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Abstract The different auction types are outlined using a classification framework along
six dimensions. The economic properties that are desired in the design of auc-
tion mechanisms and the complexities that arise in their implementation are dis-
cussed. Some of the most interesting designs from the literature are analyzed in
detail to establish known results and to identify the emerging research directions.

¾À¿ Á
ÂoÃxÄxÅ_Æ�Ç�È¤ÃxÉTÅPÂ
Auctions have found widespread use in the last few years as a technique for

supporting and automating negotiations on the Internet. For example, eBay
now serves as a new selling channel for individuals, and small and big enter-
prises. Another use for auctions is for industrial procurement. In both these set-
tings traditional auction mechanisms such as the English, Dutch, First (or Sec-
ond) price Sealed-Bid auctions are now commonplace. These auctions types
are useful for settings where there is a single unit of an item being bought/sold.
However, since procurement problems are business-to-business they tend to be
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more complex and have led to the development and application of advanced
auction types that allow for negotiations over multiple units of multiple items,
and the configuration of the attributes of items. At the heart of auctions is the
problem of decentralized resource allocation.

A general setting for decentralized allocation is one with multiple agents
with utility functions for various resources. The allocation problem for the de-
cision maker, or intermediary, is to allocate these resources in an optimal way.
A key difference from the classical optimization perspective is that the utility
function of the agents is private information, and not explicitly known to the
decision maker. In addition, standard methods in decentralized optimization
fail because of the self-interest of participants. Therefore the design of de-
centralized allocation mechanisms must provide incentives for agents to reveal
their true preferences in order to solve for the optimal allocation with respect
to the true utility functions. Thus, the behavioral aspects of agents must be
explicitly considered in the design. It is common in the economic mechanism
design literature to assume rational, game-theoretic, agents. Another common
assumption is that agents behave as myopic price-takers, that are rational in
the current round of negotiation but not necessarily with respect to the final
outcomes at the end of the negotiation.

In settings where the allocation problem itself is hard even if the decision
maker knows the “true” utility function of each agent, the issues of incen-
tive compatibility makes the design of an appropriate auction mechanism even
more challenging.

The focus of this chapter is to provide an overview of the different auction
mechanisms commonly encountered both in practice and in the literature. We
will initially provide a framework for classifying auction mechanisms into dif-
ferent types. We will borrow a systems perspective (from the literature) to
elucidate this framework.

¾À¿m¾ Ì ÍqÄxÎ¨ÏÑÐkÒÓÅoÄÕÔÖÍ�Å²Ä×Î¨Ç8È¤ÃÕÉTÅoÂ�Ø
We develop a framework for classifying auctions based on the requirements

that need to be considered to set up an auction. We have identified these core
components below:

Resources The first step is to identify the set of resources over which the ne-
gotiation is to be conducted. The resource could be a single item or mul-
tiple items, with a single or multiple units of each item. An additional
consideration common in real settings is the type of the item, i.e. is this
a standard commodity or multiattribute commodity. In the case of multi-
attribute items, the agents might need to specify the non-price attributes
and some utility/scoring function to tradeoff across these attributes.
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Market Structure An auction provides a mechanism for negotiation between

buyers and sellers. In forward auctions a single seller is selling resources
to multiple buyers. Alternately, in reverse auctions, a single buyer is
sourcing resources from multiple suppliers, as is common in procure-
ment. Auctions with multiple buyers and sellers are called double auc-
tions or exchanges, and these are commonly used for trading securities
and financial instruments and increasingly within the supply chain.

Preference Structure The preference structure of agents in an auction is im-
portant and impacts some of the other factors. The preferences define
an agent’s utility for different outcomes. For example, when negotiating
over multiple units agents might indicate a decreasing marginal utility
for additional units. An agent’s preference structure is important when
negotiation over attributes for an item, for designing scoring rules used
to signal information.

Bid Structure The structure of the bids allowed within the auction defines the
flexibility with which agents can express their resource requirements.
For a simple single unit, single item commodity, the bids required are
simple statements of willingness to pay/accept. However, for a multi-
unit identical items setting bids need to specify price and quantity. Al-
ready this introduces the possibility for allowing volume discounts, where
a bid defines the price as a function of the quantity. With multiple items,
bids may specify all-or-nothing bids with a price on a basket of items.
In addition, agents might wish to provide several alternative bids but
restrict the choice of bids.

Matching Supply to Demand A key aspect of auctions is matching supply to
demand, also referred to as market clearing, or winner determination.
The main choice here is whether to use single-sourcing, in which pairs
of buyers and sellers are matched, or multi-sourcing, in which multiple
suppliers can be matched with a single buyer, or vice-versa. The form of
matching influences the complexity of winner determination, and prob-
lems range the entire spectrum from simple sorting problems to NP-hard
optimization problems.

Information Feedback Another important aspect of an auction is whether the
protocol is a direct mechanism or an indirect mechanism. In a direct
mechanism, such as the first price sealed bid auction, agents submit bids
without receiving feedback, such as price signals, from the auction. In
an indirect mechanism, such as an ascending-price auction, agents can
adjust bids in response to information feedback from the auction. Feed-
back about the state of the auction is usually characterized by a price
signal and a provisional allocation, and provides sufficient information
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about the bids of other agents to enable an agent to refine its bids. In
complex settings, such as multi-item auctions with bundled bids, a di-
rect mechanism can require an exponential number of bids to specify an
agent’s preference structure. In comparison, indirect mechanisms allow
incremental revelation of preference information, on a “as required ba-
sis”. The focus in the design of indirect mechanisms is to identify how
much preference information is sufficient to achieve desired economic
properties and how to implement informationally-efficient mechanisms.
A related strand of research is to provide compact bidding languages for
direct mechanisms.

Each of the six dimensions that we have identified provide a vector of
choices that are available to set up the auction. Putting all of these together
generates a matrix of auction types. The choices made for each of these di-
mensions will have a major impact on the complexity of the analysis required
to characterize the market structure that emerges, on the complexity on agents
and the intermediary to implement the mechanism, and ultimately on our abil-
ity to design mechanisms that satisfy desirable economic and computational
properties.

¾À¿Gï ðñÇ_ÃÕòmÉmÂ8Ð
In this chapter we first introduce the economic literature on mechanism de-

sign, and identify the economic properties that are desirable in the design of
auction mechanisms. Then, in Section 3, we introduce the associated compu-
tational complexities that arise in the implementation of optimal mechanisms,
and discuss tradeoffs that must often be made between optimality and compu-
tational tractability. We will not attempt to describe the sum total of all known
mechanisms that are available in the literature. Instead, in Section 4 we pick
a few mechanisms that are interesting both from a practical point of view and
also because they illustrate some of the emerging research directions. Finally,
Section 5 provides an overview of experimental approaches to analyzing eco-
nomic behavior, and suggests an interesting direction in automated mechanism
design for electronic markets.

ïo¿ ó�È"ÅoÂ8ÅPÏ�É�Èõô�ÅPÂ�ØfÉ�Æ�Ð�ÄxÎ¬ÃxÉTÅPÂ�Ø
The basic economic methodology used in the design of electronic inter-

mediaries first models the preferences, behavior, and information available to
agents, and then designs a mechanism in which agent strategies result in out-
comes with desirable properties. We consider two approaches to modeling
agent behavior:
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game-theoretic/mechanism design The first model of agent behavior is game-

theoretic and relates to mechanism design theory. In this model the equi-
librium state is defined by the condition that agents play a best-response
strategy to each other and cannot benefit from a unilateral deviation to
an alternative strategy.

price-taking/competitive equilibrium The second model of agent behavior
is price-taking, or myopic best-response, and relates to competitive equi-
librium theory. In this model the equilibrium state is defined by the
condition that an agent plays a best-response to the current price and
allocation in the market, without modeling either the strategies of other
agents or the effect of its own actions on the future state of the market.

Mechanism design theory and game-theoretic modeling is most relevant
when one or both of the following conditions hold: (a) the equilibrium so-
lution concept makes weak game-theoretic assumptions about agent behavior,
such as when a mechanism can be designed with a dominant strategy equilib-
rium, in which agents have a single strategy that is always optimal whatever
the strategies and preferences of other agents; or (b) there are a small number
of agents and it is reasonable to expect agents to be rational and well-informed
about the likely preferences of other agents. Competitive equilibrium theory
and price-taking modeling is most relevant in large systems in which the effect
of an agent’s own strategy on the state of a market is small, or when there is
considerable uncertainty about agent preferences and behaviors and no useful
mechanism with a dominant strategy equilibrium.

ïo¿m¾ ÷øÄxÐ¬òmÉmÏ�ÉmÂ8ÎÀÄ=ÉTÐ�Ø
Our presentation is limited to the private value model, in which the value

to an agent for an outcome is only a function of its own private information.
This is quite reasonable in the procurement of goods for direct consumption,
unless there are significant opportunities for resale or unless there is significant
uncertainty about the quality of goods. Correlated and common value models
may be more appropriate in these settings, and the prescriptions for mechanism
design can change [PMM87].

Consider ù#úüû�ý�þ]ÿ]ÿ]ÿ3þ���� agents, a discrete outcome space � , and pay-
ments � ú#û����]þ]ÿ]ÿ]ÿ3þ	��
���
�� 
 , where ��� is the payment from agent � to the
mechanism. The private information associated with agent � , which defines its
value for different outcomes, is denoted with type, ����
���� . Given type ��� ,
then agent � has value ���mû��¤þ������ 
!� for outcome �!
"� . It is useful to use�9ú�û	����þ]ÿ]ÿ]ÿ3þ��#
$� to denote a type vector, and � ú%���'& ÿ]ÿ]ÿ�&��(
 for the joint
type space. In simple cases in which an agent’s valuation function can be rep-
resented by a single number, for example in a single-item allocation problem,
it is convenient to write ����ú"��� .
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We assume risk neutral agents, with quasilinear utility functions, *��mû��¤þ	�kþ�������ú�#�mû��¤þ����+�-,�� . This is a common assumption across the auction and mechanism

design literature. Although an agent knows its own type, there is incomplete
information about the types of other agents. Let ./��û	������
10 2fþ�ý43 denote the
probability density function over the type, ��� , of agent � , and let 56�sû	���+�7
80 2fþ�ý43
denote the corresponding cumulative distribution function. We assume that the
types of the agents are independent random variables, and that there is com-
mon knowledge of these distributions, such that agent � knows .:9 û<;�� for every
other agent =8>ú?� , agent = knows that agent � knows, etc. We assume that the
mechanism designer has the same information as the agents.

ïo¿Gï @ Ð È�A8Î¨Â�É�ØxÏ B Ð ØxÉ<CoÂ
The mechanism design approach to solving distributed allocation problems

with self-interested agents formulates the design problem as an optimization
problem. Mechanism design addresses the problem of implementing solutions
to distributed problems despite the fact that agents have private information
about the quality of different solutions and that agents are self-interested and
happy to misreport their private information if that can improve the solution in
their favor. A mechanism takes information from agents and makes a decision
about the outcome and payments that are implemented. It is useful to imagine
the role of a mechanism designer as that of a game designer, able to determine
the rules of the game but not the strategies that agents will follow.

A mechanism defines a set of feasible strategies, which restrict the kinds of
messages that agents can send to the mechanism, and makes a commitment to
use a particular allocation rule and a particular payment rule to select an out-
come and determine agent payments, as a function of their strategies.1 Game
theoretic methods are used to analyze the properties of a mechanism, under the
assumption that agents are rational and will follow expected-utility maximiz-
ing strategies in equilibrium.

Perhaps the most successful application of mechanism design has been to
the theory of auctions. In recent years auction theory has been applied to the
design of a number of real-world markets [Mil02]. There are two natural de-
sign goals in the application of mechanism design to auctions and markets.
One goal is allocative efficiency, in which the mechanism implements a so-
lution that maximizes the total payoff across all agents. This is the efficient
mechanism design problem. Another goal is payoff maximization, in which
the mechanism implements a solution that maximizes the payoff to a particu-

1A mechanism must be able to make a commitment to use these rules. Without this commitment ability the
equilibrium of a mechanism can quickly unravel. For example, if an auctioneer in a second-price auction
cannot commit to selling the item at the second-price than the auction looks more like a first-price auction
[PMM87].
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lar agent. This is the optimal mechanism design problem. One can imagine
many other variations, including settings in which the goal is to maximize the
total payoff across a subset of agents, or settings in which the fairness of an
allocation matters.

In particular settings, such as when there is an efficient after-market, then
the optimal mechanism is also an efficient mechanism [AC98], but in general
there exists a conflict between efficiency and optimality [Mye81]. Competition
across marketplaces can also promote goals of efficiency, with the efficient
markets that maximize the total payoff surviving in the long-run [HRN02].
Payoff maximization for a single participant is most appropriate in a setting in
which there is asymmetric market power, such as in the automobile industry
when market power within the supply chain is held by the big manufacturers
[Che93, BW01].

The efficient mechanism design problem has proved more tractable than the
optimal mechanism design problem, with optimal payoff-maximizing mecha-
nisms known only in quite restrictive special cases.EGFHEIFKJ LNMKO�PRQ�SUTVP/W�PYXKZ[S�MK\�]_^`P/Q:a'Zb]'MKc�dec:F

The space of possible
mechanisms is huge, allowing for example for multiple rounds of interaction
between agents and the mechanism, and for arbitrarily complex allocation and
payment rules. Given this, the problem of determining the best mechanism
from the space of all possible mechanisms can appear impossibly difficult.
The revelation principle [Gib73, GJJ77, Mye81] allows an important simpli-
fication. The revelation principle states that it is sufficient to restrict attention
to incentive compatible direct-revelation mechanisms. In a direct-revelation
mechanism (DRM) each agent is simultaneously asked to report its type. In
an incentive-compatible (IC) mechanism each agent finds it in their own best
interest to report its type truthfully. The mechanism design problem reduces
to defining functions that map types to outcomes, subject to constraints that
ensure that the mechanism is incentive-compatible. To understand the revela-
tion principle, consider taking a complex mechanism, f , and constructing a
DRM, fhg , by taking reported types and simulating the equilibrium of mech-
anism f . If a particular strategy, i�j�û	�/� , is in equilibrium in f , given types� , then truthful reporting of types is in equilibrium in f g because this induces
strategies i j û	�/� in the simulated mechanism.

Care should be taken in interpreting the revelation principle. First, the rev-
elation principle does not imply that “incentive-compatibility comes for free”.
In fact, a central theme of mechanism design is that there is a cost to the elicita-
tion of private information. The mechanism design literature is peppered with
impossibility results that characterize sets of desiderata that are impossible to
achieve simultaneously because it is necessary to incent agents to participate
in a mechanism [Jac00]. Rather, the revelation principle states that if a partic-
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ular set of properties can be implemented in the equilibrium of some mecha-
nism, then the properties can also be implemented in an incentive-compatible
mechanism. Second, the revelation principle ignores computation and commu-
nication complexity, and should not be taken as a statement that “only direct
revelation mechanisms matter in practical mechanism design”. In many cases
indirect mechanisms are preferable for reasons unmodeled in classic mecha-
nism design theory, for example because they decentralize computation to par-
ticipants, and can economize on preference elicitation while achieving more
transparency than direct mechanisms. We return to this topic in Section 3.

The beauty of the revelation principle is that it allows theoretical impossibil-
ity and possibility results to be established in the space of direct mechanisms,
and carried over to apply to all mechanisms. For example, an indirect mech-
anism can be constructed with a particular set of properties only if a direct
mechanism can also be constructed with the same set of properties.EGFHEIFlE m�noQRMpPY]-Se^`PRQ:a�Zb]6MKc�d LqP/c�Mpr�]sF

In efficient mechanism
design, the goal is to implement the choice, �-jt
u� , that maximizes that total
value across all agents given agent types, �v
w� . By the revelation principle
we can focus on incentive-compatible DRMs. Each agent is asked to report its
type, x� , possibly untruthfully, and the mechanism chooses the outcome and the
payments. The mechanism defines an allocation rule, y{zo� | � , and a
payment rule, �{z}� | � 
 . Given reported types, x� , then choice y¤û x�R� is
implemented and agent � makes payment �G��û x�~� .2

The goal of efficiency, combined with incentive-compatibility, pins down
the allocation rule: y�����û	�/��ú����������#����#�8� � ��� �#�sû��¤þ������ (EFF)

for all ��
�� . The remaining mechanism design problem is to choose a pay-
ment rule that satisfies IC, along with any additional desiderata. Popular addi-
tional criteria include:

(IR) individual-rationality. An agent’s expected payoff is greater than its pay-
off from non-participation.

(BB) budget-balance. Either strong, such that the total payments made by
agents equal zero, or weak, such that the total payments made by agents
are non-negative.

(revenue) maximize the total expected payments by agents.

2Later, in discussion of optimal mechanism design, we will fall back on the more general framework of ran-
domized allocation rules and expected payments. For now we choose to stick with deterministic allocations
and payments to keep the notation as simple as possible.
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Given payment rule, �¬û<;�� , and allocation rule, y¤û<;�� , let �u�mû��kþ x����� , �[�mûpy=þ x���������+� ,

and � � ûpy=þ	�kþ x� � �#� � � denote (respectively) the expected payment, expected val-
uation, and expected payoff to agent � when reporting type, x��� , assuming the
other agents are truthful. It is convenient to leave the dependence of ���mû<;�� ony¤û<;�� and the dependence of ����û<;�� on ��û<;�� implicit.� � û��kþ x� � �Àú������:��0 � � û x� � þ��~� � ��3 (interim payment)�[�mûpy=þ x���������+�Àú������:��0 ���sûpy¤û x����þ�� � ���aþ����+��3 (interim valuation)� � ûpy=þ	�kþ x� � ��� � �Àú%� � ûpy=þ x� � ��� � �6,�� � û�� þ x� � � (interim payoff)

Notation � � �_ú'û	�~�qþ]ÿ]ÿ]ÿuþ���� � �]þ������'�]þ]ÿ]ÿ]ÿuþ��#
�� denotes the type vector without
agent � . The expectation is taken with respect to the joint distribution over
agent types, � � � , implied by marginal probability distribution functions, ./��û<;�� .
Assuming IC, then � � û��kþ�� � �aþ � � ûpy=þ�� � �4� � � and � � ûpyãþ	�kþ�� � ��� � � are the expected
payment, valuation, and payoff to agent � in equilibrium. These are also re-
ferred to as the interim payments, valuations, and payoffs, because they are
computed once an agent knows its own type but before it knows the types
of the other agents. It is often convenient to suppress the dependence on the
specific mechanism rules ûpy=þ	��� and write � � û	� � � , � � û	� � � and � � û	� � � . Finally,
let �N��û����eú1�¡�<�¢0 �q�mû��kþ����+��3 denote the expected ex ante payment by agent � ,
before its own type is known.

The efficient mechanism design problem is formulated as an optimization
problem across payment rules that satisfy IC, as well as other constraints such
as IR and BB. These constraints define the space of feasible payment rules.
A selection criteria, £�ûK�8��þ]ÿ]ÿ]ÿ�þ¤��
$�U
_� , defined over expected payments,
can be used to choose a particular payment rule from the space of feasible
rules. A typical criteria is to maximize the total expected payments, with£"ûK�v�]þ]ÿ]ÿ]ÿ3þ¤��
�� ú¦¥ � �q� . Formally, the efficient mechanism design prob-
lem [EFF] is:

� �#�§�¨p© ª £�ûK�v�3û����aþ]ÿ]ÿ]ÿ3þ¤��
eû����¤� [EFF]« ÿ­¬]ÿ®�'�sûpy����kþ	�kþ����������+�7¯��6��ûpy�����þ	�kþ[x�����������aþ±°��sþ<°-���6
u��� (IC)

additional constraints (IR),(BB),etc.

where y����¬û<;�� is the efficient allocation rule.
The IC constraints require that when other agents truthfully report their

types an agent’s best response is to truthfully report its own type, for all pos-
sible types. In technical terms, this ensures that truth-revelation is a Bayesian-
Nash equilibrium, and we say that the mechanism is Bayesian-Nash incentive-
compatible. In a Bayesian-Nash equilibrium every agent is plays a strategy that
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is an expected utility maximizing response to its beliefs over the distribution
over the strategies of other agents. An agent need not play a best-response to
the actual strategy of another agent, given its actual type. This equilibrium is
strengthened in a dominant strategy equilibrium, in which truth-revelation is
the best-response for an agent whatever the strategies and preferences of other
agents. A dominant strategy and IC mechanism is simply called a strategyproof
mechanism. Formally:�#�mûpy¤û	����þ�� � ���aþ�������,q��û	���Tþ�� � ����¯����mûpy¤û�x���mþ�� � �+�aþ����+��,³�¬û�x���Tþ�� � �+�aþ±°-�sþ<°-���Nþ<°-� � �

(SP)

Strategyproofness is a useful property because agents can play their equilib-
rium strategy without game-theoretic modeling or counterspeculation about
other agents.

Groves [Gro73] mechanisms completely characterize the class of efficient
and strategyproof mechanisms [GJJ77]. The payment rule in a Groves mecha-
nism is defined as: �b´¤µp¶¸· �+¹<º � û x�~�Àú_» � û x�~� � ��, � 9#¼½ � � 9 ûpy����¬û x�~�¤�
where »¾�sû<;���z¿� � ��| � is an arbitrary function on the reported types of every
agent except � , or simply a constant. To understand the strategyproofness of
the Groves mechanisms, consider the utility of agent � , *���û x���+� , from reporting
type x� � , given y�����û<;�� and �b´¤µK¶¸· �+¹ û<;�� , and fix the reported types, �R� � , of the other
agents. Then, *��mû x�����Àú��#�mûpy����¬û x���Gþ�� � �+�aþ������~,¡� ´¤µp¶¸· �+¹<º ��û x���Tþ�� � �+� , and substituting
for � ´¤µK¶¸· �+¹ û<;�� , we have *��mû�x���+�Àú"���mûpy#����û�x���Tþ�� � ���aþ������¤À ¥ 9�¼½ � ��91ûpy�����û#x����þ�� � �+�aþ��49#�4,» � û	��� � � . Reporting x� � úÁ� � maximizes the sum of the first two terms by con-
struction, and the final term is independent of the reported type. This holds for
all �~� � , and strategyproofness follows. The Groves payment rule internalizes
the externality placed on the other agents in the system by the reported prefer-
ences of agent � . This aligns an agent’s incentives with the system-wide goal
of allocative-efficiency.

The uniqueness of Groves mechanisms provides an additional simplification
to the efficient mechanism design problem when dominant strategy implemen-
tations are required. It is sufficient to consider the family of Groves mecha-
nisms, and look for functions »��sû<;�� that provide Groves payments that satisfy
all of the desired constraints. The Vickrey-Clarke-Groves (VCG) mechanism
is an important special case, so named because it reflects the seminal ideas
due to Vickrey [Vic61] and Clarke [Cla71]. The VCG mechanism maximizes
expected revenue across all strategyproof efficient mechanisms, subject to ex
post individual-rationality (IR) constraints. Ex post IR provides:� � ûpy¤û	� � þ��~� � �aþ�� � �Â,³� � û	� � þ���� � �7¯w2fþ±°��sþ<°-� � þ<°���� � (ex post IR)
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This is an ex post condition, because it requires that the equilibrium payoff to
an agent is always non-negative at the outcome of the mechanism, whatever
the types of other agents. To keep things simple we assume that an agent has
zero payoff for non-participation. The VCG mechanism defines payment:� ·�Ã�´ º �Tû x�R��ú � 9#¼½ � ��9 ûpy����¬û x� � �+�¤��, � 9�¼½ � ��9 ûpy�����û x�~�¤�
where y:����û x�~� � � is the efficient allocation as computed with agent � removed
from the system.

It is natural to ask whether greater revenue can be achieved by relaxing
strategyproofness to Bayesian-Nash IC. In fact, the VCG mechanism maxi-
mizes the expected revenue across all efficient and ex post IR mechanisms,
even allowing for Bayesian-Nash implementation [KP98]. This equivalence
result yields a further simplification to the efficient mechanism design prob-
lem, beyond that provided by the revelation principle. Whenever the additional
constraints (in addition to IR and IC) are interim or ex ante in nature3 in an ef-
ficient mechanism design problem, then it is sufficient to consider the family
of Groves mechanisms in which the arbitrary »-�mû<;�� functions are replaced with
constants [Wil99]. Not only is the allocation rule, y¤û<;�� , pinned down, but so
is the functional form of the payment rule, ��û<;�� , and the mechanism design
problem reduces to optimization over a set of constants.

This analysis of the revenue properties of VCG mechanisms follows from a
fundamental payoff equivalence result [KP98, Wil99]. The payoff equivalence
result states that �6��û	���+�Àú��'�mû	� � �IÀ�ÄÅ Æ �¾�mû	���+�Æ ���±ÇÇÇÇ �<� ½-È ÆbÉ (equiv)

for all efficient mechanisms, where � � is the minimal type of agent � , and Ê is
a smooth curve from � � to ��� within ��� . By definition (interim valuation), the
interim valuation, �b�mû	���+� , in an IC mechanism depends only on the allocation
rule. Therefore payoff equivalence (equiv) states that the equilibrium payoff
from any two IC mechanisms with the same allocation rule, y¤û<;�� , are equal up
to an additive constant, i.e. its payoff at some particular type � � . A consequence
of payoff equivalence is that all IC mechanisms with the same allocation rule
are revenue equivalent up to an additive constant, which is soon pinned down
by additional constraints such as IR.4

3Ex ante and interim refer to timing within the mechanism. Ex ante constraints are defined in expectation,
before agent types are known. Interim constraints are defined relative to the type of a particular agent, but
in expectation with respect to the types of other agents.
4As a special case, we get the celebrated revenue-equivalence theorem [Vic61, Mye81], which states that
the most popular auction formats, i.e. English, Dutch, first-price sealed-bid and second-price sealed-bid,
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Finally, this characterization of the VCG mechanism provides a unified per-

spective on many areas of mechanism design theory, and provides a simple and
direct proof of a number of impossibility results in the literature [KP98]. As
an example, we can consider the Myerson-Satterthwaite [MS83] impossibility
result, which demonstrates a conflict between efficiency and budget-balance in
a simple two-sided market. There is one seller and one buyer, a single item to
trade, and agent preferences such that both no-trade and trade can be efficient
ex ante. There does not exist an efficient, weak budget-balanced, and IR mech-
anism in this setting and any efficient exchange with voluntary participation
must run at a budget deficit. Recalling that the VCG mechanism maximizes
expected payments from agents across all efficient and IR mechanisms, there is
a simple constructive method to prove this negative result. One simply shows
that the VCG mechanism in this setting runs at a deficit.EGFHEIF�Ë Ì�Í�S�M	deZbX�^`PRQ:a�Zb]6MKc�d LqPRc�MKr-]sF

In optimal mechanism
design the goal is to maximize the expected payoff of one particular agent.
Recall that the primary goal in efficient mechanism design is to maximize the
total payoff across all agents. The agent receiving this special consideration
in the context of optimal auction design is often the seller, although this need
not be the role of the agent. We find it convenient to refer to this agent as
the seller in our discussion, and indicate this special agent with index 0. In
optimal mechanism design the goals of the designer are aligned with the seller,
and it is supposed that we have complete information about the seller’s type.
The mechanism design problem is formulated over the remaining agents, to
maximize the expected payoff of the seller subject to IR constraints.

Myerson [Mye81] first introduced the problem of optimal mechanism de-
sign, in the context of an auction for a single item with a seller that seeks to
maximize her expected revenue. We will provide a general formulation of the
optimal mechanism design problem, to parallel the formulation of the efficient
mechanism design problem. However, analytic solutions to the optimal mech-
anism design problem are known only for special cases.

In this section we allow randomized allocation and payment rules. The al-
location rule, yÎz��`|{Ï û	�Ð� , defines a probability distribution over choices
given reported types, and the payment rule, �Ñzv�Ò|Ó� 
 , defines expected
payments. The ability to include non-determinism in the allocation rule allows
the mechanism to break ties at random, amongst other things. Let �IÔ5ûpy=þ	��� de-
note the expected ex ante valuation of the seller for the outcome, in equilibrium
given the payment and allocation rules and beliefs about agent types.

all yield the same price on average in a single item allocation problem with symmetric agents. This is an
immediate consequence because these auctions are all efficient in the simple private values model.
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By the revelation principle we can restrict attention to IC DRMs, and im-

mediately express the optimal mechanism design problem [OPT] as� �#�ÕÖ¨p© ª º §�¨p© ª �bÔ ûpy=þ	����À � � �q�mû���� [OPT]« ÿ­¬]ÿ×�'�mûpy=þ	�kþ�������������¯��6�sûpy=þ	�kþ x���������+�aþØ°��sþ<°�����
Ù��� (IC)

additional constraints (IR),(BB),etc.

where �q�mû���� is the expected equilibrium payment made by agent � , �s�mûpy=þ	�kþbx���������+�
is the expected equilibrium payoff to agent � with type ��� for reporting type x��� .
The objective is to maximize the payoff of the seller. In comparison with the
efficient mechanism design problem, we have no longer pinned down the allo-
cation rule and the optimization is performed over the entire space of allocation
and payment rules.

One approach to compute an optimal mechanism is to decompose the prob-
lem into a master problem and a subproblem. The subproblem takes a partic-
ular allocation rule, yYg�û<;�� , and computes the optimal payment rule given y[g�û<;�� ,
subject to IC constraints. The masterproblem is then to determine an allocation
rule to maximize the value of the subproblem. However, as discussed by Vohra
& de Vries in Chapter 4, the set of allocation rules need not be finite or count-
able, and this is a hard problem without additional structure. Solutions are
known for special cases, including a single-item allocation problem [Mye81],
and also a simple multiattribute allocation problem [Che93].

As an illustration, we provide an overview of optimal mechanism design for
the single-item allocation problem. Let Ú Õ º �Tû x�/�¿¯�2 denote the probability that
agent � receives the item, given reported types x� and allocation rule y¤û<;�� . We
also write, ���mû��:��þ������¨ú���� , for the choice, �~� , in which agent � receives the item,
and 0 otherwise, so that an agent’s type corresponds to its value for the item.
Let �#Ô denote the seller’s value.

Call a mechanism ûpy=þ	��� feasible if IC and interim IR hold. The first step in
the derivation of the optimal auction reduces IC and interim IR to the following
conditions on ûpy=þ	�G� :Û � ûpy=þ�� � ��Ü Û � ûpy=þ��#Ý��aþØ°��Þ
}ù|þ<°-� �àß �#Ýuþ<°�� � þ��#Ý(
Ù� � (1.1)�'�mûpy=þ	�kþ����¸��ú��'�mûpy=þ	�kþ�� � ��À Ä �<�È�½ � � Û �mûpy=þ É � Æ¾É þ °��s
}ù8þ<°-���6
Ù��� (1.2)�6�mûpyãþ	�kþ�� � ��¯w2fþ±°-�s
}ù (1.3)

where � � represents the lowest possible value that � might assign to the item,
and

Û �mûpy=þ x���¸� denotes the conditional probability that � will get the item when
reporting type, x��� , given that the other agents are truthful, i.e.

Û ��ûpyãþ¾x���¸� ú�¡�¢����0 Ú Õ º ��û x���Tþ�� � �+��3 .
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The key to this equivalence is to recognize that IC can be expressed as:�'�sûpy=þ	�kþ�������������¯��6��ûpyãþ	�kþbx���Â�Ix���+�IÀ û	���-,áx���+� Û �mûpy=þbx���¸�aþ±°¡x���7>ú���� (1.4)

in this single-item allocation problem by a simple substitution for ���sûpy=þ	�kþ x���-�����+� .
Given this, condition (1.1), which states that an agent’s probability of getting
the item must decrease if it announces a lower type, together with (1.2) implies
condition (1.4), and IR follows from (1.2) and (1.3).

Continuing, once the payoff to an agent with type � is pinned down, then
the interim payoff (1.2) of an agent is independent of the payment rule becauseÛ �mûpy=þ É � is the conditional probability that agent � receives the item given type

É and allocation rule y . This allows the optimal mechanism design problem
to be formulated as an optimization over just the allocation rule, with the ef-
fect of computing an optimal solution to the payoff-maximizing subproblem
for a given allocation rule folded into the masterproblem, and IR constraints
allowing the seller’s expected payoff to be expressed in terms of the expected
payoffs of the other agents. Integration of

Û � between � � and ��� yields a sim-
plified formulation:

���#�ÕÖ¨p© ª �¡��â � � �Ö� û¸ã � û	� � �6,8� Ô �<Ú Õ º � û	�/��ä [OPT’]« ÿ­¬]ÿ Û �mûpy=þ��~����Ü Û ��ûpy=þ�� Ý �aþØ°-�Þ
 ù|þ<°���� ß � Ý þ<°-���]þ�� Ý 
Ù��� (1.1)

where the value, ã � û	� � � , is the priority level of agent � , and computed as:

ã � û	� � �Àú�� � , ý¡,�5��sû	�����.#�mû	�����
Recall that . � û<;�� is the probability distribution over the type of agent � , and5��sû<;�� the cumulative distribution. This priority level, sometimes called the
virtual valuation, is less than an agent’s type by the expectation of the second-
order statistic of the distribution over its type. Economically, one can imagine
that this represents the “information rent” of an agent, the expected payoff that
an agent can extract from the private information that it has about its own type.

The optimal allocation rule, y ¶¤å æ û<;�� , requires the seller to keep the item if� Ôèç ���#� � ã � û x� � � and award it to the agent with the highest ã � û x� � � otherwise,
breaking ties at random. It is immediate that this rule maximizes the objective
[OPT’]. A technical condition, regularity, ensures that this allocation rules sat-
isfies (1.1). Regularity requires that the priority, ã[��û	����� , is a monotone strictly
increasing function of ��� for every agent. Myerson [Mye81] also derives a
general solution for the non-regular case. The remaining problem, given y[¶¤å æ ,
is to solve for the payment rule. The optimal payment rule given a particular
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allocation rule is computed as:

�b�mû	�/��ú�Ú Õ º �Tû	�/�<���-, Ä �¸�È�½ � � Ú Õ º �mû É þ�� � �+� Æ¾É (1.5)

where Ú Õ º �mû	�/� is the probability that � gets the item given y and types � . Given
allocation rule, y ¶¤å4æ , this simplifies to

�b��û	�R��úêéáëlì[í4î x������ã��sû�x�����7¯��#Ô�þ�ã��sû�x���+��¯�ã�9®û	�49#�aþ<°Y=�>ú��¤ï , if Ú Õñð�ò<ó º ��û	�R��ú�ý2 , otherwise.

where �#Ô is the value of the seller for the item. In words, only the winner
makes a payment, and the payment is the smallest amount the agent could
have bid and still won the auction. This payment rule makes truth-revelation a
Bayesian-Nash equilibrium of the auction.

The optimal auction is a Vickrey auction with a reservation price in the
special case that all agents are symmetric and the ãY�sû<;�� functions are strictly
increasing. The seller places a reservation price, ��ÔÓú{ã � � û	�#Ô�� , given her
value, �#Ô , and the item is sold to the highest bidder for the second-highest price
whenever the highest bid is greater than the reservation price. The optimal
auction in this symmetric special case is strategyproof. The effect of the seller’s
reservation price is to increase the payment made whenever the seller’s price
is between the second-highest and highest bid from outside bidders, at the
risk of missing a trade when the highest outside bid is lower than the seller’s
reservation price but higher than the seller’s true valuation. Notice that the
optimal auction is not ex post efficient.

In the general case of asymmetric bidders the optimal auction may not even
sell to the agent whose value for the item is the highest. In this asymmetric
case the optimal auction is not a Vickrey auction with a reservation price. The
agent with the highest priority level gets the item, and the effect of adjusting
for the prior beliefs .:��û<;�� about the type of an agent is that the optimal auction
discriminates against bidders that a priori are expected to have higher types.
This can result in an agent with a higher type having a lower priority level
than an agent with a lower type. One can imagine that the optimal auction
price-discriminates across buyers based on beliefs about their types.

ïo¿+ô ô�ÅoÏöõ9Ð�ÃÕÉGÃxÉ<÷oÐ-ó�ø8Ç�ÉmòmÉñù�Ä=ÉmÇ�Ï
Competitive equilibrium theory is built around a model of agent price-taking

behavior. At its heart is nothing more than linear-programming duality the-
ory. One formulates a primal problem to represent an efficient allocation prob-
lem, and a dual problem to represent a pricing problem. Competitive equilib-
rium conditions precisely characterizes complementary-slackness conditions
between an allocation and a set of prices, and implies that the allocation is
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optimal and therefore efficient. Competitive equilibrium conditions are useful
because they can be evaluated based on myopic best-response bid information
from agents, and without requiring complete information about agent valua-
tions. This is the sense in which prices can decentralize decision-making in
resource allocation problems.

The modeling assumption of price-taking behavior states that agents will
take prices as given and demand items that maximize payoff given their val-
uations and the current prices. This is commonly described as price-taking
or myopic best-response behavior. In the language of mechanism design, this
can be considered a form of myopic, or bounded, incentive-compatibility. In
some problems, there are competitive equilibrium (CE) prices that also imple-
ment the VCG payments [BO02], and this myopic assumption is no longer
required. Indeed, an iterative auction that terminates with CE prices corre-
sponding with VCG payments inherits incentive-compatibility properties from
the VCG mechanism. The connection between linear programming, competi-
tive equilibrium, and VCG payments has been used to design ascending-price
auctions to implement the outcome of the VCG mechanism in a number of
problems [Par01, PU02, BdVSV01, DGS86]. The methodology is discussed
in Section 3.5, and a number of examples are provided in Section 4.

To illustrate CE prices we will impose some structure on choice set � . Let ú
define a set of items, and ûwüwú a subset, or bundle, of items. A choice, �q
��
defines a feasible allocation of bundles to agents. Introduce variables, ý'�mû+ûþ�7
î 2fþ�ý#ï , to indicate that agent � receives bundle û in a particular allocation. In
addition, it is convenient to express an agent’s preference structure as a valua-
tion function over bundles, �~��û+ûs� , such that ���mû��¤þ����+�¨ú%¥_ÿ��������sû+ûþ�¸ýb�mû+ûþ� , for¥ ÿ�����ý � û+ûþ�¿Ü ý .

Given information about agent valuations, �/�mû<;�� , the efficient allocation prob-
lem can be formulated as an integer program:

� �#�� � ¨ ÿ ª �ÿ���� � � �Ö� ý � û+ûþ�¸� � û+ûþ�« ÿ­¬]ÿ � ÿ ý � û+ûþ�7Ü ý�þ °��s
}ù
� ÿ�� 9 � � ��� ýb�mû+ûþ�7Ü ý�þ °Y=�
Ùú

ý���û+ûþ�¿
 î 2fþ�ý#ï
where û�� = indicates that bundle û contains item = .

To apply linear-programming duality theory we must relax this IP formu-
lation, and construct an integral LP formulation. Consider [LP � ] and its dual
program, [DLP � ]:
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� �#�� � ¨ ÿ ª � ÿ � � ýb�»û+ûþ�¸���½û+ûþ� [LP � ]« ÿ­¬]ÿ � ÿ ýb�»û+ûþ�7Ü-ý�þ °��s
.ù (LP � -1)

� ÿ�� 9 � � ýb�»û+ûþ�7Ü-ý�þ °Y=V
�ú (LP � -2)

ý � û+ûþ�7¯ 2fþ °��sþ û
� ëHì	 �	º §�¨ 9 ª � � Ú¾�¾À � 9 ��û�=R� [DLP � ]« ÿ­¬]ÿ Ú¾�¾À �9 � ÿ �¬û�=/�¿¯w�#�»û+ûþ�aþ °��s
}ù8þ<°Gû�
 ú (DLP � -1)

Ú � þ	�¬û�=/�¿¯ 2fþ °��sþ�=
The dual problem introduces variables ��û�=/�¿¯w2 , for items =V
�ú , which we

can interpret as prices on items. Given prices, ��û�=R� , the optimal dual solution

sets Úb��ú����#� ÿ � ���mû+ûþ��,e¥ 9 � ÿ'�¬û�=/�aþ�2�
 . This is the maximal payoff to agent� given the prices, and the dual problem computes prices on items to minimize
the sum of the payoffs across all agents.

The dual solution computes CE prices when the primal solution is integral.
A technical condition, gross substitutes [KC82], on agent valuations is suffi-
cient for integrality. Given gross substitutes, then complementary-slackness
(CS) conditions on a feasible primal, ý , and feasible dual, � , solution define
conditions for competitive equilibrium:Úb� ç 2�� � ÿ ýb�sû+ûþ�¨úõý�þ±°�� (1.6)

�¬û�=/� ç 2�� � ÿ�� 9 � � ý���û+ûs�Àú�ý�þ±°[= (1.7)

ýb�mû+ûþ� ç 2�� Ú¾�¾À �9 � ÿ �¬û�=/�Àú"���mû+ûþ�aþ±°-�sþ<°Gû (1.8)

Conditions (1.6) and (1.8) state that the allocation must maximize the payoff
for every agent at the prices. Condition (1.7) states that the seller must sell
every item with a positive price, and maximize the payoff to the seller at the
prices. When these conditions hold then prices are CE and the allocation is
efficient. Notice that CE prices provide a certificate for efficiency. A seller can
announce an efficient allocation and CE prices, and let every agent verify that
the allocation maximizes its own payoff at the prices.
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Without gross substitutes it is necessary to strengthen the LP formulation to

achieve integrality and compute CE prices. One can construct a hierarchy of
formulations [BO02], with duals that compute non-linear and then non-linear
and non-anonymous prices. Non-linear prices, ��û+ûs�(¯?2 , on bundles û�
?ú ,
allow ��û+ûþ��>úe��û+û6�4�4Àà��û+û Ý � for û�ú%û6���7û Ý and û'����û Ý ú�� . Non-anonymous
prices, ���mû+ûþ�7¯w2 , on bundles û to agent � , allow ����û+ûþ��>úo�R91û+ûþ� for ��>ú�= .

In Section 4.1 we use primal-dual theory to derive an ascending-price com-
binatorial auction for an extended formulation, in which the dual problem
computes non-linear prices. The combinatorial auction allows agents to ex-
press their preferences by submitting bids on bundles of items.ôc¿ Á
Ïöõ�òTÐ�ÏÑÐ�ÂoÃfÎ¬ÃÕÉTÅoÂ ô�ÅoÂ�ØxÉ�Æ8Ð�ÄxÎ¬ÃÕÉTÅoÂ�Ø

In this section, we discuss some of the computational considerations that
must be addressed in taking a mathematical specification of a mechanism and
building a working system. There can often remain a large gap between the
mathematical specification and a reasonable computational implementation. In
this section we lay out some of the details that must be considered in closing
this gap.

Particular implementation considerations include the choice of a language
to represent agent preferences (Section 3.1) and the complexity of the winner-
determination problem (Section 3.2), which can also be impacted by side con-
straints that represent business rules (Section3.4). Sometimes it is necessary
to implement an indirect variation of the direct revelation mechanism, for ex-
ample in problems in which the direct mechanism requires an unreasonable
amount of preference information from agents (Section 3.5). Sometimes the
situation is worse, and there is no reasonable implementation of the optimal
mechanism. In such cases, computational considerations must be introduced
explicitly during the mechanism design process itself (Section 3.6).ôc¿m¾ � É�Æ�Æ�ÉmÂ�C�� Î¨Â�CPÇ|ÎÂC²Ð

The structure of the bidding language in an auction is important because
it can restrict the ability of agents to express their preferences. In addition,
the expressiveness allowed also has a big impact of the the properties of the
auction. This has prompted research that examines bidding languages and their
expressiveness and the impact on winner determination [BH01, Bou02, BK02].
In this section we will outline two aspects of bidding languages that are central
to auctions: (i) the structure of bids allowed, and (ii) the rules specified by the
bid that restrict the choice of bids by the seller.

The structure of bids that are allowed are closely related to the market struc-
ture. For example, in markets where multiple units are being bought or sold it
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becomes necessary to allows bids that express preferences over multiple units.
Some common bid structures examined in the literature are:

divisible bids with price-quantity pairs that specify per-unit prices and
allow any amount less than specified quantity can be chosen.

divisible bids with a price schedule, for example volume discounted bids

indivisible bids with price-quantity pairs, where the price is for the total
amount bid and this is to be treated as an all-or-nothing bid.

bundled bids with price-quantity pairs, where the bid is indivisible and
the price is over the entire basket of different items and is to be treated
as an all-or-nothing bid.

configurable bids for multiattribute items that allow the bidder to specify
a bid function sensitive to attribute levels chosen.

With multiple items or multiattribute items the preference structure of agents
can be exponentially large. For example, if there are � items and the agent
has super-additive preferences then in general the agent could specify ��� bids.
Multiattribute items with � binary attributes leads to similar informational
complexity. Therefore an additional consideration is to provide a compact
bid representation language that allows agents to implicitly specify their bid
structure. Several researchers have proposed mechanisms for specifying bids
logically. Boutilier and Hoos [BH01] provide a nice overview of logical bid-
ding languages for combinatorial auctions. These bidding languages have two
flavors: (i) logical combinations of goods as formulae ( ��� ), and (ii) logical
combinations of bundles as formulae ( � � ).�!� [BH01, HB00] languages allow bids that are logical formulae where
goods (items) are taken as atomic propositions and combined using logical
connectives and a price is attached to the formula expressing the amount that
the bidder is willing to pay for satisfaction of this formula. �"� captures per-
fect substitutes with disjunctions in a single formula, however imperfect sub-
stitutes might require multiple formulae to capture the agent’s preferences.�#� [San00, Nis00] language uses bundles with associated prices as atomic
propositions and combines them using logical connectives. Sandholm [San00]
suggested �%$#&� that uses disjunctions over atomic bids. Semantically, these
languages are interpreted by assigning goods to the component atoms and the
price is determined as the sum of the prices of the atomic bids that are satisfied.
Nisan [Nis00] considered �!'($#&� allowing exclusive-OR and two-level nesting
of such connectives which allows expression of substitutability. Another alter-
native is to allow dummy goods within atomic bids to make the language more
compact. Nisan [NR00] provides a discussion of the relative merits of these
languages. More recent work [BH01] introduced ���)� for generalized logical
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bids that allows a combination of both items and bundles as atomic proposi-
tions within a single formula. This inherits the advantages of both approaches
and allows concise specification of utility.

Similar issues of concise representation of preferences over multiattribute
items/goods is explored in Bichler et al [BKL02]. A bid can specify the values
that are allowed for each attribute and an associated markup price over the
base levels. In addition, an atomic proposition is associated with each value
for each attribute and horn clauses are used to specify configurations that are
not allowed or to specify promotions associated with certain feature sets.ôc¿Gï * ÉmÂ�Â8Ð�Ä,+#B Ð�ÃfÐ ÄãÏ�ÉmÂ8Î¬ÃÕÉTÅoÂ'ô�ÅPÏêõ�òTÐ.-�ÉGÃ0/

Two primary components of a mechanism are the allocation rule and the
payment rule. As discussed in Section 2.2, two objectives considered in mech-
anism design are allocative-efficiency and optimality with respect to the pay-
off to a particular agent. In order to implement an allocation rule for either
of these objectives an optimization problem needs to be solved. This opti-
mization problem is typically referred to as the winner determination problem.
In simple designs (such as the English, Dutch etc) where only a single win-
ner is permitted in the allocation, the optimization problem can be solved in a
straightforward fashion. However, in settings where the allocation rule permits
multiple winners, the optimization problem that needs to be solved can become
quite computationally complex depending on the market and bid structures. In
this section we outline the different settings and the associated complexity of
the winner determination problem.ËIFHEIFKJ ^21'XpS�M4365�]6MpS8791'Q�S#Mp\�]'c:F

Consider an auction for multiple
units of the same type of item, and in particular the reverse auction setting
where the focus is to minimize the cost subject to bid requirements. We will
consider three cases: (i) divisible bids, (ii) indivisible bids with XOR bid struc-
tures and (iii) price schedules which can be viewed as a compact representation
for generalized XOR indivisible bids.

Suppose that a buyer requests to buy
Û

identical units of the same item.
The bidders respond with a bid :(� , defining price-quantity pair (�G� , ;�� ). In the
simple case where the bids are divisible, the optimal allocation can simply be
identified by sorting the bids in increasing order of unit price and picking the
cheapest bids until the demand for

Û
is satisfied. In general, the last chosen

bid might get a partial allocation. However, the following bid structures lead
to winner determination problems that require solving optimization problems:< ].=�MpW�Mpc�M?>�XKPA@�MB=6c:F

If the bidders specify all-or-nothing constraints on
the bids then the bids are indivisible. Let C�� denote the number of bids from
supplier � , and � denote the number of suppliers. The winner determination
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problem can be formulated as a knapsack problem, introducing ý�� 9(
 î 2fþ�ý#ï to
indicate that bid = from bidder � is accepted [BK02].

� ëlì� � D 
� � ½ �
E ��9 ½ � � � 9 ý �­9« ÿ­¬]ÿ 
� � ½ �

E ��9 ½ � ; � 9 ý � 9 ¯ ÛE ��9 ½ � ý�� 9 Ü ý�þ °��
ý�� 9 
 î 2fþ�ý#ï

The special case where each bidder has a single bid reduces to a knapsack
problem which is NP-hard [MT80]. In order to write this as a knapsack prob-
lem use the transformation £~� 9 ú ý�,"ýb� 9 and rewrite the formulation as a
maximization problem.F O�MpQ/P�G�Q:a'PH=I1'XKPRc:F

If the bids incorporate price schedules (such as
volume discounts) then the winner determination can be modeled as a gener-
alization of the multiple choice knapsack problem. The key issue is whether
the price schedule is nonlinear or piecewise linear. Piecewise linear approx-
imations are commonly used to model nonlinear functions [DK01, SS01b].
Therefore, we will focus on a model with piecewise linear price schedules.

Each supplier responds with a price schedule that consists of a list of C �
price quantity pairs, î û��-�K��þ�0 ; �K� þ ; �K� 3K�aþ]ÿ]ÿ]ÿ û��b� E � þ�0 ; � E � þ ; � E � 3K�¢ï . Each price quan-

tity pair û���� 9�þ�0 ; � 9 þ ; � 9 3K� , specifies the per-unit price, ��� 9 , that supplier � is willing

to provide for marginal items in the interval, 0 ; �­9 þ ; �­9 3K� . The ranges in the vol-
ume discount must be contiguous. Let J�� 9 denote the number of units sourced
above ; � 9 from supplier � , with J�� 9vÜ ; �­9 ,K; � 9 . The total price for quantity

ûLJ�� 9ÞÀ�; � 9 � is:

��ûLJ��­9#�Àúe�b� 9�J�� 9ÞÀ 9 � �� M9 ½ � � � M9 û ; � M9 ,8; � M9 �
The price schedule incorporates an infinite large number of potential indivisi-
ble bids from each of the intervals with an XOR constraint across these possible
bids.

Associate a decision variable, ý � 9 
 î 2fþ�ý#ï , with each level = of each price
schedule � which takes the value 1 if the number of units sourced to supplier �
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is in the interval 0 ; � 9 þ ; � 9 3K� , and continuous variable J#� 9 that specifies the exact
number of units sourced above ; � 9 from supplier � . Constraints ensure thatJ�� 9 ç 2��¦ýb� 9 ç 2 . The winner determination formulation for this problem is:

� ëlì� � D�º N<� D 
� � ½ �
E ��9 ½ � ���­9OJ�� 9ÞÀoý�� 9�ÊÞ� 9« ÿ­¬]ÿPJ�� 9à,Dû ; � 9 ,8; � 9 �¸ýb� 9 Üw2fþ °��sþ<°Y=� 9 ý � 9 Ü ý�þ °��

� � � 9 ûLJ � 9 Àoý � 9 ; � 9 �7¯ Ûý � 9 
 î 2fþ�ý#ï þQJ � 9 ¯w2
where the coefficient Ê7�­9 computes the total price for all the items purchased
up to and include ; �­9 : ÊÞ�­98ú 9 � �� M9 ½ � � � M9 û ; � M9 ,R; � M9 �

A special case of this formulation where each interval in the schedule is a
point interval reduces to the multiple choice knapsack problem which is NP-
hard [MT80]. Once again the we need to use a change of variables £[�­9�ú�ý~,�ýb� 9
to get the canonical maximization form.Lq\�1!>�XpPS7T1�Q~S�MK\-]'c}Z�].= mVUIQ:a�Zb]'r-P/c:F

Double auctions are settings
with multiple buyers and sellers. There exist two main institutions for double
auctions: (i) the continuous double auction, which clears continuously, and (ii)
the clearinghouse or call auction, which clears periodically.

For homogeneous items, the continuous double auction maintains a queue
of bids from buyers sorted in increasing order of price and a queue of offers
from the sellers in decreasing order of price. Whenever the offer price is lower
than the bid price the bid and ask are matched and the difference is usually kept
by the market maker. This requires maintaining a sorted list of asks and bids
which is of W.û	�YX[Z:���v� where � is the number of active asks/bids.

In this section we focus on call markets, which are more appropriate when
bids and asks are combinatorial and with heterogeneous items. The call mar-
kets are different in that bids and asks are cleared periodically. The compu-
tational aspects of market clearing depends on the market structure [KDL01].
The aspects of market structure that have an impact on winner determination
are as follows:
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Aggregation: The role of the market-maker in disassembling and re-
assembling bundles of items. Possibilities include buy-side aggregation,
sell-side aggregation or both. If no aggregation is allowed then each bid
can be matched to exactly one ask.

Divisibility: The ability to allocate fractions of items, and the ability to
satisfy a fraction of agents’ bids and asks. When an agent wants its bid
or nothing, then its bid is called indivisible.

Homogeneous/Heterogeneous Goods: Homogenous goods imply that all
the goods being exchanged are all exactly the same and interchangeable
(e.g. an auction for a particular financial stocks). If the goods are dif-
ferentiated, or heterogeneous, then any given ask can only match with a
subset of the bids. An important issue related to heterogenous goods is
whether they are substitutes or complements.

The appropriate level of aggregation will depend on the physical attributes
of the good; e.g. pieces of steel can be cut but not very easily joined (buy-
side aggregation), conversely computer memory chips can be combined but
not split (sell-side aggregation). Similarly, goods that have multiple attributes
often lead to heterogeneous goods. For example, steel coils may differ in the
grade or surface quality. Very often substituting a higher quality item for a
lower quality item is acceptable, e.g. a bid for 10 units of 1.0GHz processors
can be substituted with 10 units of 1.2GHz processors with additional cost.
In contrast, in some situations the heterogenous good might complement each
other and provide greater value as a bundle rather than separately. For example
an offer for all legs of an itinerary is valuable than a set of disjointed legs.
Note that aggregation does not imply that the exchange must take physical
possession of goods, trades can still be executed directly between agents.

The winner determination problem can be modeled in its most general form
as follows. Consider a set of bids : and a set of asks \ . Each bid, ]��¿
8: is
associated with a single type of good, and provides a unit bid price, � � , and a
quantity demanded, ;�� . Similarly, associated with each ask, ^~9U
�\ , is a unit
ask price, �Y9 , and a quantity offered, ;�9 , for a single type of good. Bids and
asks from multiple bidders are assumed to be connected with additive-or logic,
and we do not allow bundle bids. This language is sufficiently expressive with
substitutable items.

Let 2³Ü"ý��­9�Ü�ý denote the fraction of the demand ;�� from bid ] � allocated
to ask ^�9 . For any given bid ]�� we also specify a set of asks \(�%
K\ to which it
can be feasibly matched. Similarly, for each ask ^/9 we specify the set of bids:79_
A: that constitute a feasible match. These assignment restrictions model
the feasibility requirements imposed by the heterogeneity of goods. We will
restrict our attention to the objective of maximizing surplus without any loss
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of generality. A general linear formulation can be written that captures all the
different market structures in terms of aggregation, divisibility and differentia-
tion. We do not specify the constraints on the variables ý��­9 since this depends
on the structure of the market.

���#�� � D � � �a` �9 � � D û��b��,³�R9#�b;Ö�pý�� 9« ÿ­¬]ÿ �� � � D ; � ý � 9 ÜK; 9 þØ°Y=�
c\ (1.9)

�9 �a` � ý�� 9(Ü ý�þ±°-�s
d: (1.10)

2�Ü�ý�� 9(Ü ý þ<°-�sþ�= (1.11)

In the simplest case of homogeneous goods we can drop the assignment
restrictions, and set \$�eúe\ and :¿9øúf: . Assuming divisibility, then ý�� 9
indicates the fraction of the available quantity in bid ]�� allocated to ask ^�9 .
The matching problem can be solved by sorting the bids in decreasing order
of price and offers in increasing price. The crossover point, �'j is the clearing
price and bids with price above �Ij and asks below ��j are matched.

With assignment restrictions, for example to capture the case of heteroge-
neous goods, the optimal matching solution can be solved with an LP as long
as bids are both divisible and additive-or. The linear program has a network
structure which can be exploited to solve the problem efficiently. Any type of
aggregation is allowed without impacting the computational complexity of the
problem.

On the other hand, if the bids are indivisible, then we have to introduce an
integrality structure. We define the decision variable, ýI� 9 
 î 2fþ�ý#ï , as a binary
variable that takes a value 1 if bid ]Ö� is assigned to ask ^:9 and zero otherwise
and replace equation (1.11) with ýG�­9!
 î 2fþ�ý#ï . If we restrict the exchange
so as not to allow any aggregation then the winner-determination problem is
an assignment problem which can be solved very efficiently in polynomial
time [AMO93]. Consider a bipartite graph with asks on one side (the asks are
differentiated by price and seller) and the bids on the other. The constraint
(1.9) can be replaced with ¥ � � � D ýb� 9 Ü-ý

Otherwise, for example with aggregation on the sell side, the constraint
(1.10) with integrality restricts bids to be assigned to at most one ask and the
problem becomes the generalized assignment problem which is known to be
NP-hard [MT80]. The reader is referred to Kalagnanam et al [KDL01] for a
detailed discussion of these issues.
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In this subsection we introduce multi-item auctions where multiple het-

erogenous items are being bought/sold simultaneously. Note that we already
discussed several cases of multi-item auctions above by introducing substi-
tutable heterogeneous goods. An alternative setting (to the double auctions
discussed above) allows for more complex bundled bids with all-or-nothing
offers for the bundle in cases where the goods are em not substitutable rather
they are complementary. Such bundled bids also require a more expressive
bidding language that allows for XOR bids.

Following the notation in Section 2.3, let ú�ú�û�ý�þ]ÿ]ÿ]ÿ¥þ��v� denote the set
of items for sale. The bidders are allowed to specify bundles û�
Òú with a
single price on the entire bundle. We formulate this problem by introducing
a decision variable ý-��û+ûs� for each bundle û offered by bidder � . Each bidder
provides a bid set :$�(
h� � . Let ���mû+ûþ� denote the price offered by agent � for
bundle û , and consider bids in an exclusive-or language. For the simple case
of a single seller with multiple buyers, the maximization problem can now be
written as:

���#�� � ¨ ÿ ª �ÿ � � � � � ý � û+ûs�H� � û+ûþ�« ÿ­¬]ÿ �ÿ � � � ý�� û+ûþ�¿Ü ý�þ °��
�ÿ � � �+º ÿ�� 9 � � ý�� û+ûþ�¿Ü ý�þ °Y=

ý�� û+ûþ�¿
N2fþ�ý5þ °-�sþ û
This is a set packing formulation and is NP-hard [RPH98]. There are spe-

cial cases under which the structure of this problem simplifies and allows for
polynomial time solutions. All these special cases arise out of constraints that
reduce the constraint matrix to be totally unimodular [dVV02]. A common
example is the case where adjacent plots of land are being sold and bidders
might want multiple plots but they need to be adjacent. However, in general
to get a totally unimodular constraint matrix fairly severe restrictions have to
be placed on the bid structure (e.g. only one bid per bidder with “adjacency”
constraints) and this restricts the expressiveness of the bidding language.

The problem can be generalized to allow multiple buyers and sellers. We
denote the set of buyers with i and the set of sellers with j . We allow sellers
to submit bundles ûS
 ú with a single price on the entire bundle. We formu-
late this problem by introducing an additional decision variable £ � û+ûþ� for each
bundle û offered by seller �à
kj . Let �Ù��û+ûs� denote the asking price by seller
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� for bundle û , and consider bids in an exclusive-or language. Now, for the
case of multiple sellers with multiple buyers, the maximization problem can
be written as: ���#�� � ¨ ÿ ª º l�� ¨ ÿ ª �ÿ � � � �� �nm�oqp ûKý��»û+ûs�H�b� û+ûs��,�£:�»û+ûþ�¸�q� û+ûs�¤�« ÿ­¬]ÿ �ÿ � � � ýb�»û+ûþ��Ü ý�þ °��s
di

�ÿ � � � £ � û+ûþ��Ü ý�þ °��s
rj
�ÿ � � �	º ÿ�� 9 � � ûK£:�»û+ûþ��,�ý�� û+ûs�¤�7¯w2fþ °Y=

ý � û+ûþ��
N2fþ�ý þ °��sþ û£:�»û+ûþ��
N2fþ�ý þ °��sþ û
The single seller problem is a special case of this and hence the complexity

of this remains NP-hard. Notice however that if we restrict the matching to
allow no aggregation then the problem becomes assignment problem. For each
bundle from a supplier we allow exactly one match to a bundle requested by the
bidder. Similarly, each bundled bid form a bidder is restricted to match exactly
one bundled offer. This reduces to an assignment problem. However, since
each agent can bid a power set ûs
 ú the assignment problem can become
exponential in the number of bids.ËIFlË�FKJ ^21'XpS�MKZ[S�S�O#MB>I1IS�Pt791'Q�S#Mp\�]'c:F

Multiattribute auctions re-
late to items that can be differentiated on several non-price attributes such as
quality, delivery date etc. In order to evaluate different offers for a item with
different attribute levels we need to appeal to multiattribute utility theory to
provide a tradeoff across these different attributes. One common approach as-
sumes preferential independence, and supposes that an agent’s valuation for a
bundle of attribute levels is a linear-additive sum across the attributes. Another
more general approach captures nonlinear valuations. It is also interesting to
consider both single sourcing, in which the buyer chooses a single supplier, and
multiple sourcing, in which there are multiple items to procure and the buyer
is willing to consider a solution that aggregates across multiple suppliers.

Let u denote the set of attributes of an item, with
Û 9 to denote the domain

of attribute = , and
Û ú Û �b&�ÿ]ÿ]ÿ & Û E denote the joint domain, with C úá�vuu� .

Consider a reverse auction setting, and write � � z Û | � and w � ûL;���z:| �
to denote the buyer’s valuation function and cost function of seller �Þ
}ù .

preferential-independence The valuation, � � ûL;:� úØ¥ 9 �nx � �9 ûL;¢9�� , where� �9 z Û 9 | � is the buyer’s valuation for attribute = . Similarly,
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w4�sûL;:� ú ¥ 9 �nx w4� º 91ûL;¢9�� , is the cost function of supplier � , for attribute
cost functions, w�� º 9 ûL;¢9#� . Consider a bidding language that captures pref-
erential independence. A bid, ûy]�� º �]þ]ÿ]ÿ]ÿ3þ6] � º E � , from supplier, � , defines
a price for attributes ;è
 Û in terms of a linear combination of prices on
each attribute, with ]���ûL;��Àú ¥ 9 �ax ]¢� º 9 ûL; 9�� .

non-linear preferences The valuation, � � ûL;���ú � ûL;���þ]ÿbÿz; E � , where � � zÛ | � . A common assumption is to treat price as being linear and
write the valuation as a quasi-linear function � � ûL;��Àú � ûL;��]þ]ÿbÿz; E � �4�4,Â� .
Similarly, w��sûL;:�PúÁÊ ûL;���þ]ÿbÿz; E � �4�Â,q� , is the cost function of supplier � ,
for attribute cost functions.

In the case of discrete attributes, the valuations can be enumerated for each
feature set and then used within a linear formulation as will become apparent
in the formulations developed below. For preferential independence, the eval-
uation can be done at ¥ E � Û � � where � Û � � is the number of levels for attribute� . For nonlinear and quasilinear value functions the evaluation has to be done
at
Û ú Û �¡&øÿ]ÿ]ÿ�& Û E levels and can become very large.GGM	]'r-XKPSGG\�1'O#Q/M	]�r!{	F

In a single-sourcing setting only a single winning
bid is picked to satisfy the demand. The winner-determination problem is���#�� � Db| º l�� � � �Ö� �9 �nx ����a} D ý � 9 � ûK� 9 � ,R] �­9 � �« ÿ­¬]ÿ ����a} D ý � 9 � Ü�£:�TþØ°��sþ<°Y=

� � �Ö� £ � Ü ýý � 9 � þ¤£:��
 î 2fþ�ý#ï
where ��
8~è9 indexes the level of attribute = , ] � 9 � is the ask price for level �
of attribute = from supplier � , and � 9 � the buyer’s reported value. A straightfor-
ward method to solve this problem computes the best attribute values for each
supplier, and then chooses the best supplier.

configurable offers: A more interesting setting is when the bid structure is
more expressive, and in addition to specifying markup prices for attribute levels
as in the preferential-independence bidding language, a supplier can provide
configuration rules to indicate which combinations of attributes is infeasible.
Similarly, promotions to encourage certain attribute levels can be specified as
rules. Propositional logic has been used to capture these rules and these rules
can be parsed into linear inequalities and added as side constraints to the win-
ner determination formulations.
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An interesting aspect of this setting is that even in the simple case of single

sourcing with a budget constraint, the identification of the optimal feature set
is NP-hard [BK02]. Consider the simplest setting where the buyer attempts to
identify the best configurations from a configurable offer from a single sup-
plier, subject to a budget-constraint, : . Identifying the best configuration can
be modeled as a variation of the multiple-choice knapsack problem [MT80].
Again, let ý 9 � ú ý indicate that level � of attribute = is selected. Let �.� de-
note the base price, for a base feature set, and � 9 � be the markup associated
with choosing level � for attribute = . Assuming an separable additive utility
function, then the optimal feature set can be identified as:

���#�� Db| º § �9 �ax ����0} D � 9 � ý 9 � ,³�« ÿ­¬]ÿ ����0} D ý 9 � ú�ý�þ±°Y= 
�u
�9 �nx ����0} D � 9 � ý 9 � À����¿Üv��ÙÜK: þý 9 � 
 î 2fþ�ý#ïfþØ°Y=5þ¢�

Bichler et al[BKL02] provide a detailed discussion of this configurable of-
fers problem with multiple sourcing and other side constraints.^21'XpS�MKÍ�XpP�GG\�1'O�QRM	]�r'F

There are settings where it might be necessary
to source to more than one supplier either because none of the suppliers are
large enough to satisfy the demand or business rules may requires a minimum
number of suppliers. Let

Û
denote the buyer demand and let ;�� denote the

supply of seller � . We will use the same notation as for the single sourcing case.
If the bids are divisible then identifying the optimal bids is straightforward -
the bids are sorted in descending order of value � �� ûy] �+� and the optimal set of
bids are picked from this sorted list until ¥ � ;Ö�²ú Û . Notice that the last bid
may be chosen fractionally.

However, if the bids are indivisible then the winner determination problem
reduces to a knapsack problem and becomes NP-hard. The winner determina-
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tion problem can be written as follows:���#�� � Db| º l�� � � �Ö� �9 �nx ����a} D ý � 9 � ûK� 9 � ,R] �­9 � �« ÿ­¬]ÿ ����a} D ý � 9 � Ü�£:�TþØ°��sþ<°Y=

� � ��� ; � £ � ú Ûý � 9 � þ¤£:��
 î 2fþ�ý#ï
In practice it might be more realistic to impose an acceptable range for the

demand. An interesting variation that emerges in multiattribute, multi-sourcing
setting is the homogeneity constraint that requires that all selected bids have the
same value for some attribute (say color). In order to capture such requirement
we introduce an indicator variable J 9 � that takes a value 1 if any bids are chosen
at level � for attribute = . Let � 9 � denote the set of bids at level � for attribute= , then we can capture this requirement as follows:

J 9 � Ü �� ��� D�| ý � 9 � Ü�� � 9 � �aJ 9 � °Y=5þ¢�
2�Ü � � J 9 � Ü-ý¦°Y=5þ¢�

Notice that these constraints have to be applied for each attribute level. The
reader is referred to Bichler and Kalagnanam [BK02] for more details.ôc¿L� � Ç8ØxÉmÂ8Ð ØfØ�� Ç�òTÐ�Ø ÎÀØS�|É�Æ�Ð ô�ÅoÂ�Ø®ÃxÄxÎ¨ÉmÂoÃxØ

In a real world setting there are several considerations beside cost mini-
mization. These considerations often arise from business practice and/or op-
erational considerations and are specified as a set of constraints that need to
be specified while picking a set of winning suppliers. Recent work [DK01],
[SSGL01b], [SS01a] [BK02] in this area provides a comprehensive overview
of the constraint types that are possible. We discuss some of the main con-
straint classes here:

Budget Limits on Trades A common constraint that is often placed is a up-
per limit on the total volume of the transaction with particular supplier.
These limits could either be on the total spend or on the total quantity
that is sourced to a supplier. These types of constraints are largely mo-
tivated (in a procurement setting) by considerations that the dependency
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on any particular supplier is managed. Similarly, often constraints are
placed on the minimum amount or minimum spend on any transaction,
i.e. if a supplier is picked for sourcing then the transaction should be of
a minimum size. Such constraints reduce the overhead of managing a
large number of very small contracts.

Marketshare Constraints Another common consideration especially in situ-
ations where the relationships are longterm is to restrict the market share
that any supplier is awarded. The motivations are similar to the previous
case.

Number of Winning Suppliers An important consideration while choosing
winning bids is to make sure that the entire supply is not sourced from
too few suppliers, since this creates a high exposure if some of them are
not able to deliver on their promise. On the other hand, having too many
suppliers creates a high overhead cost in terms of managing a large num-
ber of supplier relationships. These considerations introduce constraints
on the minimum, û)�s� � , and maximum, û���� � , number of winning sup-
pliers in the solution to the winner determination problem.

Representation Constraints These specify requirements such as at least one
minority supplier is included in the set of winners. A generalization is to
specify the number of winners that are required from different supplier
types.

Homogeneity Constraints Multi-sourcing for multiattribute items requires spe-
cial consideration when picking winners. A common constraint is to
specify that all the winning bids must have the same value for some
attribute/s. For example, if chairs are being bought from 3 different sup-
pliers for an auditorium, then it is important that the color for all chairs
be the same. Such constraints can be generalized to allow selection of
winning bids such that for an attribute of interest all bids have values
adjacent to each other.

These requirements can be modeled as side constraints within the formula-
tion for the winner determination problems that we have outlined above. How-
ever the specific form of these side constraints depends on the market structure.
We will not provide formulations for the side constraints for each of the set-
tings, instead illustrate these in the context of specific setting in Section 4.

The interesting aspect of these constraints is how they impact the computa-
tional complexity of the winner determination problem. Two constraint classes
are most interesting from this point of view since introducing these constraints
into any setting transforms the problem into a computationally hard problem.
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Budget Constraints with integrality requirements for the choice of bids
leads to a knapsack type constraints and lead a NP-hard problems.

Minimum/Maximum number of winning supplier requirements intro-
duce integral counts (for those suppliers who have winning bids versus
those who do not) and lead to a set-cover type of constraint that make
winner determination NP-hard.ôc¿�� Á
Â�Æ�É�ÄxÐ�È¤Ã��DÐ�÷oÐ�òTÎ¬ÃÕÉTÅoÂ @ Ð È-A|Î¨Â�É�ØxÏ�Ø

The revelation principle is very useful in the economic design of mecha-
nisms and intermediaries. It focuses attention on incentive-compatibility and
equilibrium implementation, and allows the mechanism design problem to be
expressed as a well-formulated optimization problem. The main strength of
the revelation principle is its ability to hide implementation and computational
issues while performing economic design. In situations in which there exists
a computationally-reasonable direct implementation of the mechanism, with
good computational properties for both agents and the mechanism infrastruc-
ture, this can work very well.

However, in other cases it is necessary to implement an indirect implemen-
tation of the direct-revelation mechanism. An indirect mechanism does not
require that every agent provides complete and exact information about its val-
uation over all possible outcomes, but instead can allow an agent to reveal
preference information as necessary, along the equilibrium path. This is impor-
tant when the direct-revelation mechanism places unreasonable computational
requirements on agents (agents must compute their complete preferences), or
unreasonable communication requirements (agents must report their complete
preferences), or unreasonable computational requirements on the mechanism
infrastructure (the mechanism must implement the allocation rules and pay-
ment rules based on revealed types). Indirect mechanisms have an additional
benefit of decentralizing the strategic computation to agents. Although the
strategy space is more complex in an indirect mechanism, the rules that map
strategies to outcomes are often simpler than in a direct mechanism.5

Examples of indirect mechanisms include ascending-price auctions, in which
agents submit bids in responds to prices and the auctioneer maintains prices
and a provisional allocation, and commodity exchanges that post a current
clearing price and allow buyers and sellers to submit bids and asks. The En-
glish auction, which is an indirect implementation of a Vickrey auction. In a
Vickrey auction every agent must determine and reveal its value for the item
in equilibrium. In progress is made in the English auction as long as any two

5Recall that the revelation principle itself follows from a thought experiment in which the mechanism plays
strategies for agents and simulates internally an indirect mechanism.
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agents bid at the current price. An agent without the highest value simply needs
to leave the auction when the price gets too high, and can compute this strategy
with an upper-bound on its value and without an exact value for the item. These
ideas were first considered by Parkes et al. [Par99b] and have received recent
attention in the economics literature [CJ00]. Section 3.5 describes a general
primal-dual methodology that can be useful to design indirect mechanisms,
such as extensions of the English auction to combinatorial auction settings.

In this section we describe a general methodology to derive iterative auc-
tions, e.g. ascending- and descending-price auctions, which leverages a funda-
mental connection between linear programming, competitive equilibrium, and
the VCG mechanism.

1 Assume myopic best-response strategies. Formulate a linear program
(LP) for the efficient allocation problem. The LP should be integral, such
that it computes feasible solutions to the allocation problem, and have
appropriate economic content. This economic content requires that the
dual formulation computes competitive equilibrium prices that support
the efficient allocation, and that there is a solution to the dual problem
that provides enough information to compute VCG payments.6

2 Design a primal-dual algorithm that maintains a feasible primal and
dual solution, and terminates with solutions that satisfy complementary-
slackness conditions and also satisfy the any additional conditions nec-
essary to compute the VCG payments. The algorithm should not assume
complete access to agent valuations, but rather access to a myopic best-
response oracle that responds with a payoff-maximizing allocation given
prices.

This primal-dual methodology has been used to develop auctions for the
assignment problem [DGS86], combinatorial auctions [PU00a, PU02], mul-
tiattribute auctions [PK02], multi-unit auctions [BdVSV01], and shortest-path
problems [BdVSV01]. Myopic best-response by agents to a sequence of prices
provides enough information to implement primal-dual algorithms that com-
pute efficient allocations. Terminating with the VCG payments makes the
auctions indirect implementations of the VCG mechanism, and provides use-
ful equilibrium properties. Myopic best-response becomes a game-theoretic
equilibrium, such that there is no better strategy for an agent whatever the

6The agents-are-substitutes is a sufficient condition [BO02], in which the CE prices that maximize the total
payoff to agents on one-side of the market support the VCG payments to those agents. But the primal-
dual methodology does not require that a single dual solution exists that simultaneously supports the VCG
payments to every agent. Instead, it is necessary that the VCG payment to each agent is supported in some
dual solution. When this condition holds then the universal-CE price condition is sufficient and necessary
to be able to compute VCG payments from a dual solution [PU02].
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preferences of other agents, so long as the other agents also follow myopic
best-response [GS00, PU02]. This ex post Nash equilibrium is a useful solu-
tion concept because agents can play the equilibrium without any information
about the types of the other agents. All that is required is that the other agents
are rational, and play equilibrium strategies.ËIF4�IFKJ mVUIZbd}Í�XKP�{��ta'Pám(]'r-X	MKc�a�7T1'Q�S�MK\�]þF

To illustrate the
primal-dual methodology, we derive the English auction, which is an efficient
and strategyproof auction for the single-item allocation problem. Let �Y� denote
agent � ’s value for the item. The efficient allocation problem is:

���#�� � � � ���pý�� [IP ¹B�v� ´�� � ]« ÿ­¬]ÿ � � ý � Ü ýýb��
 î 2fþ�ý#ï
where ý���ú�ý if and only if agent � is allocated the item, i.e. the goal is to
allocate the item to the agent with the highest value. [LP ¹B�v� ´�� � ] is an integral
linear-program formulation with suitable economic properties.

���#�� �	º l � � ���pý�� [LP ¹B�v� ´�� � ]« ÿ­¬]ÿ � � ýb�¾Ào£³Ü ýýb��Ü ý�þ±°-�ý��Gþ¤£³¯w2
Variable, £N¯!2 , is introduced, with £ ú ý indicating that the seller decided to
make no allocation. The dual formulation, [DLP ¹B�v� ´�� � ], is:

� ëHì§ º 	 � ��À � � Ú¾� [DLP ¹B�v� ´�� � ]« ÿ­¬]ÿ Úb�6¯w�#�G,³� þØ°���Ù¯ 2�kþ�Úb�6¯ 2
in which dual variable, �e¯_2 , represents the price of the item. Given a price,� , the optimal values for Ú�� are Ú-ú � �#��û	2fþ¤���Þ,���� , which is the maximal
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payoff to agent � at the price. The CS conditions are:

� ç 2_� � � ý��¾À�£}ú�ý (CS-1)Úb� ç 2_�¦ýb��ú�ý�þ °�� (CS-2)ý�� ç 2_� Ú¾��ú"���G,³�kþØ°-� (CS-3)£ ç 2_�1� ú�2 (CS-4)

In words, if the price is positive then the item must be allocated to an agent by
(CS-1) and (CS-4); the price must be less than the value of the winning agent
by (CS-3) and feasibility û	Ú}¯w2~� ; and the price must be greater than the value
of all losing agents, so that Ú-�kú�2 for those agents (CS-2).

The English auction maintains an ask price on the item, initially equal to
zero. In each round an agent can bid at the current price or leave the auction.
An agent’s myopic best-response (MBR) strategy is to bid while the price is
less than its value. As long as two or more agents bid in a round, the ask price is
increased by the minimal bid increment, � . An agent is selected from the agents
that bid in each round to receive the item in the provisional allocation. The bid
from the agent in the provisional allocation is retained in the next round. The
auction terminates as soon as only one agent submits a bid. The agent receives
the item for its final bid price.

We have just described a primal-dual algorithm. The ask price defines a fea-
sible dual solution, the provisional allocation defines a feasible primal solution.
The CS conditions hold when the auction terminates, and the final allocation
is an optimal primal solution and efficient. Suppose the provisional allocation
assigns the item to agent x� . Construct a feasible primal solution with £�ú 2 ,ý M� ú�ý and ý���ú_2 for all ��>ú x� . Given ask price, ���ñ¹B� , consider a feasible dual
solution with � ú"���ñ¹B� . This is feasible as long as �)�ñ¹B�V¯%2 , with the optimal
dual solution given this price completed with payoffs, ÚG��ú����#�kû	2fþ¤���G,³��� .

Conditions (CS-1,CS-3) and (CS-4) are maintained in each round. Condi-
tion (CS-2) holds on termination, because Ú��.ú 2 for all agents except the
winning agent, otherwise another agent would have bid by MBR. The English
auction also terminates with a price that implements the Vickrey payment. The
optimal dual solution, or CE prices, that maximizes the payoff to the winner
across optimal solutions, sets �ñúÎ���#� ��¼½ ��� � � where �<j is the agent with the
highest value. This is the payment by the winner in the equilibrium of the
VCG mechanism in this setting, which is the second-price sealed-bid (Vick-
rey) auction. The English auction terminates with an ask price, � j , that sat-
isfies ��j�¯ö� �#� ��¼½ �4� ��� and ��j�,�� ß ���#� �+¼½ �4� , and implements the Vickrey
outcome as �V| 2 . In this simple auction this is sufficient to make MBR a
dominant strategy for an agent, but in more general settings, such as combi-
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natorial auctions, it is sufficient to make MBR an ex post Nash equilibrium
[PU02].ôc¿�� Á
ÂPÃ
Ð�ÄxÎÀÈ¤ÃxÉTÅPÂ�Ø�ù�Ð�Ã Ò ÐkÐ¬Â ô�ÅPÏöõ�Ç|ÃfÎ¬ÃxÉTÅPÂ+Î¨Â�Æ
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Limited computational resources, both at agents and within the mechanism

infrastructure, and limited communication bandwidth, can often necessitate the
introduction of explicit approximations and restrictions within mechanism and
market designs, or at least careful design to provide good computational prop-
erties in addition to good economic properties. Introducing approximations,
for example to the allocation rule in a mechanism, can fundamentally change
the economic properties of a mechanism. For example, many approximations
to the functions y�����û<;�� in the Groves mechanism payment and allocation rules
break strategyproofness. We focus in this section on interactions between com-
putational considerations and incentive considerations in mechanism design.
Just as classic mechanism design introduces IC constraints to restrict the space
of feasible mechanisms, computational constraints further restrict the space of
feasible mechanisms. We divide our discussion into the following areas:

strategic complexity how much computation is required by agents to com-
pute the game-theoretic equilibrium of a mechanism?

communication complexity how much communication is required between
agents and the mechanism to implement the outcome of the mechanism?

valuation complexity how much computation is required by agents to com-
pute, or elicit, enough information about their type to be able to compute
the game-theoretic equilibrium?

implementation complexity how much computation is required to compute
the outcome of a mechanism from agent strategies?

In addition to identifying tractable special cases, for example for a subset
of a larger type space, and developing fast algorithms, computational consid-
erations often make it necessary to impose explicit constraints, for example
to restrict the expressiveness of a bidding language or to restrict the range of
outcomes considered by the mechanism.ËIF� �FKJ G-S�O�Z[S�P/r�MKQ¢¡t\�deÍ6XKPHU�MHS¤£¾F

The strategic complexity of a is the
complexity of the game-theoretic problem facing an agent. Mechanism design
uses a rational model of agent behavior, in which agents compute and play
equilibrium strategies given information about the mechanism and given be-
liefs about the preferences, rationality, and beliefs of other agents. But agents
must be able to compute equilibrium strategies to play equilibrium strategies,
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or at the least the mechanism designer must be able to compute equilibrium
strategies and provide a certificate to allow agents to verify that strategies are
in equilibrium.

Although the general question of how complex it is to construct a Nash equi-
librium in a game remains open [Pap01] a number of hardness results have
been established for computing equilibria with particular properties [GZ89].
Given this, it is important to consider the strategic complexity of the particular
non-cooperative game induced by a mechanism, and for the appropriate solu-
tion concept, such as Bayesian-Nash or dominant strategy. We choose to focus
on strategic complexity in incentive-compatible DRMs, which are the mecha-
nisms for which issues of strategic complexity have received most attention.

A first approach is to design mechanisms with tractable strategic problems,
such as the class of strategyproof mechanisms in which truth-revelation is a
dominant strategy equilibrium and optimal for every agent irrespective of the
types and strategies of other agents. Most work in algorithmic mechanism de-
sign [NR01] focuses on this class of strategyproof mechanisms and addresses
the remaining problems of communication complexity and implementation
complexity.

A second approach is to perform mechanism design with respect to explicit
assumptions about the computational abilities of agents, such as restricting
attention to mechanisms with polynomial-time computable equilibrium. For
example, Nisan & Ronen [NR00] introduce the concept of a feasible best-
response, which restricts the strategies an agent in computing its best-response
to a knowledge set, which can be a subset of the complete strategy space.
Mechanism analysis is performed with respect to a feasible-dominant equi-
librium, in which there is a dominant-strategy in the restricted strategy space
defined by agent knowledge sets. In other work, combinatorial exchange mech-
anisms (see Section 4.6) are proposed that make small deviations away from
truthfulness unbeneficial to agents [PKE01b], and the mechanism design prob-
lem has been considered with respect to an � -strategyproofness [Sch01].

It is interesting that limited computational resources can be used as a pos-
itive tool within mechanism design, for example designing mechanisms in
which the only computable equilibria are “good” from the perspective of system-
wide design goals. As an example, the problem of strategic manipulation in
voting protocols is known to be NP-hard [Bar89], and it is possible to use ran-
domization within a mechanism to make manipulation hard without making
the implementation problem for the mechanism hard [CS02a].ËIF� �FlE ¡t\�ded¥16]'MKQ/Z[S�MK\-]K¡t\�d}Í�XKP¦U�MpS¤£¾F

The communication com-
plexity of a mechanism considers the size of messages that must be sent be-
tween agents and the mechanism to implement the outcome of a mechanism.
To motivate this problem, recall that mechanism design often makes an ap-
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peal to the revelation-principle and considers direct mechanisms. However,
direct mechanisms require agents to report complete and exact information
about their type, which is often unreasonable in problems such as combina-
torial auctions. In the worst-case the VCG mechanism for a combinatorial
auction requires each agent to submit � E numbers, given C items, to report
its complete valuation function.

A first approach to address the problem of communication complexity is
to implement indirect mechanisms (see Section 3.5), which do not require the
complete revelation of an agent’s type. Instead, an agent must report its strat-
egy to the mechanism along the equilibrium path. As an example, whereas
the VCG mechanism for a combinatorial auction requires complete revelation
of an agent’s valuation function, an agent must only provide best-response bid
information in response to prices in an ascending-price combinatorial auction.
Although all mechanisms have the same worst-case communication complex-
ity in the combinatorial auction setting [NS02], indirect mechanisms reduce
the communication required in many instances of the problem [Par01, chapter
8].

A second approach introduces compact representations of agent preferences
via the careful design of bidding languages (see Section 3.1). Nisan [Nis00]
notes a tradeoff between the compactness of a language, which measures the
size of messages required to state an agent’s preferences, and the simplicity
of a language, which considers the computation required to evaluate the value
of any particular outcome given a message in the language. At one extreme,
one could allow agents to submit valuation programs [Nis00], that provide the
mechanism with a method to compute an agent’s value for an outcome on-the-
fly, as demanded by the implementation of the mechanism. Valuation programs
can be useful when the method used to compute an agent’s valuation for differ-
ent outcomes can be described more compactly than an explicit enumeration
of value for all possible outcomes. However, in practice, valuation programs
require considerable trust, for example that a program is faithfully executed by
a mechanism and that valuable and sensitive information is not shared with an
agent’s competitors.

A third approach is to restrict the expressiveness of a bidding language
within a mechanism to provide compactness. In restricting the expressiveness
of a bidding language it is important to consider the effect on the equilibrium
properties of a mechanism [Ron01]. For example, a VCG-based mechanism in
which agents are restricted to bidding on particular bundles can prevent truth-
ful bidding and break strategyproofness. Monderer et al. [MT01] describe
necessary and sufficient conditions on the structure of bundles in the language
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to maintain strategyproofness7 and an ex post no-regret property that states that
at termination no agent wants to provide any information about its value that
was not already permitted within the language. Related work has considered
mechanism design within a class of mechanisms in which severe bounds are
imposed on the amount of communication permitted between agents and the
mechanism [BN02].ËIF� �F�Ë § ZbXL1�Z¾S�MK\-]¨¡t\�deÍ6XKPHU�MHS¤£¾F

The valuation complexity of a
mechanism considers the complexity of the problem facing an agent that must
determine its type. There are many settings in which it is costly to provide
complete and exact information value information, for all possible outcomes.
This valuation cost can arise for computational reasons [San96], for example
in a setting in which an agent’s value for a particular procurement outcome is
the solution to a hard optimization problem. Consider a logistics example, in
which a firm seeks to procure a number of trucks to deliver goods to its cus-
tomers. The value that the trucks bring to the firm depends on the value of the
optimal solution to a truck scheduling problem. This valuation cost can also
arise for informational reasons, because an agent must elicit preference infor-
mation from a user to determine the value for a particular outcome [AM02].

Indirect mechanisms provide one approach to address the problem of val-
uation complexity. Unlike an incentive-compatible DRM, in which an agent
must compute and provide complete information about its preferences to the
mechanism, an agent can often compute its optimal strategy in an ascending-
price auction from approximate information about preferences. Indirect mech-
anisms allow incremental revelation of preference information through agent
bids, with feedback through prices and provisional solutions to guide the val-
uation computation of agents [Par01, chapter 8]. One can imagine that prices
in an ascending-price auction structure a sequence of preference-elicitation
queries, such as “what is your best-response to these prices?” When my-
opic best-response is an equilibrium, and when agents play that equilibrium,
then each response from an agent provides additional information about an
agent’s preferences, refining the space of preferences that are consistent with
the agent’s strategy.

Experimental results demonstrate the advantages of indirect over direct mech-
anisms for a model of the valuation problem in which an agent can refine
bounds on its value for bundles during an auction [Par99b, Par01]. Related
work presents experimental analysis to compare the preference-elicitation costs
of different schemes to elicit agent preferences in indirect implementations of
combinatorial auctions [CS01, HS02]. Recent theoretical results demonstrate

7Truth-revelation is defined as a bid in which an agent reports value © � ¨ ÿ ª ½«ª �b¬®­O¯±°0­ © � ¨ ÿq² ª for all
bundles ÿ permitted in the language.
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the benefits of indirect vs. direct auctions in the equilibrium of a single-item
auction, with a simple valuation model and agents that can choose to refine
their valuations during the auction [CJ02], and derive necessary and sufficient
conditions on information about agent preferences to be able to compute the
VCG outcome in a combinatorial auction [Par02].ËIF� �F±³ < d}Í�XKPRdePY]-S�Z[S�MK\�]«¡t\�d}Í�XKP¦U�MpS¤£¾F

The implementation com-
plexity of a mechanism considers the complexity of computing the outcome of
a mechanism from agent strategies. For example, in a DRM this is the com-
plexity of the problem to compute the outcome from reported agent values. In
an indirect mechanism this is the complexity to update the state of the mech-
anism in response to agent strategies, for example to update the provisional
allocation and ask prices in an ascending-price auction. We choose to focus on
the issues of implementation complexity in direct mechanisms, which are the
mechanisms in which this has received most attention.

One approach is to characterize restrictions on the type space in which the
implementation problem is tractable. For example, the winner-determination
problem in the VCG mechanism for a combinatorial auction can be solved in
polynomial time with particular assumptions about the structure of agent val-
uations [RPH98, TKDM00, dVV02]. A number of fast algorithms have also
been developed to solve the winner-determination problem in combinatorial
auctions, even though the problem remains theoretically intractable [SSGL01a,
FLBS99, ATY00]. Recent experimental work illustrates the effectiveness of
embedding the structure of agent valuations within mixed-integer program-
ming formulations of the winner-determination problem [Bou02].

Sometimes it is necessary to impose explicit restrictions and approximations
in order to develop a mechanism with reasonable implementation complexity
[NR01]. This problem is interesting because introducing approximation al-
gorithms can often change the equilibrium strategies within mechanisms. For
example, the strategyproofness of the VCG mechanism relies on the optimality
of the allocation rule. Recall that the utility to agent � in the Groves mechanism
is:

*b�sû	�/��ú"���mûpy¤û�x���Tþ¾x� � �+�aþ������GÀ � 9�¼½ � �Ö91ûpy¤ûRx���mþ[x� � �+�aþ[x�49#�6,}»[�sû<;��
where x� are reported types, y"û<;�� is the efficient allocation rule, and »G�sû<;�� is an
arbitrary function of the announced types of the other agents. Truth revelation,x���oúö��� , maximizes the payoff of agent � , so that the mechanism implementsy¤û	� � þ x�~� � � , and maximizes the sum of the first two terms. Now, with an approx-
imate solution, xy�û<;�� , in place of y"û<;�� , and information about the reported types,
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x� � � , of the other agents, the agent should announce a type, x��� , to solve���#�M�<� �a´ � �#�sû��¤þ�������À � 9#¼½ � ��91û��¤þ¾x��9��« ÿ­¬]ÿ ý ú xy¤û x���Gþ x� � ���
The agent chooses its announced type to correct the error in the approximation
algorithm, xy"û<;�� , and improve the choice made with respect to its true type and
the reported types of the other agents.

It is useful to retain strategyproofness, but allow for a tractable approxima-
tion to the efficient function, y¤û<;�� . Nisan & Ronen [NR00] derive necessary
and sufficient conditions for VCG-based mechanisms to maintain the useful
property of strategyproofness.8 Let µ.ûpy=þ � � denote the range of the allocation
algorithm used within a VCG-based mechanism, i.e. �}
¶µ.ûpy=þ � �A· ¸Y�Ù
� « ÿ­¬]ÿ xy�û	�/�}ú � . A VCG mechanism is maximal-in-range if the algorithm,xy"û<;�� satisfies: xy"û	�/��úØ� �#���� & ¨ MÕ4ª � � ����û��¤þ������aþØ°-��
Ù�
When this property holds, there is nothing that an agent can do to correct the
approximation error, because this would require changing the range of the al-
gorithm.

Nisan & Ronen use this characterization to demonstrate a negative result for
the performance of any range-restricted variation on the VCG mechanism. One
can show that any truthful and tractable VCG mechanism for the combinatorial
auction must have unreasonable worst-case allocative-efficiency, by construct-
ing a set of preferences for which the efficient allocation is outside the range of
the mechanism and that all allocations inside have low values. However, this
worst-case bad performance may not be very important in practice, especially
in a setting in which the range is carefully selected to provide good perfor-
mance in most instances that occur in practice. From a positive perspective,
the sufficiency of maximal-in-range provides a powerful constructive method
to build truthful mechanisms with tractable implementation problems: choose
a range of outcomes; provide agents with a bidding language that is expressive
enough to state their preferences across outcomes in the range; and implement
an optimal algorithm with respect to the bidding language and the range.

A number of interesting tractable and strategyproof mechanisms have been
suggested for problems in which the full VCG mechanism is intractable. Lehmann
et al. [LOS99] propose a truthful and feasible mechanism for a combinatorial

8The condition, maximal-in-range, implies the axiom of 1-efficiency introduced by Tennenholtz et al.
[TKDM00] in related work.
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auction problem with single-minded bidders, each with value for one partic-
ular bundle of items. The optimal winner-determination problem remains in-
tractable, even in this single-minded setting. Gonen [BGN02] proposes a truth-
ful and feasible mechanism for the multi-unit allocation problem, and without
making any assumptions about agent preferences.

Another idea to address implementation complexity distributes computa-
tion across the agents that participate within a mechanism. For example, con-
sider providing agents with an opportunity to provide better solutions to the
winner-determination problem [RPH98, Bre99]. Recent work in theoretical
computer science, in the broad area of distributed algorithmic mechanism de-
sign [FPS01], considers the computational and communication complexity of
distributed implementations of mechanisms. Broad research goals include de-
veloping appropriate notions of hardness and complexity classes, and design-
ing mechanisms with good distributed computational properties and good in-
centives [FKSS01, FPSS02]. A key challenge when computation is distributed
across participants is to make sure that it is incentive-compatible for agents to
implement the algorithm truthfully. This extends the consideration of truthful
information revelation, present in classic mechanism design, to also require
incentives for truthful information processing and computation.�|¿ �¿õ9Ð È�É�¹�È%@ ÎÀÄÕÔ²Ð�Ãw@ Ð�È�A8Î¨Â�É�ØxÏÑØ

In this section we pick a few mechanisms that are interesting, both from a
practical point of view and because they illustrate some of the emerging re-
search directions in the design of electronic auctions, markets and intermedi-
aries. Many of the mechanisms are indirect, with agents providing progressive
information about their types and information feedback from the mechanism to
guide agent strategies. This observation reinforces the importance of indirect
mechanisms in practice. Many of the mechanisms are also implementations
of VCG mechanisms, or variations on the VCG mechanism, which serves to
highlight the continued importance of Groves mechanisms in the design of
practical mechanisms.�|¿m¾ ô�ÅoÏáù�ÉmÂ8Î¬ÃfÅ²Ä=ÉTÎ¨òeÌ Ç�È¤ÃxÉTÅPÂ�Ø

Combinatorial auctions are characterized by the ability for agents to submit
bids on bundles of items. This can be important in settings in which items are
complements, e.g. “I only want \ if I also get : ,” because bundle bids allow
agents to express explicit contingencies across items. The applications of com-
binatorial auctions are numerous, including procurement [HRN02], logistics
[LOP � 00, EK02], and in resource allocation settings [McM94, RSB82]. Letú denote a set of discrete items and ù denote a set of agents. Each agent has a
valuation, �:��û+ûþ�¿¯w2 , for bundles û�
!ú and quasilinear utility functions. The
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efficient mechanism design problem has received the most attention, and no
general solution is known for the optimal (revenue-maximizing) combinatorial
auction.

The VCG mechanism provides an efficient sealed-bid auction, in which
agents submit reported valuation functions in a single-shot auction. Given
a suitably expressive bidding language, which allows agent � to describe its
valuation, �:� , this is an efficient and strategyproof solution. However it is of-
ten unreasonable to expect agents to provide valuations on all possible bun-
dles of items. The valuation problem for a single bundle can often be time-
consuming, and more difficult to automate than other processes such as winner-
determination and bidding.

Given these objections to one-shot combinatorial auctions there has been
considerable interest in the design of iterative combinatorial auctions, which
can reduce the valuation work required by agents because optimal strategies
must only be computed along the equilibrium path of the auction. Proposals
for iterative auctions can be described along the following two directions:

bidding language Auctions such as RAD [DKLP98] and AUSM [BLP89] al-
low participants to submit additive-or bids, while other auctions [Par99a,
PU00a, GS00, AM02] allow participants to submit exclusive-or bids.

information feedback Auctions such as AUSM, the proposed FCC combi-
natorial auction #31, and the Chicago GSB auction, provide linear-price
feedback along with the provisional allocation. Auctions such as iBundle
and A � BA provide non-linear price feedback along with the provisional
allocation, and iBundle can introduce dynamic non-anonymous pricing.
Other proposals, such as RAD and an ascending-proxy design [AM02]
are described without explicit price feedback.

Early theoretical results exist for particular restrictions on agent valuations,
including unit-demand preferences [DGS86, Ber88], in which each agent wants
at most one item, and gross-substitutes preferences [KC82, GS00], which is
a technical condition that captures a wider class of preferences but still ex-
cludes synergies across items. Recently, an efficient auction, iBundle [Par99a,
PU00a], has been developed for buyer-submodular preferences9 , which is a
slightly weaker condition than gross-substitutes. Myopic best-response (MBR)
is a game-theoretic equilibrium in iBundle with buyer-submodular preferences
[AM02]. A simple extension, iBundle & Adjust [PU00b, Par01], brings MBR
into equilibrium for the slightly wider class of agents-are-substitutes prefer-
ences.10 iBundle Extend & Adjust (iBEA) extends the auction for a few ad-

9Let º ¨¼»Yª denote the value of the efficient allocation to agents » � � . Buyer submodular requires º ¨¼»Yª �º ¨±»�½ } ª�¾À¿ �[Á®Â�Ã º ¨¼»Yª � º ¨±»Ä½ � ª[Å , Æ }8Ç » , and all » � � .
10Agents-are-substitutes preferences require º ¨ � ª � º ¨ � ½ } ª�¾ ¿ �[Á�Â�Ã º ¨ � ª � º ¨ � ½ � ª±Å º Æ }8Çà� .
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ditional rounds to provide enough information to compute VCG payments,
which are implemented at the end of the auction as a discount from the final
prices. MBR is an equilibrium of iBEA for all agent preferences, even when
agents-are-substitutes fails.

Subsequently to iBundle, Ausubel & Milgrom [AM02] have described a
proxy-agent variation, in which bidders must submit preferences to proxy agents
that submit ascending bids to an auction. The auction implements the outcome
in iBundle for reported valuations to the proxy agents. An interesting equilib-
rium analysis demonstrates the importance of a bidder-monotonicity property,
which is satisfied by equilibrium outcomes in the ascending-proxy auction but
not satisfies by the VCG mechanism. Bidder-monotonicity, which requires
that the revenue to the auctioneer must increase when the number of agents
increases, provides robustness against joint deviations and shill bidding by
agents. However, whenever values are not buyer-submodular there are many
equilibrium in ascending-proxy, and agents must solve an implicit bargaining
problem to implement equilibrium outcomes.

Many iterative combinatorial auctions [Ber88, DGS86, PU00a, BdVSV01]
can be interpreted within the primal-dual design methodology described in
Section 3.5. The iBundle auction implements a primal-dual algorithm for a hi-
erarchy of LP formulations for the combinatorial allocation problem [BO02],
each of which enriches the price space through the introduction of additional
primal variables and constraints.³�F	J-FKJ ¡tZ¾c�PtG-Sn1.=!£ {YÈ¤@É1']!=�XpP�F

As an illustrative example we
describe iBundle(2), which is a simple variation of iBundle in which prices
are anonymous, and every agent faces the same price on every bundle. For the
purpose of this exposition we will assume MBR, but as discussed above, this is
in equilibrium strategy with additional assumptions about preferences, and can
also be brought into equilibrium through an extension to iBEA. The structure
for iBundle(2) is a single seller with multiple buyers where the seller is selling
multiple items to one or more bidders (multiple sourcing).

iBundle(2) is an ascending-price combinatorial auction, in which agents can
bid on arbitrary bundles of items. The auction maintains bundle prices and a
provisional allocation, which is computed to maximize revenue in each round,
given agent bids. The auction proceeds in rounds, indexed ÊÙ¯ ý . We de-
scribe the bids that agents can place and the rules that are used to compute the
provisional allocation and increase prices.

In each round an agent can submit exclusive-or bids for bundles, e.g. û+ûÞ��þ��ËÌ �vÍ�º � û+û'�4�¤� XOR û+û Ý þ	��ËÌ �vÍ�º � û+û Ý �¤� , to indicate than it wants either all items inû'� or all items in û Ý , but not both û�� and û Ý . The first bidding rule requires
that agents resubmit bids for bundles that they are winning in the current pro-
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visional allocation.11 The second bidding rule requires that all bid prices are
greater-than or equal to the ask price, except in a couple of special cases, when
the agent can take an � -discount. Ask prices on bundles are increased across
rounds to � above the highest bid from an unsuccessful agent, where � ç 2
is the minimal bid increment.12 An agent can repeat its bid at the same price
when bidding on a bundle that it is currently winning, even if the ask price has
increased.13 An agent can also bid at � less than the ask price when making a
“last-and-final” bid, which states that it will never increase its bid price on any
bundles in future rounds.14

The auction takes the bids in each round, and solves a winner-determination
problem, which computes the provisional allocation that maximizes the rev-
enue given agent bids. This winner-determination problem is formulated as a
weighted set-packing problem, subject to additional side-constraints to respect
agent XOR bid constraints.15 The auction terminates whenever every agent
that is still submitting a bid at, or above, the ask price receives a bundle in
the provisional allocation. Otherwise, prices are increased, the new allocation
and prices are provided as feedback to agents, and the auction continues. On
termination the provisional allocation becomes the final allocation, and agents
pay the final bid prices.

This iBundle(2) variation is efficient with MBR strategies for preferences
that induce bids that satisfy a technical condition of safety. Define agent � ’s
personalized price, ����û+ûþ� , as the ask price it faces in a particular round, which
can be � below the ask price when the agent takes an � -discount. Given this,
MBR requires that agent � submits bids for bundles in this set

i Î(Ï�Ð º ��ú î û z$����û+ûþ�Â,³� � �ñ¹B� û+ûþ�IÀ��¡¯w���#�ÿ ² ûK���mû+û g ��,q� � �ñ¹?� û+û g �aþ�2~�¢ï
This is the set of bundles that come with � of maximizing its payoff at the
current prices. Safety requires that whenever the agent is not successful in a
particular round, all the bundles on which it submitted a bid at or above the ask
price are non-disjoint. Preferences that induce safe bids in a MBR equilibrium
include agents with additive or superadditive valuation functions, and agents
with “required+” preferences, such that the agent builds bundles with positive
value around the same core set of required items [PU00a].

11One can strengthen this rule, and require that all bids submitted in previous rounds are maintained in a
single XOR bid set without changing the analysis of the equilibrium properties of the auction.
12An agent is successful whenever one of it is allocated a bundle in the provisional allocation. In this case
its bids on other bundles in its XOR bid set are not used to drive up prices.
13As a consequence of the winner-determination rules the current ask price cannot be more than Ñ , the
minimal bid increment, greater than the agent’s bid price.
14This is used as a technical device to implement the efficient allocation that includes bidders with very
small equilibrium payoffs. An equivalent implementation simply retains all bids from agents across rounds.
15These constraints can be handled in the set-packing formulation through the addition of dummy items to
represent each agent’s XOR bid.
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Given MBR and bid-safety, iBundle maintains feasible primal and dual so-

lutions to the following LP formulation, and terminates with solutions that
satisfy CS conditions. The proof technique is inspired by Bertsekas’ [Ber87]
analysis of the AUCTION algorithm for the assignment problem.

���#�� � ¨ ÿ ª º l ¨ � ª � ÿ � � ý�� û+ûþ�¸���»û+ûþ� [LP Ý ]« ÿ­¬]ÿ � ÿ ý � û+ûþ�¿Ü ý�þ °�� (LP Ý -1)

� � ý�� û+ûþ�¿Ü �� ��ÿ £�û��¾�aþ °Iû (LP Ý -2)

� � £"û��¾�¿Ü ý (LP Ý -3)ý � û+ûs�aþ¤£"û��¾�à¯w2fþ °��Kþ û�þ¢�
� ëlì	 �Kº §�¨ ÿ ª º Ò � � Ú¾�¾À�Ó [DLP Ý ]« ÿ­¬]ÿ¦Ú¾�¾ÀÙ��û+ûþ�¿¯���� û+ûþ�aþ °��sþ û (DLP Ý -1)

Ó", �ÿ �#� ��û+ûþ�¿¯w2fþ °�� (DLP Ý -2)Úb�Gþ	��û+ûs�aþQÓÁ¯w2fþ °��Kþ û
This formulation introduces auxiliary variables, £�û��¾� , where �8
�~ is a par-
tition of items in set ~ , and ~ is the set of feasible partitions, to strengthen
the LP relaxation in Section XX [BO02]. A feasible partition defines a feasible
“bundling” of items, e.g. 0 \ þQ: þ Ê�3 or 0 \V: þ Ê�3 , etc., are feasible partitions of
items \V:�Ê . Given partition � , we use �Ô��û to indicate that û is included
in partition � . Constraints (LP Ý -2) and (LP Ý -3) replace constraints (LP � -1)
xx check this from earlier xx, and ensure that no more than one unit of ev-
ery item is allocated. The dual [DLP Ý ] introduces variables Ú�� , ��û+ûþ� and Ó .
Variable, ��û+ûþ� , can be interpreted as the ask price on bundle û , and with sub-
stitution Úb�9ú � �#� ÿ î ���mû+ûþ�¡,���û+ûþ�aþ�2Rï , and Ó ú ���#� ���a} ¥�ÿ ��� �¬û+ûþ� , the
dual objective is to minimize the sum of the maximal payoff to each agent and
the maximal revenue to the auctioneer. Optimal dual prices correspond to CE
prices whenever the primal LP is integral.

The provisional allocation, xû , and ask prices, ���ñ¹?�Gû+ûs� , in each round define
feasible primal and dual solutions. To construct the primal, set ý'��û¾xû���� ú�ý
and ý � û+û g ��ú 2 for all û g >úØxû � , and set £�û x���8ú ý for x� ú 0�xû � þ]ÿ]ÿ]ÿ3þ�xû 
 3 , and£"û��¾�.ú 2 otherwise. To construct the dual, set ��û+ûþ�.ú �)�ñ¹B�Gû+ûþ� , and define
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Ú¾�²ú î 2fþ�� �#� ÿ ����,Ù��û+ûþ�¢ï and Ó ú ���#� � ¥_ÿ ��� �¬û+ûþ� .16 Let û�xÕ þ7xÖ � denote
this feasible primal-dual pair. The first primal CS condition is:ý�� û+ûþ� ç 2À� Ú¾�bÀ���û+ûs�Àú"��� û+ûs�aþ °��Kþ û (CS-1)

Given the values assigned to Ú-� in ( xÕ þ xÖ ), this is maintained throughout the
auction because a bundle is only allocated to an agent if an agent has bid for
that bundle, and agents bid for payoff-maximizing bundles in MBR. Formally,
for any bundle û that receives a bid from agent � : (i) �.�ñ¹?�Gû+ûs��,c�àÜ�� Ì �vÍ�º � û+ûþ�7Ü�×�ñ¹?�Tû+ûþ� ; (ii) ���mû+ûþ�Â,�� Ì �vÍ�º � û+ûþ�'À��$¯����#� ÿ ² î �#�mû+û g �Â,N� Ì �vÍ#º � û+û g �¢ï and ���mû+ûþ�þ,� Ì �vÍ�º � û+ûþ��¯á2 from MBR. We have ý-�mû+ûþ� ç 2�� ����û+ûs��,u�×�ñ¹?�Tû+ûþ�ÂÀS�0� ¯���#� î 2fþ6���#� ÿ ² î ����û+û g ��,U���ñ¹?��û+û g �¢ï:ï . Substituting for Ú�� and ���ñ¹?�Gû+ûs�_ú!��û+ûþ�
gives a relaxed formulation of (CS-1):ýb�mû+ûþ� ç 2�� Ú¾�¾ÀÙ��û+ûþ�¿Ü�����û+ûþ��À��0�]þ °��sþ û ( � -CS-1)

The second primal CS condition is:£�û��¾� ç 2��ØÓ�, �ÿ �#� ��û+ûs�Àú"2fþ °G� (CS-2)

This states that the allocation must maximize the auctioneer’s revenue at prices��û+ûþ� , over all possible allocations and irrespective of bids received from agents.
Recall that the provisional allocation is selected to maximize revenue given
bids, so we must show that the restriction to agents’ bids comes at no cost. The
following conditions hold during the auction:

(P1) All bundles with strict positive prices17 receive a bid from some agent in
every round.18

(P2) All bundles in allocations that solve Ó actually receive bids from differ-
ent agents.19

16Notice that it is not necessary to explicitly compute, 	 � . But, we use these values to establish the
complementary-slackness conditions.
17An ask price §OÙyÚ | ¨ ÿ ª is strictly positive if the price is greater than the ask price for every bundle contained
in ÿ , i.e. §�ÙyÚ | ¨ ÿ ª�Û¡§OÙyÚ | ¨ ÿ0² ª for all ÿ0² Ç ÿ .
18Agent � with one of the highest losing bid for bundle ÿ in round Ë will continue to bid for bundle ÿ in
rounds Ë � � . Let ÜÞÝ� ¨ ÿ ª denote agent � ’s payoff for bundle ÿ in round Ë . Then, Ü Ý±ß�à� ¨ ÿ ª ½ Ü�Ý� ¨ ÿ ª � Ñ
because the ask price for ÿ increases by Ñ . Also, Ü Ý� ¨ ÿ ª�¾ Ü Ý� ¨ ÿ ² ª for all bundles ÿ ² the agent did not bid
in round Ë . Hence, with Ü Ý� ¨ ÿ ² ª×¾ Ü Ý[ß�à� ¨ ÿ ² ª because the price of ÿ ² can only increase in round Ë ��� , we
have Ü Ý±ß�à� ¨ ÿ ª�¾ Ü Ý±ß�à� ¨ ÿ ² ª � Ñ and a bid for ÿ ² can never exclude a bid for ÿ from agent � ’s best-response
bids in round Ë ��� . A similar argument can be made for bundles that did not receive a bid from the agent
in round Ë .19This follows from the safety property, which prevents a single agent from causing the price to increase
to its current level on a pair of disjoint bundles. It is clear that this cannot happen in a single round.
Furthermore, it can be shown by induction across rounds that an agent with a myopic best-response bidding
strategy cannot increase the price of compatible bundles over a sequence of rounds without submitting
unsafe bids in a single round.
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From (P1) and (P2), we have:�ÿ � � M� � Ì �vÍ�º � û+û-�+�7¯w���#����a} �ÿ � �#� � Ì �vÍ#º � û+û����
and together with ���ñ¹B�Gû+ûþ��¯e� Ì �vÍ�º � û+ûþ� , � Ì �vÍ#º � û+ûþ��¯e�×�ñ¹B�Gû+ûþ�þ,¶� , and the defini-
tion of Ó , this gives a relaxed formulation of (CS-2),£�û��¾� ç 2À�áÓ", �ÿ �#� ��û+ûþ�7Üw� ëlì�î C þ��}ïÞ�]þ °�� ( � -CS-2)

because an allocation can include no more bundles than there are agents or
items. The first two dual CS conditions, ��û+ûþ� ç 2�� ¥� �Ö� ý � û+ûþ�¨ú ¥���a} º ÿ �#� £�û��¾�aþ °Gû
and Ó ç 2¢� ¥���0} £�û��¾�PúÑý are trivially satisfied because of the construction

of the feasible primal and dual solutions. The important dual CS condition,
(CS-3), states: Ú ��ç 2_� �ÿ�� � ý � û+ûþ�Àúõý�þ °�� (CS-3)

In words, every agent with positive utility for some bundle at the current prices
must receive a bundle in the allocation. This is satisfied in each round for
agents that receive bundles in the provisional allocation, and also holds for the
unsuccessful agents when the auction terminates because of MBR.

Finally, we can bound the worst-case error of the efficiency of iBundle.
First, sum � -CS-1 over all agents in the final allocation, and substitute Ú��¬ú`2
for agents not in the allocation by (CS-3). This gives� � �Ö� Úb�6Ü � � ��� �#�sû¾xû-�+�6, � � �nâ ��û¾xû-�+�GÀ���� ëlì-î C-þ��8ïÞ�
because an allocation can include no more bundles than there are items or
agents. Then, substitute � -CS-2, because £�û x�b�¨ú ý for the partition that corre-
sponds with the final allocation, xû , to give ÓêÜ ¥ � ��� ��û xû-�+��À � ëlì�î C-þ��8ïÞ� .
Adding these two equations, we have

Ó�À � � ��� Ú¾�ÂÜ � � ��� ���mû xû-���GÀ�ã�� ëlì-î C-þ��}ïÞ�
The LHS is the value of the final dual solution, � û xÖ � and the first-term on
the RHS is the value of the final primal solution, � ûþxÕ � . Let �tj denote the
value of the optimal primal solution by the weak duality property of linear
programs. Thus, because � û6xÖ �ÙÜ � û�xÕ ��ÀYã�� ëlì-î C-þ��8ïÞ� , then � ûIxÕ �Ù¯�Ðj:,Vã�� ëlì�î C-þ��8ïÞ� . As the minimal bid increment, �7| 2 , the primal solution
converges to the efficient allocation.
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In a multi-unit auction there is a set of ~ indivisible and homogeneous
items, and agents have valuations, � � ûK�Ù� , for �Ø¯ 2 units of the item. The
efficient auction design problem has received some attention. Looking beyond
the direct-revelation VCG mechanism for the problem, the challenge when
developing an iterative multi-unit auction is to avoid introducing an explicit
identifier for each item, which would reduce the problem immediately to the
combinatorial allocation problem. Instead, one would like to allow compact
bids, that indicate demand for different numbers of units, and at most ~ prices,
with prices for different numbers of units.

We will consider the forward auction problem, with one seller and multi-
ple buyers, and distinguish between two simple cases. Both cases can both
be solved with iterative auctions that maintain a single unit price. The first
case assumes unit demand preferences, in which each agent wants at most one
unit. The second case assumes marginal-decreasing valuations, and leads to
an innovative clinching auction [Aus97]. Both auctions have a direct imple-
mentation as primal-dual implementations of an appropriate LP formulation of
the allocation problem [BdVSV01].³�FHEIFKJ 5�]6MHSNLqPYdeZb].=ÞF

In the unit demand setting, an agent wants
a single unit of the good. This has a market structure of a single seller with
multiple buyers in a forward auction. The seller offers multiple identical units
of a single good and allows bids for a single unit. The available resources are
matched to multiple bidders and a single unit price is maintained.

Let ��� denote agent � ’s value for this unit. The following LP is integral,
and the solution to its dual corresponds to a competitive equilibrium price. Letýb��¯w2 denote the number of units assigned to agent � .� �#�� � � � ��� ýb�K�#�« ÿ­¬]ÿ � � �Ö� ý��6ÜK~2�Ü¿ý���Ü-ý�þØ°��s
}ù

Introducing dual variables, � and Ú � , to correspond with the primal con-
straints, the dual formulation is: � ëlì§ º 	 � � � ��� Ú � À�~Ù£« ÿ­¬]ÿ �èÀ�Ú¾�Â¯����TþØ°��s
.ù�kþ�Ú � ¯w2
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Variable, � , can be interpreted as the price on a unit, and ÚI� as the max-

imal payoff to agent � , with optimal values given price � computed as Ú���ú���#��û	2fþ¤���Â,u��� . CS condition, � ç 2k� ¥ � ýb�8úä~ , requires that the out-
come maximizes the seller’s payoff at the price and implies that the price must
be zero unless all items are sold. CS conditions, Ú�� ç 2å� ýb� ú ý andýb� ç 2R� �qÀ%Ú¾��ú ��� imply that agents must receive an item if and only
if the item has positive payoff at the price. These are familiar conditions for
competitive equilibrium. Moreover, as in the multiattribute auction example,
there is a particular dual solution that implements the VCG payoffs. The VCG
payoffs are implemented at the minimal CE price, which is the smallest � that
corresponds to an optimal dual solution.

A simple ascending auction implements a primal-dual algorithm for this
problem, terminating in the VCG outcome, and with MBR a dominant strategy
equilibrium [BdVSV01]. The auction maintains a single ask price, �%�ñ¹?� , and
allows agents to bid for a single unit in each round at the ask price. While more
bids are received than there are items, ~ agents are selected in the provisional
allocation, and the ask price is increased. The auction terminates as soon as
fewer than ~ bids are received, with items allocated to the agents still bidding
and remaining items allocated to agents that were active in the previous round,
breaking ties at random.³�FHEIFlE ^`Z¾O#r-M	]'ZbX43 LqP/Q/O�PRZ¾c�M	]'r�§ ZbXL1�PRc:F

The structure of this auc-
tion is the same as for the single unit demand. The primary difference is the
valuation of the seller is assumed to be marginal-decreasing. An efficient
ascending-price auction has been proposed for the case of multi-unit items
and marginal-decreasing valuations [Aus97]. A valuation function, �[��ûK�Ù� , is
marginal-decreasing if ����ûK� À�����,!����ûK� À ý��Ù¯h���mûK� À ý��à,"���mûK�Ù� , for
all � ¯ 2 . The auction maintains a single ask price, but different units of
the item are sold along the path of the auction, so that each unit can sell at a
different price and agents need not pay the same per-unit price. The auction
implements the VCG outcome with MBR strategies, making MBR an ex post
Nash equilibrium. As we might expect, the auction corresponds with a primal-
dual algorithm, and this has been shown for two alternate formulations of the
multi-unit allocation problem [BdVSV01, BO00]. Rather than repeating this
analysis here, we simply describe the auction and explain its dynamic pricing
rule.

The auction maintains a price, �)�ñ¹B� , and agents submit bids for a quantity,;Ö��û��G� , in each round. The auction terminates as soon as the total quantity de-
manded is less than or equal to ~ , and otherwise the price is increased. As
the price is increased, and demand drops, agents can “clinch” units of the item.
Clinching a unit in round Ê locks in the price that the agent must pay for that
unit to the current ask price. An agent clinches a unit of the item in the first
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round in which the demand from the other agents is low enough that the agent
is sure to win the item at its current bid price, assuming other agents have
marginal-decreasing values and follow a MBR strategy.

agent æ ��çLèQé æ ��ç4ê¤é æ �gç�ë¤é
1 123 236 329
2 75 80 83
3 125 250 299
4 85 150 157
5 45 70 75

Y3Hq±Gª»E²paZSpaZ
Multi-unit Example. Marginal-decreasing agent values.

Consider the simple example illustrated in Table 1.1, taken from Ausubel
[Aus97]. There are 5 agents and 5 units of an item, and agent � has value,�#�mûK�Ù� , for � units. The auction proceeds until �#�ñ¹?� úíì0î , at which time the
MBR bids are ;xûyì0î��Àú�ûyã
þ�ý�þ6�
þ�ý�þ�2~� , from agents 1, ÿ]ÿ]ÿ ,5 respectively. Let w���¯2 denote the number of items clinched by agent � , initially set to zero. Agent
1 clinches the first unit, at the current price, because w~�7À ¥ ��¼½ � ;Ö��û���� ß ~
û	2tÀõý�Àå� À�ý ß î�� . The auction proceeds until �)�ñ¹B� úðïaî , at which time
the MBR bids are ;xû�ïaî��eú'ûyã
þ�2fþ6�
þ�ý�þ�2~� . Agent 1 clinches a second unit, at
the current price, because w � À?¥ ��¼½ � ; � û���� ß ~ û�ý�Àh�èÀ ý ß î�� . Agent
3 clinches its first unit, at the current price, because wnñ�À ¥ ��¼½ ñ ;Ö�mû���� ß ~
û	2'Àdã�À�ý ß î�� . The auction proceeds until �)�ñ¹?��úåò0î , at which time the MBR
bids are ;xûyò0î���ú ûyã
þ�2fþ6�
þ�2fþ�2~� , and agents 1 and 2 both clinch one more unit
each, at the current price. Finally, agent 1 receives 3 units, for total paymentì0î�À�ïaî�ÀKò0î ú��0�0î , its VCG payment, and agent 3 receives 2 units, for total
payment ïaî¡À�ò0î ú�ýOì�2 , its VCG payment.�|¿+ô @ Ç�òGÃÕÉTÎ¬Ã
ÃfÄ=Éñù�Ç|ÃfÐõÌ Ç�È¤ÃxÉTÅPÂ�Ø

Multiattribute auctions [Che93] extend the traditional auction setting to al-
low negotiation over price and attributes, with the final characteristics of the
item, as well as the price, determined dynamically through agents’ bids. For
example, in a procurement problem, a multiattribute auction can allow differ-
ent suppliers to compete over both attributes values and price.

We have ù sellers, a single buyer, and u attributes. Each attribute, =Ù
¶u ,
has a domain of possible attribute values (or levels), denoted with abstract setó 9 ; for example

ó �oú î red,yellow,green ï if attribute 1 is the color of an item.
The joint domain, across all attributes, is denoted

ó ú Û �7& Û E . Each seller,�³
*ù , has a cost function, w � ûL;��Ù¯ 2 , for an attribute bundle, ;!
 ó
, and

the buyer has a valuation function, � � ûL;��v¯ 2 . For simplicity, it is useful
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to assume that

ó
contains a null attribute bundle, ô , for which � � û�ô�� ú 2

and w���û�ô��}ú12 for all ��
 ù . The buyers and sellers have quasilinear utility
functions.³�FlË�FKJ m�noQRMpPY]-S�LqPRc�Q/PR]!=6M	]'r F O�MpQ/PÒ^21'XpS�ML7�S�S�O#MB>I1IS�PÎTUP/W�PRO�c�P791'Q�S#Mp\�]sF

In this subsection we introduce a reverse auction with a single
buyer and multiple suppliers. We assume that a single item is to be bought,
however, the decision of which item to buy is influenced both by price and
other attributes of the item. This design assumes that the buyer wants to source
the demand to a single winner. We focus on the problem with general nonlinear
valuation functions, although there is a simpler companion auction for the case
of preferential-independence [PK02]. We present an efficient descending-price
auction, which maintains nonlinear prices on attribute sets.

The VCG mechanism for the multiattribute allocation problem is efficient
but not budget-balanced. Indeed, by the Myerson-Satterthwaite impossibility
theorem there is no efficient and budget-balanced mechanism, even in Bayesian-
Nash equilibrium. As an alternative, one can impose budget-balance and im-
plement a modified VCG mechanism which is budget-balanced but not quite
strategyproof, and not quite efficient in equilibrium.

Let x� � û<;�� and xw�û<;�� denote the reported valuation and cost functions. The
modified VCG mechanism implements the trade that maximizes the reported
surplus, x� ûSù¿�Àú����#��õ �,ö º � �Ö�ø÷ x� � ûL;���, xw4�sûL;��úù , and the winning seller receives
its VCG payment from the buyer. The seller’s VCG payment is computed asx� ª ·�Ã�´ ú xw4�4��ûL;�j���ÀÑûYx� ûSù¿�¿, x� ûSù�û �¸j��¤� , where ûK�<j¥þQ;:j�� is the implemented
outcome, and x� ûSù�û�� j �9úÎ���#� õ ��ö º ��¼½ �4� ÷ x� � ûL;��6, xw4�mûL;��úù , the reported value
of the second-best outcome, which we denote as ûyü �sþ ü;~� .

Truthful bidding is a dominant strategy for sellers in the modified VCG
mechanism, and the mechanism is also ex post IR for sellers, and ex post IR
for a buyer for any strategy that (weakly) understates its value. In the full VCG
mechanism the buyer simply makes payment xw M � û x;�� . The modified VCG mech-
anism overcharges the buyer by x� ûSù¿�Y,�x� ûSùÉû x�¤� to achieve budget-balance. In
fact, this difference bounds the maximal ex post gain that the buyer can hope
to achieve in the modified VCG through some non-truthful strategy [Par02].
The timing is ex post, in the sense that this we minimize the most that a buyer
could gain with perfect hindsight about the bidding strategies of the sellers. In
addition, as the auction becomes more competitive and the marginal product of
any single buyer becomes negligible then the gains-from-manipulation to the
seller tend to zero.

Given the modified VCG mechanism one can use the primal-dual auction
design methodology to construct an iterative auction. We illustrate this with a
descending-price auction, NONLINEAR&DISCRETE, which maintains prices
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on bundles of attribute-levels [PK02]. The auction terminates with CE prices
that support the outcome of the modified VCG mechanism. This makes MBR
an ex post Nash equilibrium for the sellers against a class of consistent buyer
strategies. A consistent strategy for the buyer is any strategy that can be rep-
resented as a straightforward myopic best-response strategy for some ex ante
fixed, but perhaps untruthful, cost function.

The auction implements a primal-dual algorithm for the following LP for-
mulation of the multiattribute allocation problem:

���#�� � ¨ õ ª º ��ýI¨ õ ª �õ ��ö � � ûL;��¸ý � ûL;��6, � � ��� �õ �,ö w4�sûL;��¸ýb�sûL;�� [MAP-1]« ÿ­¬]ÿ �õ �,ö ýb�mûL;:�¿Ü ý�þ±°��Þ
 ù (1.12)

� � ��� ýb�mûL;:�¿¯�ý � ûL;��aþ±°�;è
 ó (1.13)

�õ ��ö ý � ûL;:�¿Ü ý (1.14)

ýb�mûL;��aþ¤ý � ûL;:�¿¯w2� ëlì	 �Kº 	 ý º §�¨ õ ª � � ��� Ú¾�¾À�Ú � [DMAP-1]« ÿ­¬]ÿÒ��ûL;��IÀ�Ú � ¯�� � ûL;��aþ °�;t
 ó (1.15)Úb�-,³�¬ûL;:�¿¯%,þw4��ûL;��aþ °��s
}ù8þ<°�;t
 ó (1.16)Úb�Gþ�Ú � þ	�¬ûL;:�¿¯w2
Variables ý � ûL;�� ç 2 imply that seller � provides items with attributes ; , andý � ûL;�� implies that the buyer receives items with attributes ; . This formulation

has integral extremal solutions, such that ýI��ûL;��aþ¤ý � ûL;��$
 î 2fþ�ý#ï at optimality.
Moreover, through the introduction of auxiliary variables to represent the buyer
(at optimality, ý � ûL;:�¨ú%¥ � ýb�mûL;:� for all ;�
 ó ), and the inclusion of redundant
constraints (1.12), the dual solution defines CE prices and the formulation is
consistent with the primal-dual methodology.

The dual introduces variables, Ú-�Tþ�Ú � and �¬ûL;:� , to correspond with con-
straints (1.12,1.14) and (1.13) respectively, and computes prices on bundles,; 
 ó

, of attributes levels. Given prices, ��ûL;�� , the optimal dual sets ÚI� ú���#� õ ��ö 0 ��ûL;���,8w � ûL;��aþ�2#3 and Ú � ú1���#� õ ��öRÿ � � ûL;���,U��ûL;��aþ�2�� . These have
the usual interpretation as the maximal payoff to each seller and the buyer.
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The CS conditions demonstrate that optimal primal and dual solutions define

a competitive equilibrium outcome.20Ú �6ç 2À� �õ �,ö ý � ûL;:�¨ú�ý (CS-1)

ý���ûL;�� ç 2À�®Ú¾��,³��ûL;���ú`, w �mûL;�� (CS-2)Ú � ç 2À� �õ �,ö ý � ûL;��Àú�ý (CS-3)

ý � ûL;�� ç 2À� ��ûL;��GÀ�Ú � ú�� � ûL;�� (CS-4)

Taken together, (CS-1) and (CS-2) state that the outcome must maximize a
seller’s payoff at the prices, and (CS-3) and (CS-4) state that the outcome must
maximize the buyer’s payoff at the prices. There are many prices, �¬ûL;:� , that
solve the dual problem. The maximal CE prices, which maximize the payoff
of the winning seller, implement the payment in the modified VCG mecha-
nism. Recall that ûK�ñj�þQ;:j�� and û ü �aþ ü;�� are the first- and second-best solutions
respectively, given reported costs and valuations. The maximal CE prices set�¬ûL; j ��ú�� � ûL; j �6,×ûK� � û ü;��6,8w�� � û ü;:�¤�
with prices on other attribute bundles, ;�>úð; j , to satisfy condition � � ûL;��7,� � ûL;:jÖ�ÂÀ}��ûL;:jÖ�öÜ �¬ûL;:�êÜ � ëHì ��¼½ �4� w4�sûL;:� . In particular, let � Ã � ûL;:� , denote
the maximal CE prices in which the price on attributes, ;`>úP;Rj , are maxi-
mized, i.e. � Ã � ûL;��}úh� ëlì ��¼½ ��� w4�sûL;�� for all ;_>úð; j . The maximal CE prices
are characterized by the property that the second-best seller, ü � , is pivotal, in
that its maximal utility across all attributes is exactly zero. The payment in the
modified VCG mechanism is supported at the maximal CE prices. Notice that� Ã � ûL; j �Àú"� � ûL; j ��,}ûK� � û ü;:��, w�� � û ü;��¤� , which is exactly w��mûL; j � À�� ûSù7��,(� ûSù û�� j � .

Auction NONLINEAR&DISCRETE proceeds in rounds Êu¯ ý , and main-
tains ask prices, � Ë ûL;��u¯ 2 , on every attribute bundle ;"
 ó

, and a provi-
sional allocation to indicate the current winning seller and attribute bundle. A
minimal bid increment, � , determines the rate at which prices are decreased
across rounds. The ask prices, � � ûL;�� , are initialized to some value greater
than � ëHì ��¼½ � ��w �mûL;�� . In each round sellers can submit an exclusive-or set of
bids, with bid prices less than or equal to the corresponding ask price.21 The
winner-determination problem involves the buyer dynamically. The bids are
collected, and the buyer is asked for its preferred bid. This can be partially

20We can ignore the condition corresponding with constraints (1.13) because ¿ � � � ¨ õ ª ½ � ý ¨ õ ª for all õ
in all optimal solutions.
21As in iBundle, a seller can take an Ñ -discount when (a) repeating a bid that is successful in the current
provisional allocation, if that price has decreased across rounds; and (b) when making “last-and-final” bids,
that will not be reduced in any future round.
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automated by the auctioneer as the auction progresses, based on decisions by
the buyer in earlier rounds. Alternatively, one can simply ask the buyer for its
valuation function at the start of the auction and completely automate winner-
determination. The selected bid becomes the provisional allocation and the ask
prices on a bundle are decreased to � below the lowest bid price from an un-
successful seller. The auction terminates as soon the ask prices do not change
for two consecutive rounds. The provisional allocation is implemented at the
final bid price.

NONLINEAR& DISCRETE terminates with the outcome of the modified
VCG outcome when agents follow MBR strategies, as the minimal bid in-
crement, ��|{2 . In MBR, sellers submit bids for all bundles that are within �
of maximizing their payoff at the current ask prices, and the buyer selects the
bid in each round to maximize its payoff, given the bid prices. The auction
maintains a feasible primal and dual solution in each round, and conditions
(CS-2,CS-3) and (CS-4) always hold. Finally, (CS-1) holds when the auction
terminates because all unsuccessful sellers must have non-positive utility at the
prices.

In addition, the prices in the auction are (weakly) greater than the maximal
CE prices, � Ã � ûL;�� , on all bundles, ; 
 ó

, in every round. The auction ter-
minates with prices on bundles, ;/j and ü; , that equal the maximal CE prices
on those bundles. Certain incentive properties follow from this iterative im-
plementation of the modified VCG mechanism. Seller MBR forms a game-
theoretic equilibrium together with a restricted class of buyer strategies. This
class is the set of ex ante consistent strategies, in which the buyer commits to
a particular reported valuation before the auction begins. One way to enforce
this, although losing the advantages of incremental preference elicitation for
the buyer, is to require the buyer to submit its preferences to a proxy agent at
the start of the auction. MBR is an ex post Nash equilibrium for sellers in this
buyer-proxied auction.³�FlË�FlE Ì�Í�S�M	deZbXbLNP/c�Q/PR]!=�MK]'r F O#MKQ/Pt^216XHS#MpZ¾S�S�O�M?>I1�S�PtTUP/W�PRO�c�P 7T1�Qq3S�MK\-]sF

The structure of this mechanism is the same as the efficient mecha-
nism in the previous section except that the mechanism design goal is to max-
imize the expected payoff of the buyer, which is the difference between her
value for the outcome and the price that she pays. An optimal multiattribute
auction mechanism is known for a special case of two attributes and contin-
uous attribute levels for same structure as above of a reverse auction for a
single good[Che93]. The auction formulates an optimal reservation price to
incorporate within the modified VCG mechanism. The auction is one-shot,
and truth-revelation remains a dominant strategy for sellers. The effect of the
reservation price is to decrease the average payment received by the winning
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seller, but runs the risk of missing an efficient trade in some instances. The
analysis has also been extended to the case of correlated seller costs [Bra97].

However, no optimal auction mechanism is known for a more general for-
mulation of the multiattribute allocation problem. A multi-round payoff-maximizing
auction procedure is proposed for a setting with a class of parameterized seller
cost functions and naive sellers [BW01]. The functional form of the cost func-
tions are assumed, and the problem facing the buyer is to determine the val-
ues of � parameters. These parameters define seller cost functions and pro-
vide the buyer with enough information to extract maximal surplus from the
winning buyer. The auction uses � rounds to estimate the seller costs func-
tions, with each round implementing the outcome of the modified VCG mech-
anism for a different buyer valuation function. Each round is implemented as
a descending-price multiattribute auction. The valuation function is adjusted
across rounds to infer enough information about costs from seller bids to ex-
actly determine the unknown cost parameters. The analysis makes the strong
assumption that sellers follow MBR in every round of the auction, which is
perhaps unlikely given that the buyer is in a powerful position of being able
to restart the auction multiple times. Finally, after � rounds, there is enough
information to run one final round and maximize the buyer’s payoff, extracting
maximal surplus from the winning seller by adjusting the final reported valua-
tion to make the second-best seller as competitive as possible with the winning
seller.�|¿L� ÷øÄxÅ_È�Ç�ÄxÐ¬Ï Ð¬ÂoÃK�×Ð'÷²Ð�ÄÕØ
Ð Ì Ç�È¤ÃxÉTÅPÂ�Ø

Reverse auctions are now routinely used for enterprise procurement. Sim-
ple single item single sourcing auctions such as the first-price sealed bid and
English auctions have found use in the procurement of maintainence, repair
and operations. Increasingly, more complex formats such as combinatorial
and volume discount reverse auctions are being introduced in strategic sourc-
ing decisions for material and services used in the production process of an
enterprise.

Davenport et al [HRN02] have studied the use of reverse multi-unit auctions
with volume discounts in a procurement setting. The combinatorial auction is
used for single units (lot) of multiple items. All-or-nothing bids are allowed
and nonlinear prices are used to feedback information. In contrast, volume
discount auctions are used when the multiple units of multiple items are being
procured. However, it restricts the bids to be specified for each item and allows
the specification of volume discounts.

An interesting (and complicating) issue that arises in this setting is that there
are various business rules that are used to constrain the choice of winners.
These business rules appear as side constraints in the winner determination
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problem. Another consideration in procurement auctions is that the outcome
should be such that the final prices should be profitable for both the buyer and
the suppliers, i.e. a win-win outcome. Davenport et al [DK02] have used the
competitive equilibrium property to operationalize this notion of achieving a
win-win outcome.

The main challenge in analyzing the properties of such procurement reverse
auctions is that the allocation problems relevant are integer programs and a
direct appeal to primal-dual algorithms cannot be made. If an appropriate ex-
tended formulation can be identified that has the integrality property (i.e. solv-
ing this problem as an LP yields feasible integral and optimal results) then an
appeal can be made once again to primal-dual algorithms to show competitive
equilibrium [BO02]. For forward combinatorial auctions (which lead to set
packing problems) with no side constraints such extended formulations have
been identified and used to design iterative combinatorial auction [PU00a].
These formulations are large and provide dual prices on bundles and hence
require price signaling to be done on bundles rather than items.

The reverse combinatorial auction has two significant variations: (i) set
covering formulation rather than set packing, and (ii) the inclusion of busi-
ness rules as side constraints that complicate the formulation. Davenport et al
[DK01] have shown that a similar extended formulation can be derived for the
reverse combinatorial auction with side constraints. Once again this extended
formulation yields dual prices on bundles of items. In this section we provide
a set covering formulation for the winner determination problem for both the
combinatorial and volume discount curves (using a Dantzig-Wolfe we present
this as a set covering problem). We then provide an iterative descending price
auction and show that they yield a competitive equilibria by providing extended
formulations that have the integrality property.³�F[³'FKJ � MK]6]'P/O LNP~S�PRO�deM	]'Z[S�MK\-]��¸\�OY¡è\-d«>�M	]�Z[S�\�O�MKZbXc7T1'Q�S�MK\�]�c	 MpS�a GGMB=6PS¡t\�]�cÖS�O�ZbM	]-S�c�F

A mixed integer programming formulation
for the reverse combinatorial auction with no side constraints can be written as
a set covering formulation as follows:� ëlì� � ¨ ÿ ª �ÿ � � � � � ý � û+ûþ�H� � û+ûþ��ÿ � � �+º ÿ�� 9 � � ý�� û+ûþ�¿¯ ý�þ °[=

ý � û+ûþ�¿
N2fþ�ý5þ °-�sþ û
for bids in set :$� 
�� � with prices ���mû+ûþ� on û 
 :�� . The following side
constraints are often encountered in practice and can be added to the MIP for-
mulation as side constraints as follows:
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Min/Max Winning Suppliers£:��Ü � ÿ ý���û+ûs�7ÜK~u£:�Gþ±°��s
N�
 � º ª �v� Ü � � £:��Ü 
 � º ª �v�
Min/Max Quantity per Supplier Assuming that the total amount associates

with a bid is
Û ��û+ûþ� and


 � º �s� � and

 � º ��� � are the minimum and maxi-

mum quantities allowed for each supplier
 � º ª �v� Ü � ÿ �9 � ÿ ý � û+ûþ� Û � û+ûþ�¿Ü 
 � º ª �b¬
Reservation Prices If the reservation prices are specified over bundles thený � û+ûþ�H� � û+ûs�7Ü�� � û+ûþ�

where ���mû+ûþ� is the reservation price. Alternately, if reservation prices are
specified for each item then

���mû+ûþ�Àú �9 � ÿ ÚR95þØ°-�sþ û
ý���û+ûs�H�b�sû+ûþ�7Ü����mû+ûþ�

AND-OR/XOR Bids A typical XOR constraint restricts the number of chosen
bids for an agent to be at most one as follows.�ÿ � � � ýb�mû+ûþ�7Ü-ýo°��
for bid-set, :$� .³�F[³'FlE G�P/S�3�¡t\YW-P/O�M	]�r�
�\-O#d¥16XKZ[S�MK\�]���\-O G#1�Í6Í6X?£¥¡ 1�O�W�P�791'Q�S#Mp\�]'c:F

Using a Dantzig-Wolfe type decomposition, winner determination for sup-
ply curve auctions can also be written as a set covering problem. The supplier
curves are additive separable; that is,� 9 ûKýI��þ]ÿbÿbþ¤ý } ��ú � ��� 9� � 9 � ûKýb���
where � 9 � are weights and �-� are individual price curves for the commodities.
We also assume that each is a piece-wise linear function.

To formulate the model we introduce the concept of supply patterns. A
supply pattern \ is a vector of length ~ specifying the amount supplied from
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each of the commodities \-ú ûL^-��þQ^ Ý þ]ÿbÿbÿbþQ^ � � . The cost of a supply pattern for
a particular supplier is computed as � 9 ûL\(� . A supply pattern is feasible for a
supplier if he is able to sell the given amount from each of the commodities and
the supplied amounts meet all procurer requirements for the supplier. The set
of feasible supply patterns for supplier j is denoted by û 9 . Note that there could
be an exponential number of feasible supply patterns for each supplier. In the
mathematical model we introduce a decision variable for each feasible supply
pattern of each supplier: £�� is a decision variable indicating whether patterni is selected or not, i!
�� 9 û 9 . The basic constraints of this optimization
problem will ensure that the procurer’s demand is met and that at most one
pattern is chosen for each supplier:� 9 �� � ÿ D ^ �� £ � ¯ Û � þ °��

�� � ÿ D £ � Ü-ý�þ±°Y=
The lower, �69 , and upper limit, �I9 , for the total number of accepted sup-

pliers will be imposed by the following constraint (in conjunction with the
supplier constraints): �'9ÐÜ � 9 �� � ÿ D £ � Ü��G9

On the other hand, lower and upper limits on the amount of goods supplied
by any particular supplier can be encoded in the patterns. Assume that � 9 � and* 9 � are such limits for a particular supplier and commodity and that � 9 and� 9 are limits for a supplier across all commodities. Then any feasible patterniÐ
Ùû 9 for supplier j must satisfy the following constraints:� �9 Ü�^ � � Ü�* �9 þØ°��� 9 Ü � � ^ �� Ü"� 9

The objective function of minimizing the procurer’s cost completes the math-
ematical model: J ú�� ëlì � 9 �� � ÿ D � 9 ûL\ ÿ �¸£ �³�F[³'F�Ë LqPRc�Q~PY].=�M	]�r F O�MKQ~PR7T1'Q�S�MK\�]���\-O�TUP/W�PRO�c�P�7T1�Q~S�MK\-] 	 MpS�aGGMB=6P�¡è\-]'cÖS�O#ZbM	]-S�c:F

As discussed earlier, in order to use primal-dual
methods to design an iterative auction requires an integral formulation. In this
subsection we provide an extended formulation for the reverse combinatorial
auction with side constraints that has the integrality property.
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The extended formulation is defined over the space of all feasible partitions

of items with agent assignments ��� �g�ñ¹ . For every �8
���� �g�ñ¹ we define a variable
that takes a value 1 if the partition-assignment � is chosen. �:91û+ûþ� is the cost
of allocating the bundle û to agent = . The variable £"û+û¬þ�=/� takes the value 1
if the bundle û is allocated to agent = . Note that the set �����g�ñ¹ is chosen such
that only feasible partition-assignments are allowed. For example a partition-
assignment � that violates the maximum number of winning suppliers is not
considered in � � �g�ñ¹ . The minimization formulation shown below is integral
(proof not provided here). Notice that all integrality requirements on £�û�i þ�=R�
have been relaxed.� ëlì ¥ÿ�� E ¥9 � 
 ��9®û+ûþ�¸£"û+û¬þ�=/�« ÿ­¬]ÿ £"û+û�þ�=R�¿¯ ¥!#" ÿ D%$ ! °Y=V
q��þÂ°Gû�
�C¥ÿ�� E £'&uû+û�þ�=R�¿¯w2 °Y=V
q�¥! �)(�*,+ Ù.- $ ! ¯ ý °×�

The first constraint ensures that for each bundle and each agent the total al-
location is at least as large as the partitions chosen containing the bundle with
assignments to agent = . The second constraint ensures that the total alloca-
tion to agent = is non-negative. The third constraint required that at least one
partition-assignment be chosen to satisfy demand. Now we present the dual of
this formulation: ���#� ¥9 � 
 Ú �« ÿ­¬]ÿ �R9 û+ûþ�IÀ�Ú/9 Üw�Ö91û+ûþ�®°Y=�
N� þ�°Gû�
KCÚ ÿ Ü ¥ÿ D � ! �R91û+ûþ� °×��
��/� �g�ñ¹

The dual variable � 9 û+ûþ� corresponds to the first equation in primal and sim-
ilarly ÚR9 and Ú � correspond to the second and third equations in primal. Now
if we choose values for these dual variables as follows:Ú/98ú����#� é 2fþÖ���#�ÿ�� E ûK��91û+ûþ��,q�R9 û+ûþ�¤�10
Each agent = chooses a bundle that maximizes the his/her profit, andÚ ÿ ú � ëlì! �)(�*,+ Ù.- �ÿ D � ! �R9®û+ûþ�
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the buyer makes allocations to minimize cost of procurement. Notice that these
choices of dual correspond to the conditions of competitive equilibria.

Choosing the dual variables in this way satisfies the complementary-slackness
conditions. £�û+û�þ�=/� ç 2_� ÚR9ÞÀ��R9®û+ûþ�Àú"��9 û+ûs� (CS-1)

$ ! ç 2_� Ú ÿ ú �ÿ D � ! �R9 û+ûs� (CS-2)

This implies that in each round the bundle prices along with locally profit max-
imizing suppliers are at a competitive equilibria.

Now a descending price auction with prices on each bundle can be used to
reach the competitive equilibria following a primal-dual type algorithm. Notice
that the extended formulation uses a variable for each partition-assignment pair
thereby introducing price discrimination across agents.�|¿�� ô�Îþõ�ÎÀÈ�ÉGÃ0/&È"ÅoÂ�Ø®ÃxÄxÎ¨ÉmÂ8Ð Æ#Î¨òmòTÅ_È"Î¬ÃÕÉTÅoÂ#ÏÑÐ È-A8Î¨Â�É�ØxÏ�Ø

An emergent research direction is the examination of mechanisms for de-
centralized allocation (for multi-item procurement) in the presence of capac-
ity constraints at the suppliers. We discuss two mechanisms that have been
proposed in the literature. Both are reverse auctions with a single buyer and
multiple suppliers but differ in (i) bid structure that they support and (ii) the
feedback that is provided. Both mechanisms assume that a partial allocation
against a bid is acceptable to the bidders.

Gallien and Wein [GW00] propose an iterative mechanism where the sup-
pliers bid the unit costs for each item (strategically) and their capacity con-
straint (truthfully). The buyer uses this information to find a cost minimizing
allocation and provides private feedback regarding potential allocation to each
supplier. In addition, a bid suggestion device is provided by the intermediary
that computes the profit maximizing bid for the supplier assuming that all other
bids remain the same and that the supplier is willing to share actual unit produc-
tion costs with the trusted intermediary. An important rule imposed on bidding
behavior is non-reneging on the price of each item to ensure efficiency of the
mechanism. An assumption made about the bidding behavior of suppliers is
that they are myopic best responders (MBR), i.e. they bid to optimize prof-
its in the next round based on the information about other bids in the current
round. Under these assumptions they provide convergence bounds and an ex
ante bound on the procurement cost. They use numerical simulations to show
that suppliers are incented to reveal true production costs (to the intermediary)
under appropriate penalties for capacity overloading.

An alternate iterative approach has been proposed recently by Dawande et
al [DCK02]. They use a similar setting as Gallien and Wein [GW00] but re-
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lax two fundamental assumptions: (i) They do not impose a non-reneging rule
on the price for each commodity, instead require all new bids from suppliers
should decrease the total procurement cost by some decrement, and (ii) they
provide an oracle that is able to determine (for each supplier) whether a revised
bid satisfies the cost decrement without requiring the revelation of production
costs or capacity constraints explicitly. They show that that for each supplier,
generating a profit maximizing bid that decreases the procurement cost for the
buyer by $ can be done in polynomial time. This implies that in designs where
the bids are not common knowledge, the each supplier and the buyer can en-
gage in an “algorithmic conversation” to identify such proposals in polynomial
number of steps. In addition, they show that such a mechanism converges to
an “equilibrium solution” where all suppliers are at their profit maximizing
solution given the cost and the required decrement $ .

A buyer is soliciting bids to buy � items 2 � þ]ÿbÿbÿbþ�2 � . The quantity required
for item 2Ö� is 3~�$
54à� . Now we have the two different mechanisms: (i) De-
scending price where the price on each item is decremented in each round
[GW00], and (ii) Descending cost where the cost of procurement is decre-
mented in each round [DCK02].³�F4�IFKJ LqPRc�Q~PY].=�M	]�r F O#MKQ~P%^`PRQ:a�Z�]'MKc�d F

Each supplier = pro-
vides a bid as a vector of unit prices b � 9 one for each item � and a total capacity
c9 . The supplier = also specifies the production technology, i.e. the capac-
ity required 6'� 9 to produced a single unit of item � . The assumptions are as
follows:

1 The suppliers are myopic best responders who bid b � 9 to maximize profit
in the next round given the current information,

2 Suppliers indicate their capacity limits truthfully, and

3 Suppliers accept any fractional allocation of demand for an item.

We now describe an iterative scheme:

Step 1: (initialization) Let ûLw Ô9 þQ^ Ô�­9 þ6] Ô�­9 � , ��úüý�þ6�
þ]ÿbÿbþ¤�øþ�=�úüý�þ6�
þ]ÿbÿbÿbþ�� be the
initial set of bids submitted by the bidders.
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Step 2: (buyer’s problem) The buyer solves an allocation problem to minimize

her cost: � ëlì ��9 ½ � �� � ½ � ] � 9 ûBÊ��¸ý � 9« ÿ­¬]ÿ �� � ½ � 6�� 9�ýb� 9 Ü�wñ9 þØ°��
��9 ½ � ýb� 9 ¯53��Tþ±°��
ýb� 9 ¯ 2fþ±°¬ûK�sþ�=R�

Let J0Ë and 7ý×Ë be the optimum cost and the corresponding solution vector,
respectively, for this problem. The buyer now reports the allocation 7ý Ë9
privately to each bidder = , = ú�ý�þ]ÿbÿbÿbþ�� .

Step 3 (bid suggestion device) The device takes as input from the supplier the
production costs �:� 9 and computes the profit maximizing bid assuming
the competitors bids remain unchanged and subject to the price decre-
ment rule. 7]4j� ûBÊ�À ý��Àú «�8:9 0 ���¢�o���#�(Ó��mû/7�¿�Tþ;7����þ 7] � �mûBÊ�����3« ÿ­¬]ÿ 2�Ü<7�¿�ÂÜ 7] �mûBÊ¤�7�¿��
Óûy����� �
where Ó��sû=7�eþ;7�#�Tþ 7] � �sûBÊ¤�¤� is the payoff function for agent � , and 7��� is the
decision vector.

Step 4 (exit criterion) If 7]�û?�$�}ú 7]¥û?�Á,-ý�� , STOP; otherwise Ê úðÊsÀ�ý and
return to Step 2.F O#\�ÍþPRO�S�MKP/cVZ[S ��P/O�doMK]'Z[S�MK\�]þF

1 Let T be the final round and � ¨ � ª� denote the k-th order statistic of ( �~�K� ,� � Ý , ..., � � � ) and let
Õ ú î =�
Ñý�þ]ÿbÿbþ����>7ý � û?�$� ú 2Rï , then ý � 98ç 2¶�] � 91û?�$�èÜÁ� � � ? @A? �'�� ÀA� . The winning bid for each item is bounded by

some order statistic of the production costs.

2 The total procurement cost can be bounded ex ante if all suppliers have
the same technology (same capacity across suppliers for producing a unit
of item = ). If � is the maximal load number then the total procurement
cost is bounded by ¥ �� ½ � ; � ûK� § �����'�� ÀA� � . The load number is defined
as the smallest � for which ¥ § �'�9 ½ � w¤9 ç ¥ � 6I�B3�� .
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Here, since the decre-
ment is imposed on the procurement cost, each bidder = , = ú�ý�þ]ÿbÿbÿbþ�� proposes
a bid ûLw¤95þC7^�9�� where 7^�9 ¯�2 is the vector indicating the number of units of each
item bidder = will supply and w¢9t¯!2 is the total cost to supply all the items in7^ 9 . The allocation problem in each round is as follows:

Step 1: (initialization) Let ûLw Ô9 þC7^ Ô9 � , = ú�ý�þ6�
þ]ÿbÿbÿbþ�� be the initial set of bids sub-
mitted by the bidders. Let \ Ô ú 0D7^ Ô � 7^ ÔÝ ÿbÿbÿE7^ Ô� 3}
GF �IH � and 7w úûLw Ô � þQw ÔÝ þ]ÿbÿbÿbþQw Ô� �8
JF � . Set Ê�ú®2 . Note that F is the set of rational
numbers.

Step 2: (buyer’s problem) The buyer solves an allocation problem to minimize
her cost: � ëlì�î 7w Ë 7ýuzq\ Ë 7ýu¯K3:L�2VÜJ7ýÙÜ ý#ï
Let J Ë and 7ý Ë be the optimum cost and the corresponding solution vector,
respectively, for this problem. The buyer now executes the following
steps:

(a) Reports the allocation 7ý Ë9 privately to each bidder = , = ú�ý�þ]ÿbÿbÿbþ�� .

(b) Computes the set û of column vectors, with their corresponding
costs, such that any one of these columns when introduced in the
constraint matrix \ Ë guarantees a decrease in the optimum solution
to the allocation problem by at least $ .

Step 3 (algorithmic interaction between buyer and bidders) The profit of bidder= from the allocation 7ý Ë9 is 7� Ë9 ú$ûLw Ë9 ,M7^ Ë9 7��9��;7ý Ë9 , where 7��9³
�F � � is the
vector of unit production costs for bidder = .
Let ûGÔ|ú î ûLw ² þ)7^ ² ��z=7^ ² Ü 73¾ï_
5N � �'� . The optimization problem for the
bidder = is � 9 z ���#� î w ² ,O7� 9 7^ ² ,P7� Ë9 z=ûLw ² þC7^ ² �7
uûd�Nû Ô ï
The buyer and bidder = , = ú ý�þ]ÿbÿbÿbþ�� , cooperate privately to solve the
optimization problem � 9 . Note that �69 is solvable in polynomial time
[DCK02].

If it exists, let ûLw�j9 þQ^Yj9 � be the optimum solution vector for � 9 . If the

optimum value to � 9 is positive, bidder = updates her bid: ûLw Ë �'�9 þ)7^ Ë �'�9 ��ú
ûLwÖj9 þC7^Rj9 � . Otherwise, bidder = retains her previous bid ûLw Ë �'�9 þC7^ Ë �'�9 � ú
ûLw Ë9 þC7^ Ë9 � .

Step 4 (exit criterion) If ûLw Ë �'�9 þ)7^ Ë �'�9 �Àú ûLw Ë9 þC7^ Ë9 �¾°$= , STOP; otherwise ÊÀúAÊ�À ý
and return to Step 2.
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Given $ ç 2 , the allocation problem
satisfies the following properties at termination.

Given the bids, the buyer minimizes her cost.

For each bidder = , given the bids of all other bidders �">ú`= , Q any bidûLw ² þC7^ ² � , which if were to propose would satisfy the following two con-
ditions simultaneously: (i) gives more profit and (ii) reduces the buyers
cost by at least $ .

An interesting ex-post property when the iterative scheme terminates is:

At termination, let the buyer’s total cost be w#j . Then ¸ $ ç 2 such that,
given the bids of all other bidders ��>úw= , Q any bid ûLw ² 7^ ² þ1Rw�� for bidder =
which keeps the buyer’s cost at w�j and increases her profit by more than$ . In words, there exists a value of $ which achieves $ , optimality for
each bidder.�|¿�� B ÅoÇ�ù�òTÐ�Ì Ç�È¤ÃÕÉTÅoÂ�ØTS�ód-8È�A8Î¨Â�C¨Ð�Ø

A key aspect of double auctions is that both the buyers and sellers have pri-
vate information about their preference structure. This is in stark contract to all
the analysis performed so far where either the buyer or the seller was treated as
having no reservation price and consideration of incentive compatibility was
restricted to a single side of the market. In this section we discuss double auc-
tions and a resulting consideration that arises in this setting for designing in-
centive compatible mechanisms. The Myerson-Satterthwaite impossibility the-
orem shows that no efficient (EFF) mechanism can be budget-balanced (BB),
with individual-rationality. We discuss double auctions, which are multi-unit
homogeneous item allocation problems, and combinatorial exchanges, which
are two-sided combinatorial allocation problems.³�F� �FKJ Lq\�1.>�XKP«7T1'Q�S�MK\�]�c�F

The clearing and payment problem can
be analyzed as follows. Assume that bids are sorted in descending order, such
that :t��¯ : Ý ¯ ÿ]ÿ]ÿ�¯ä: � , while asks are sorted in ascending order, with\ �³Üs\ Ý Ü+ÿ]ÿ]ÿ¿Üs\ � . The efficient trade is to accept the first �t¯ö2 bids
and asks, where � is the maximal index for which :VUV¯f\WU . The problem
is to determine which trade is implemented, and agent payments. In a full
VCG mechanism for the double auction, the successful buyers make payment���#��ûL\WUUþQ:XU �'� � and the successful sellers receive payment � ëlì ûL\YU �'� þQ:XUK� . In
general the payments are not budget-balanced, for example with \VU �'� ß :XU
and :XU �'� ç \EU and \WU �'� ç :XU �'� .

Table 1.2 surveys some of the double auction mechanisms known in the lit-
erature. Only the VCG mechanism is EFF, but it fails BB. All the other mech-
anisms are strategyproof and BB, except for � -DA, in which truth-revelation is
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Name traded Z\[^]`_ Z Ù.-ba (EFF) (BB) (IR) equil (IC)

VCG-DA c dfe�g çihkjDl>mkj ß�à é donqp çih�j ß�à l.mkj[é Yes No Yes dom yesr
-DA [CS83, Wil85] c r hkj1srçLè/t r éBmkj r h�j1srçLè�t r éBmkj No Yes Yes Nash no
TR-DA [BN01] c t è mkj hkj No Yes Yes dom yes

McAfee-DA [McA92] c or çihkj ß�à sumkj ß�à é.v êrçih�j ß�à sumkj ß�à é.v¤ê No Yes Yes dom yesc tøè or mkj or hkj
Y3Hq±Gª»E8paZìnqZ

Double auction mechanisms. The traded column indicates the number of trades
executed, where c is the efficient number. The equil column indicates whether the mechanism
implements a dominant strategy or (Bayesian)-Nash equilibrium.

not an equilibrium strategy.22 In the � -DA [Wil85, CS83, SW89], parameter�v
 0 2fþ�ý43 is chosen before the auction begins; the parameter is used to calcu-
late a clearing price somewhere between \wU and :XU as ��\EU[À û�ý¡,��¾�b:WU . The
McAfee DA [McA92] computes price � j ú�ûL\WU �'� Àr:WU �'� �yxa� , and implements
this price if ��jU
 0 \WU�þQ:XU�3 and trades � units, otherwise �6, ý units are traded
for price :IU to buyers and \XU to sellers.23 Mechanisms for exchanges that are
(BB) and (IR) fall into two categories (a), that are (IC) and deliberately clear
the exchange to implement an inefficient trade, and kind (b), that are not (IC)
and clear the exchange to implement the revealed-surplus maximizing trade.
Mechanisms TR-DA and McAfee-DA fall into kind (a), while mechanism � -
DA falls into kind (b).³�F� �FlE ¡t\�d«>6M	]'Z[S�\-O#MKZbX¡m UIQ:a'Zb]'r�PRc:F

Parkes et al [PKE01b] have
suggested a family of VCG-based exchanges in which the exchange is cleared
to implement the trade that maximizes reported value (or surplus). The pric-
ing problem is formulated as an LP, to constructs payments that minimize the
distance to VCG payments for some metric, subject to IR and BB constraints.
A number of possible distance functions are proposed, which lead to simple
budget-balanced payment schemes. The authors derive some theoretical prop-
erties that hold for the rules, and present experimental results.

The pricing problem is to use the available surplus, � j , computed at value-
maximizing trade z j , to allocate discounts to agents that have good incen-
tive properties while ensuring (IR) and (BB). Let ��j denote the available sur-

22Recently, Yoon [Yoo01] has proposed a modified version of the VCG-DA in which participants are
charged a fee to enter the auction and balance the budget-loss of the VCG payments. Yoon characterizes
conditions on agents’ preferences under which the modified VCG-DA is (EFF), (IR) and (BB).
23Babaioff & Nisan [BN01] have recently proposed the TR-DA rule, which implements the fall-back option
of McAfee’s DA. The authors also propose an { -reduction DA, in which a parameter { � Ã Ô º � Å is selected
before the auction begins. The TR-DA rule is used with probability { , and the VCG DA rule is used with
probability � � { . Parameter { can be chosen to make the expected revenue zero (and achieve ex ante BB)
with distributional information about agent values, to balance the expected surplus loss in the VCG-DA
with expected gain in the TR-DA. The { -reduction DA is BB, and retains strategyproofness.
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plus when the exchange clears, before any discounts; let 2 j 
 ù denote the
set of agents that trade. The pricing problem is to choose discounts, | úû�ÏU�]þ]ÿ]ÿ]ÿ3þ¢Ï â � , to minimize the distance Lû>| þ}| · � Ã ��� to Vickrey discounts, for
a suitable distance function L.� ëlì~ Lû>| þ}| · � Ã ��� [PP]

s.t. �� �aâ � Ï��NÜ!� j (BB’)Ï � Ü Ï · � Ã ��º � þ<°���
�2 j (VD)Ï���¯w2 þ<°��s
�2 j (IR’)

Notice that the discounts are per-agent, not per bid or ask, and therefore
apply to a wide range of bidding languages. Each agent may submit multiple
buys and sells, depending on its bids and asks and on the bids and asks of other
agents. Constraints (BB’) provide worst-case (or ex post) budget-balance, and
can be strengthened to allow the market-maker to take a sliver of the surplus
(or inject some money into the exchange). One can also substitute an expected
surplus � j for �èj and implement average-case budget-balance.

The (IR’) constraints ensure that truthful bids and asks are (ex post) individual-
rational for an agent, such that an agent has non-negative utility for participa-
tion whatever the bids and asks received by the exchange. Constraints (VD)
ensure that no agent receives more than its Vickrey discount. The authors
consider a variety of distance functions, including standard metrics such as
L Ý�û>| þ}| · � Ã �:��ú%¥ � û�Ï · � Ã ��º � , Ï � � Ý and L � û>| þ}| · � Ã �:�Àú_���#� � û�Ï · � Ã ��º � , Ï � � .
The L � metric is not interesting, providing no distributional information be-
cause any complete allocation of surplus is optimal. Each distance function
leads to a simple parameterized payment rule. The payment rules are presented
in Table 1.3.

Each payment rule is parameterized, for example the Threshold rule, Ï j� û+Ê Ë ��ú���#��û	2fþ¢Ï · � Ã �#º � ,�Ê Ë � , which corresponds to � Ý and � � requires a “threshold
parameter”, Ê Ë . The final column in Table 1.3 summarizes the method to select
the optimal parameterization for each rule. For example, the optimal Thresh-
old parameter, ÊtjË , is selected as the smallest Ê Ë for which the solution satisfies
BB’. The optimal parameter for any particular rule is typically not the optimal
parameter for another rule.

Based on analytic and experimental results, a partial ordering î Large, Thresh-
old ïW� Fractional � Reverse � î Equal, Small ï is derived, with respect to the
allocative-efficiency of the rules. Although Large generates slightly less ma-
nipulation and higher allocative efficiency than Threshold in the experimen-
tal tests, the Threshold discounts are quite well correlated with the Vickrey
discounts while the Large discounts are quite uncorrelated with the Vickrey
discounts. This points to the fact that an agent’s discount in Large is very sen-
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Distance Name Definition Parameter
Function Selection
L � , L � Threshold dfe�g çi�1l`���`� � ay� � t�� �Ý é donqp � Ý s.t. (BB’)

L ��� Small ����� � a�� � , if ���`� � ay� �:� � �Ú dfe�g � Ú s.t. (BB’)
0 otherwise

L �C� � Fractional � � ����� � a�� � � � ���"� v:� � ����� � a�� �
L ��� Large � ��� � a�� � , if � �`� � ay� �:��� �j don�p � j s.t. (BB’)

0 otherwise
L � Reverse donqp çD���`� � ay� � l�� �� é dfe�g � � s.t. (BB’)
- No-Discount 0 -
- Equal � � v�� � � � -

Y3Hq±Gª»E paZ\³�Z
Distance Functions, Payment Rules, and optimal parameter selection methods.

Constraint (BB’) states that � � � ��E� � � , and � � � � (used in the Equal rule) is the number of
agents that participate in the trade.

sitive to its bid, and suggest Large is likely to be less robust than Threshold in
practice. A complete Bayes-Nash equilibrium analysis is not attempted.�o¿  }Å¬ÒÓÎÀÄÕÆ�Ø Ì Ç_ÃfÅoÏÑÎ¬ÃfÐ Æ @ Ð È-A|Î¨Â�É�ØxÏ B Ð ØxÉ<CoÂ+Î¨Â�Æ

óN÷¬Î¨òmÇ8Î¬ÃxÉTÅPÂ
The standard approach to mechanism design first makes assumptions about

the behavior of agents, and about the information available to agents, and then
formulates the design problem as an analytic optimization problem to select the
optimal mechanism subject to these assumptions. From the revelation princi-
ple, mechanism design reduces to optimization over the space of incentive-
compatible direct mechanisms. Mechanism design theory is a powerful tool
which has produced some very interesting results, both positive and negative.
However, mechanism design can fail for any of the following reasons:

problem difficulty The analysis problem can be too difficult to solve analyti-
cally. Open problems include the optimal (revenue-maximizing) combi-
natorial auction, and the most efficient combinatorial exchange amongst
the class of budget-balanced exchanges.

inadequacy of direct mechanisms Direct mechanisms are not practical in many
settings. Moreover, although primal-dual methods are useful to construct
indirect implementations of VCG-based mechanisms, there are no gen-
eral methodologies to develop indirect implementations of direct mech-
anisms.

ignorance of computational considerations The analytic approach ignores
the strategic, valuation, communication, and implementation complex-



)�k
ity of mechanisms. For example, perfect rationality assumptions are im-
plicit within incentive-compatibility constraints (see Section 2.2).

We propose an alternative methodological approach to the design of mech-
anisms, that we refer to as automated mechanism design. The methodology
remains within the spirit of classic mechanism design, because we will seek to
maximize performance with respect to beliefs about the way that self-interested
agents will participate. The basic idea is to compute the performance of a par-
ticular mechanism with a method to simulate agent strategies, and use this
computational method as a “black box” evaluation function against which to
perform mechanism design. Rather than compute analytic solutions to the
mechanism design problem, mechanism design is performed within a struc-
tured search space, expressive enough to capture a class of interesting mech-
anisms.24 In addition, since mechanism evaluation is via direct evaluation it
is not necessary to limit attention to direct mechanisms for reasons of analytic
tractability. Computational considerations can be handled within the model
because computational methods are used to design and evaluate the mecha-
nism. For example, automated mechanism design need not be restricted to
models of agent behavior that can be captured with analytic expressions, such
as incentive-compatibility, but can be performed with respect to strategies, per-
haps satisficing and suboptimal, computed by a system of agents. In addition,
moving away from analytic solutions can capture richer behaviors, such as
joint deviations and collusion, during design.

The automated mechanism design approach presents three main challenges,
and although each problem has received some attention in isolation in recent
years, there certainly remain significant computational difficulties.

evaluation Implement the black box evaluation module, which takes a mech-
anism description and computes the performance of the mechanism with
respect to beliefs about agent behaviors.

optimization Implement the mechanism optimizer, which searches in the space
of the mechanism description language for a good mechanism.

description Define a mechanism description language, which is the interface
between the mechanism optimizer and the black box mechanism evalu-
ator.

Before we provide a brief review of relevant work in each of these areas,
it is worthwhile to note the relationship between to experimental economics.

24Conitzer & Sandholm [CS02b] use the term automated mechanism design in a different way, to mean
the computational optimization of an incentive-compatible based formulation of the mechanism design
problem.
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Many economists recognize the importance of experimental methodologies to
test theoretical predictions, and to assess the robustness of a mechanism to
unmodeled behaviors [Mil02, chapter 1],[Smi62, Smi82]. Experiments with
human subjects are run in carefully controlled laboratory settings, for exam-
ple to test predictions about the efficiency of a double-auction market [DH93,
chapter4], to compare different combinatorial auction mechanisms [BLP89],
and in bargaining settings [RM82]. Indeed, Al Roth, an economist involved
in the design of real-world markets, such as those used in the medical resi-
dent matching program, advocates an “economics as engineering” approach
[Rot02, Var02] to market design.

It has been argued that agent-mediated electronic markets, with computa-
tional agents instead of human agents, are better suited to theoretical mod-
els because agents can be programmed with rational behaviors [Var95]. But
still, many equilibrium concepts are hard to compute, and it is often neces-
sary to consider computational constraints explicitly during design. Although
strategyproof mechanisms provide one compelling class of mechanisms with
computable equilibria, strong impossibility results restrict the applicability of
strategyproof mechanisms.25 Just as economists have turned to laboratory ex-
periments with people to test the predictions of economic theory, it is natural,
given our interest in building mechanisms that will be populated by computa-
tional agents, that we should turn to computational methods to test, and design,
mechanisms.�o¿m¾ Ì Ç|Ã
ÅPÏ Î¬ÃfÐ Æ @ Ð È-A8Î¨Â�É�ØxÏ B Ð ØxÉ<CPÂY¡øó�÷�Î¨òmÇ8Î¬ÃÕÉTÅoÂ

First, given a mechanism we would like to measure its empirical perfor-
mance in a setting that best approximates the actual environment in which it
will be used. A direct approach to compute the performance of a mechanism
works for game-theoretic agents, and for small problem instances. For exam-
ple, the GAMBIT toolset26 is a software program and set of libraries for the
construction and analysis of finite games, including the games with incom-
plete, imperfect information which are important in mechanism design. How-
ever, GAMBIT cannot solve even very small problems from sequential auctions
in a reasonable amount of time. Zhu & Wurman [ZW02] provide an example
in which a five agent, four item auction has 1.5 billion decision nodes. Recent
progress has demonstrated that problem representations which capture the ex-
plicit structure within a problem can enable speed-ups [KLS01, KM01, KP97].

25For example, the Gibbard-Satterthwaite impossibility theorem [Gib73, Sat75] states that it is impossible,
in a sufficiently rich environment, to implement a non-dictatorial social-choice function in a dominant
strategy equilibrium. A social choice function is dictatorial if one (or more) agents always receives one of
its most preferred alternative.
26http://www.hss.caltech.edu/gambit/
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However, no mechanisms have yet been proposed that induce games with use-
ful computational structure. Moreover, the techniques do not handle alternative
solution concepts, such games with computationally-bounded agents.

One alternative to the direct method is to compute a restricted equilibrium
across a limited set of agent strategies. This approach has been used to analyze
strategic interactions in various settings, including continuous double auctions
[TD01, DHKT01, Cli97], e-commerce settings with dynamic pricing [KG02],
and simultaneous ascending-price auctions [RSCL02]. Even in this setting,
with severely restricted agent strategies, it can still prove intractable to compute
equilibrium solutions. Wellman et al. [WGSW02] discuss the problem of
computing restricted equilibrium in a single-machine scheduling problem with
jobs that require multiple time-slots and have deadlines. GAMBIT would often
fail with small problems, with five agents, a machine with 5 slots, and 20
strategies. Alternatives, such as an evolutionary computation method in which
population replicator dynamics [Fri91] were able to successfully converge to
a Nash equilibrium, although it was not possible to verify that the solutions
were unique. The main shortcoming of the restricted equilibrium approaches
is that the initial selection of interesting strategies is quite ad hoc, and at the
least requires a good deal of insight into the problem.

Another alternative to the direct method is to compute an approximation to
the equilibrium of the game. As an example, Zhu & Wurman [ZW02] propose
a fictious play approach, in which agents sample distributions of types for other
agents, and repeatedly compute the Nash equilibrium based on each sample.
The equilibrium solutions across all sample games are combined into a single
overall equilibrium strategy. In a problem with five agents, that each want a
single item, and a sequence of four first-price sealed-bid auctions, experimental
results suggest that the performance of the learned strategy is quite close to
the optimal equilibrium strategy. Although Zhu & Wurman use this approach
without first restricting the strategy space, and are able to adopt GAMBIT to
solve any one sample game, this method could also be applied in combination
with the restricted equilibrium approaches.

Another alternative to the direct method is to use genetic programming
[Koz92] to evolve agent strategies within a mechanism [Pri97, PMPS02]. Phelps
et al. [PMPS02] model a continuous double auction, and propose a set of ge-
netic programming primitives from which to evolve trading strategies. The au-
thors demonstrate evolution towards higher efficiency, and are able to provide
quite simple and intuitive formulas for the learned strategies. One advantage of
this approach, that is shared with the evolutionary computation [WWW02], is
that side-steps the issue of computing explicit equilibrium solutions. Another
advantage is that it appears to require less ad hoc seeding of interesting agent
strategies than the restricted equilibrium approaches. However, there are no
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theoretical characterizations of the solutions computed via genetic program-
ming, and no guarantees that the system converges to a Nash equilibrium.

Finally, another approach is to use a competition to test the performance
of a mechanism, in which different groups are encouraged to design agents
with useful strategies. As an example, the Trading Agent Competition (TAC)
[WWO � 01] has constructed scenarios, and markets, in which automated trad-
ing agents compete to win items and maximize their individual utility.27 TAC
has been instrumental in focusing the attention of multiple researchers, and has
led to the development of a variety of interesting and novel trading strategies
[WGSW02]. The existence of simulators for real-world auction designs, such
as the FCC spectrum auction [CLSS01], may make it convenient to run future
TAC contests in more realistic domains. In an earlier study, the Sante Fe In-
stitute conducted a tournament for automated trading agents within a double
auction [RMP92, RMP94].�o¿Gï Ì Ç|Ã
ÅPÏ Î¬ÃfÐ Æ @ Ð È-A8Î¨Â�É�ØxÏ B Ð ØxÉ<CPÂY¡

ð�õ|ÃÕÉmÏ�É�¢�Î¬ÃxÉTÅPÂ
The optimization component of the automated mechanism design challenge

problem has received the least attention. One approach is to stick very close
to the traditional mechanism design approach, and formulate an optimization
problem for a model of game-theoretic agents, with the design space con-
strained to incentive-compatible and direct mechanisms. Conitzer & Sandholm
[CS02b] assume a discrete type space and introduce variables to explicitly rep-
resent the functions that map reported types to outcomes within the mecha-
nism. Reductions from INDEPENDENT-SET and KNAPSACK [GJ79] show that
the mechanism design problem can be NP-hard for deterministic mechanisms,
although it is polynomial-time solvable for special cases such as social-welfare
maximizing objectives with side payments (by the existence of the Groves
mechanisms) and polynomial-time solvable via a linear-program representa-
tion for a class of randomized mechanisms.28 However, even if this direct opti-
mization technique does prove tractable in some special cases, it does not han-
dle alternative solution concepts such as games with computationally-bounded
agents, and does not appear well-suited to the optimization of indirect mecha-
nisms.

An alternative approach, suggested in preliminary work by Phelps et al.
[PMPS02], is closer to the methodological approach that we outline in this
section for automated mechanism design. The authors allow the genetic pro-

27Many technical reports, describing the design of trading agent strategies, are provided at this URL:
http://auction2.eecs.umich.edu/researchreport.html
28One implication of their analysis, unless P=NP, is that randomized mechanisms must have greater imple-
mentation power for hard deterministic mechanism design problems, unless P=NP.
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gramming to evolve the rules of a continuous double auction, with genetic
programming primitives that allow the construction of both uniform-price and
discriminatory-price rules, including the family of � -DA rules. Experiments
were performed in a co-evolutionary setting, in which agent rules are also
evolving. The results compared the performance of the market with and with-
out auction evolution, and demonstrated a mean efficiency for the adaptive
auctioneer of 94.5%, in comparison with a mean efficiency of 74.3% for the
static auctioneer. In environments with at least as many buyers as sellers the
auction rules converged towards a uniform-price � -DA rule, with � adjusted
closer to zero (and the clearing price closer to the minimal successful bid price)
as the number of bidders increased. Cliff [Cli01] has also considered the role
of genetic algorithms to adapt rules a parameter of the rule set within a double-
auction.�o¿+ô Ì Ç|Ã
ÅPÏ Î¬ÃfÐ Æ @ Ð È-A8Î¨Â�É�ØxÏ B Ð ØxÉ<CPÂY¡�B Ð�Ø
È�ÄãÉñõ|ÃÕÉTÅoÂ

Wurman and colleagues [WWW01, WWW02] have developed a parameter-
ization of the auction design space, which is designed to enable the implemen-
tation of configurable marketplaces. The features of auctions are characterized
according to the methods with which they handle bids, compute outcomes, and
generate intermediate information. The Michigan AuctionBot [WWW98], a
general-purpose configurable auction server, had provided a catalyst for these
efforts. In related work, Reeves et al. [RWG01] have proposed ContractBot,
a system that employs a declarative specification of knowledge about alterna-
tive negotiation structures and auction rules, and is able to translates a specific
negotiation structure into an operational specification for an auction platform.

Perhaps most progress has been made in ontologies for automated negotia-
tion [TWD02, LWJ00], in which an ontology is developed to define the rules
of the negotiation between participants within an open system. The motivation
for the work in a negotiation ontology is to develop a rich enough language
of protocols to provide agents with the ability to choose a particular negotia-
tion protocol that is well-suited to their requirements. Tamma et al [TWD02]
present a worked example of an application of such an ontology to the Trading
Agent Competition.
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