price and second-
price auctions. In such a case the object would be allocated to the highest bidder. In such a
situation, the optimal auction would also become allocatively efficient. Also, note that in such a
case the payment rule that we described above would coincide with the payment rules in second-
price auction. In other words, the second price (Vickrey) auction would be the optimal auction
when the bidders are symmetric. Therefore, many a time, the optimal auction is also known as
modified Vickrey auction.

15.4 Recent Work in Optimal Mechanism Design

Optimal mechanism design is an active area of research since past couple of years. The recent contri-
butions in this direction include Krishna and Perry [51], where the authors consider the same problem
of single unit - single item auction without reserve price and design an optimal mechanism for it.
The objective function of Krishna and Perry’s model (KP model for short) is the same as Myerson’s
optimal auction but the set of feasible social choice function is different. Krishna and Perry insists on
having allocative efficiency also in addition to interim IR and BIC. Thus in the KP model the set F' is
givenby F =F,, Fzc NF, Krishna and Perry prefer to call such a mechanism as efficient
mechanism.

In a recent paper, Malakhov and Vohra [52] offer a comparison between the optimal auction
problem with continuous types and with discrete types. This paper highlights connections between
the discrete and continuous approaches to optimal auction design with single and multi-dimensional
types. This paper provides an interpretation of an optimal auction design problem in terms of a linear
program that is an instance of a parametric shortest path problem on a lattice.

In another recent paper, Malakhov and Vohra [52] consider the problem of a seller with limited
supply facing a group of agents whose private information is two dimensional. Each agent has a
constant marginal value for the good up to some capacity, thereafter it is zero. Both the marginal
value and the capacity are private information. The authors have shown that an optimal auction
design problem for this setting can be interpreted in terms of a linear program that is an instance of
a parametric shortest path problem on a lattice. The authors have described the revenue maximizing
Bayesian incentive compatible auction for this environment.

nterimIR "
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16 To Probe Further

For a more detailed treatment of mechanism design, the readers are requested to refer to textbooks,
such as the ones by Mas-Colell, Whinston, and Green [38] (Chapter 23), Green and Laffont [43], and
Laffont [53]. Readers can also refer to two survey articles on mechanism theory and implementation
theory written by Jackson in the recent past [54, 55].

The current paper is not to be treated as a survey on auctions in general. There are widely
popular books (for example, by Milgrom [48] and Krishna [49]) and surveys on auctions (for example,
[47, 56, 57, 58, 59]) which deal with auctions in a comprehensive way.

The current paper is also not to be treated as a survey on combinatorial auctions (currently an
active area of research). Exclusive surveys on combinatorial auctions include the articles by de Vries
and Vohra [60, 61], Pekec and Rothkopf [62], and Narahari and Pankaj Dayama [30]. Cramton,
Ausubel, and Steinberg [26] have recently brought out a comprehensive edited volume containing
expository and survey articles on varied aspects of combinatorial auctions.
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