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Abstract

Mechanism design, an important tool in microeconomics, has recently found widespread appli-
cations in modeling and solving decentralized design problems in many branches of engineering,
notably computer science, electronic commerce, and network economics. In the first part of this
tutorial on mechanism design [1], we looked into the key notions and classical results in mechanism
design theory. In the current part of the tutorial, we build upon the first part and undertake a
study of several other key issues in mechanism design theory.

Acronyms

SCF Social Choice Function

IC Incentive Compatibility (Compatible)

DSIC Dominant Strategy Incentive Compatible

BIC Bayesian Nash Incentive Compatible

AE Allocative Efficiency (Allocatively Efficient)

BB Budget Balance

IR Individual Rationality

IIR Interim Individually Rational

DSIC Dominant Strategy Incentive Compatibility (Compatible)

VCG Vickrey-Clarke-Groves Mechanisms

BIC Bayesian Incentive Compatibility (Compatible)

dAGVA d’Aspremont and Gérard-Varet mechanisms
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Notation

n Number of agents

N Set of agents: {1, 2, . . . , n}
Θi Type set of Agent i

Θ A type profile = (Θ1 × . . . × Θn)

Θ−i A profile of types of agents other than i = (Θ1 × . . . × Θi−1 × Θi+1 × . . . × Θn)

θi Actual type of agent i, θi ∈ Θi

θ A profile of actual types = (θ1, . . . , θn)

θ−i A profile of actual types of agents other than i = (θ1, . . . , θi−1, θi+1, . . . , θn)

θ̂i Reported type of agent i, θ̂i ∈ Θi

θ̂ A profile of reported types = (θ̂1, . . . , θ̂n)

θ̂−i A profile of reported types of agents other than i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂n)

Φi(.) A cumulative distribution function (CDF) on Θi

φi(.) A probability density function (PDF) on Θi

Φ(.) A CDF on Θ

φ(.) A PDF on Θ

X Outcome Set

x A particular outcome, x ∈ X

ui(.) Utility function of agent i

f(.) A social choice function

F Set of social choice functions

W (.) A social welfare function

M An indirect mechanism

D A direct revelation mechanism

g(.) Outcome rule of an indirect mechanism

Si Set of actions available to agent i in an indirect mechanism

S Set of all action profiles = S1 × . . . × Sn

bi A bid of agent i

b A profile of bids = (b1, . . . , bn)

b−i A profile of bids by agents other than i = (b1, . . . , bi−1, bi+1, . . . , bn)

b(k) kth highest element in (b1, . . . , bn)

(b−i)
(k) kth highest element in (b1, . . . , bi−1, bi+1, . . . , bn)

si(.) A strategy of agent i

s(.) A profile of strategies = (s1(.), . . . , sn(.))

K A Set of project choices

k A particular project choice, k ∈ K

ti Monetary transfer to agent i

vi(.) Valuation function of agent i

Ui(.) Expected utility function of agent i

Xf Set of feasible outcomes
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1 Introduction

In the second half of the twentieth century, game theory and mechanism design have found widespread
use in a gamut of applications in engineering. More recently, game theory and mechanism design have
emerged as an important tool to model, analyze, and solve decentralized design problems in engineering
involving multiple autonomous agents that interact strategically in a rational and intelligent way. The
importance of mechanism design in the current context can be seen by the fact that the Nobel Prize
in Economic Sciences for the year 2007 was jointly awarded to three economists, Leonid Hurwicz, Eric
Maskin, and Roger Myerson for having laid the foundations of mechanism design theory [2]. Earlier,
in 1996, William Vickrey, the inventor of the famous Vickrey auction had been awarded the Nobel
Prize in Economic Sciences in 1996.

The current paper is the second part of our tutorial introduction to mechanism design. Recall that
the following issues were covered in Part 1 of this tutorial:

• We started by introducing the notion of a social choice function through several examples: bi-
lateral trade, auctions for selling a single indivisible item, and a combinatorial auction. These
examples are used throughout the rest of the paper for bringing out important insights. Next,
we introduced the concept of a mechanism and brought out the difference between direct rev-
elation mechanisms and indirect mechanisms. Following this, we focused on the notion of im-
plementation of a social choice function by a mechanism. We introduced two key notions of
implementation, namely dominant strategy implementation and Bayesian implementation.

• Next, we described the desirable properties of a social choice function, which included ex-post
efficiency, non-dictatorial-ness, dominant strategy incentive compatibility and Bayesian Nash
incentive compatibility. We then stated and proved a fundamental result in mechanism design
theory, the revelation theorem.

• Following this, we described a landmark result - the Gibbard-Satterthwaite impossibility theo-
rem, which says that under fairly general conditions, no social choice function can satisfy the
three properties - ex-post efficiency, non-dictatorial, and dominant strategy incentive compat-
ibility simultaneously. This impossibility theorem is a special case of the celebrated Arrow’s
impossibility theorem, which was also presented.

• The Gibbard Satterthwaite theorem, while ruling out implementability of certain desirable mech-
anisms, suggests two alternative routes to design useful mechanisms. The first of these two routes
is to restrict the utility functions to what is known as a quasi-linear environment. We introduced
the quasi-linear environment and showed that ex-post efficiency is equivalent to a combination of
two properties, namely, allocative efficiency and budget balance. Later, we studied the celebrated
VCG (Vickrey-Clarke-Groves) social choice functions (also known as VCG mechanisms), which
are non-dictatorial, dominant strategy incentive compatible, and allocatively efficient.

• Finally, we explored the second route suggested by the Gibbard-Satterthwaite impossibility
theorem by looking at Bayesian incentive compatibility instead of dominant strategy incentive
compatibility. We showed that a class of social choice functions, known as dAGVA social choice
functions are ex-post efficient, non-dictatorial, and Bayesian Nash incentive compatible. We
then developed a characterization of Bayesian incentive compatible social choice functions in
linear environment.
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In the current part, we delve into a few deeper notions, mechanisms, and results. We also make
an attempt to look at some recent advances in the area of mechanism design. This paper is organized
as follows.

• In Section 2, we discuss the Revenue Equivalence Theorem which states that the expected revenue
produced by the English auction, Dutch auction, first price auction, and second price auction is
the same in the context of a single indivisible item. This is a well known result in auction theory
and uses many of the concepts and results that we learnt in Part 1 of this tutorial.

• This is followed, in Section 3, by a discussion of the concept of individual rationality and the
well known Myerson-Satterthwaite impossibility theorem.

• In Section 4, we discuss a class of Groves mechanisms studied by Moulin [3]. These are alloca-
tively efficient, individually rational, dominant strategy incentive compatible, and are almost
budget balanced.

• Section 5 is devoted to optimal mechanisms. Here, we first define the notion of optimal mech-
anism design and then describe the seminal work of Myerson [4] on design of optimal auctions.
We also discuss several recent extensions of Myerson’s work.

• In Section 6, we look at a characterization of dominant strategy incentive compatibility social
choice functions. The major result we describe is that of Roberts [5].

• Section 7 is devoted to dominant strategy implementation of Bayesian incentive compatible
mechanisms, as described by Mookherjee and Reichelstein [6].

• In Section 8, we provide a brief discussion of implementation theory which seeks to solve the
difficulty arising out of multiple equilibria.

• In Section 9, we discuss the notion of implementation in ex-post Nash equilibrium which, while
still weaker than dominant strategy implementation, is stronger than Bayesian implementation.

• In Section 10, we discuss mechanism design where the types of the agents are not independent
but are interdependent.

• In Section 11, we look into some emerging topics in mechanism design such as dynamic mecha-
nisms, iterative mechanisms, stochastic mechanisms, etc.

• Finally, in Section 12, we suggest several pointers to the literature to delve deeper into mechanism
design theory.

2 The Revenue Equivalence Theorem

There are four basic types of auctions when a single indivisible item is to be sold:

1. English auction: This is also called oral auction, open auction, open cry auction, and ascending
bid auction. Here, the price starts at a low level and is successively raised until only one bidder
remains in the fray. This can be done in several ways: (a) an auctioneer announces prices, (b)
bidders call the bids themselves, or (b) bids are submitted electronically. At any point of time,
each bidder knows the level of the current best bid. The winning bidder pays the last going
price.
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2. Dutch auction: This is also called a descending bid auction. Here, the auctioneer announces an
initial (high) price and then keeps lowering the price iteratively until one of the bidders accepts
the current price. The winner pays the current price.

3. First price sealed bid auction: Recall that in this auction, potential buyers submit sealed
bids and the highest bidder is awarded the item. The winning bidder pays the price that he has
bid.

4. Second price sealed bid auction: This is the classic Vickrey auction. Recall that potential
buyers submit sealed bids and the highest bidder is awarded the item. The winning bidder pays
a price equal to the second highest bid (which is also the highest losing bid).

When a single indivisible item is to be bought or procured, the above four types of auctions can be
used in a reverse way. These are called reverse auctions or procurement auctions. In this section, we
would be discussing the revenue equivalence theorem as it applies to selling. The procurement version
can be analyzed on similar lines.

2.1 The Benchmark Model

There are four assumptions underlying the derivation of the revenue equivalence theorem: (1) risk neu-
trality of bidders (2) bidders have independent private values (3) bidders are symmetric (4) payments
depend on bids alone. These are described below in more detail.

2.1.1 Risk Neutrality of Bidders

A bidder is said to be:

• risk-averse if his utility is a concave function of his wealth; that is an increment in the wealth at
a lower level of wealth leads to an increment in utility that is higher than the increase in utility
due to an identical increment in wealth at a higher level of wealth;

• risk-loving if his utility is a convex function of his wealth; that is an increment in the wealth at
a lower level of wealth leads to an increment in utility that is lower than the increase in utility
due to an identical increment in wealth at a higher level of wealth; and

• risk-neutral if his utility is a linear function of his wealth; that is an increment in the wealth at
a lower level of wealth leads to the same increment in the utility as an identical increment would
yield at a higher level of wealth.

It is assumed in the benchmark model that all the bidders are risk neutral. This immediately implies
that the utility functions are linear.

2.1.2 Independent Private Values Model

In the independent private values model, each bidder knows precisely how highly he values the item.
He has no doubt about the true value of the item to him. However, each bidder does not know
anyone else’s valuation of the item. Instead, he perceives any other bidder’s valuation as a draw
from some known probability distribution. Also, each bidder knows that the other bidders and the
seller regard his own valuation as being drawn from some probability distribution. More formally, let

5



N = {1, 2, · · · , n} be the set of bidders. There is a probability distribution Φi from which bidder i
draws his valuation vi. Only bidder i observes his own valuation vi, but all other bidders and the
seller know the distribution Φi. Any one bidder’s valuation is statistically independent from any other
bidder’s valuation.

An apt example of this assumption is provided by the auction of an antique in which the bidders
are consumers buying for their own use and not for resale. Another example is Government contract
bidding when each bidder known his own production cost if he wins the contract.

Common Value Model

A contrasting model is the common value model . Here, if V is the unobserved true value of the item,
then the bidders’ perceived values vi, i = 1, 2, · · · , n are independent draws from some probability
distribution H(vi|V ). All the bidders know the distribution H. An example is provided by the sale of
an antique that is being bid for by dealers who intend to resell it. The item has one single objective
value, namely its market price. However, no one knows the true value. The bidders, perhaps having
access to different information, have different guesses about how much the item is objectively worth.
Another example is that of sale of mineral rights to a particular tract of land. The objective value here
is the amount of mineral actually lying beneath the ground. However no one knows its true value.

Suppose a bidder were somehow to learn another bidder’s valuation. If the situation is described
by the common value model, then the above provides useful information about the likely true value of
the item and the bidder would probably change his own valuation in the light of this. If the situation
is described by the independent private value model, the bidder knows his own mind and learning
about others valuation will not cause him to change his own valuation (although he may, for strategic
reasons, change his bid).

Real world auction situations are likely to contain aspects of both the independent private values
model and the common value model. It is assumed in the benchmark model that the independent
private values assumption holds.

2.1.3 Symmetry

This assumption implies that all the bidders have the same set of possible valuations and further they
draw their valuations using the same probability density φ. That is φ = φ1 = φ2 = . . . = φn.

2.1.4 Dependence of Payments on Bids Alone

It is assumed that the payment to be made by the winner to the auctioneer is a function of bids alone.

2.2 Statement of the Revenue Equivalence Theorem

It is clear that the benchmark model leads to a Bayesian game. We have already studied the structure
of this game while discussing the first price and second price auctions earlier. Bayesian Nash equilib-
rium is a natural outcome of such a game: each bidder bids an amount that is some function of his own
valuation, such that, given that everyone else chooses his bid in this way, no individual bidder could
do better by bidding differently. This Bayesian Nash equilibrium turns out to be a weakly dominant
strategy equilibrium for the English auction and second price auction.

Theorem 2.1 (Revenue Equivalence Theorem) : Consider a seller or an auctioneer trying to
sell a single indivisible item in which n bidders are interested. For the benchmark model (bidders are
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risk neutral, bidders have independent private values, bidders are symmetric, and payments depend
only on bids), all the four basic auction types (English auction, Dutch auction, first price auction, and
second price auction) yield the same average revenue to the seller.

The result looks counter intuitive: for example, it might seen that receiving the highest bid in a
first price scaled bid auction must be better for the seller than receiving the second highest bid, as
in second price auction. However, it is to be noted that bidders act differently in different auction
situations. In particular, they bid more aggressively in a second price auction than in a first price
auction.

2.3 Proof of the Revenue Equivalence Theorem

The proof proceeds in three parts. In Part 1, we show that the first price auction and the second
price auction yield the same expected revenue in their respective equilibria. In Part 2, we show that
the Dutch auction and the first price auction produce the same outcome. In Part 3, we show that the
English auction and the second price auction yield the same outcome. Before taking up these parts,
we first state and prove an important proposition.

A Proposition on Revenue Equivalence of Two Auctions

Assume that yi(θ) is the probability of agent i getting the object when the vector of announced
types is θ = (θ1, . . . , θn). Expected payoff to the buyer i with a type profile θ = (θ1, · · · , θn) will be
yi(θ)θi + ti(θ). The set of allocations is given by

K =

{

(y1, · · · , yn) : yi ∈ [0, 1]∀i = 1, · · · , n;

n∑

i=1

yi ≤ 1

}

As earlier, let yi(θ̂i) = Eθi
[yi(θ̂i, θi)] be the probability that agent i gets the object conditional to

announcing his type as θ̂i, with the rest of the agents announcing their types truthfully. Similarly,
ti(θ̂i) = Eθi

[ti(θ̂i, θi)] denotes the expected payment received by agent i conditional to announcing his
type as θ̂i, with the rest of the agents announcing their types truthfully. Let vi(θ̂i) = yi(θ̂i). Then,

Ui(θi) = yi(θi)θi + ti(θi)

denotes the payoff to agent i when all the buying agents announce their types truthfully. We now
state and prove an important proposition.

Proposition 2.1 Consider an auction scenario with:

1. n risk-neutral bidders (buyers) 1, 2, · · · , n

2. The valuation of bidder i (i = 1, · · · , n) is a real interval [θi, θi] ⊂ R with θi < θi

3. The valuation of bidder i (i = 1, · · · , n) is drawn from [θi, θi] with a strictly positive density
φi(.) > 0. Let Φi(.) be the cumulative distribution function.

4. The bidders’ types are statistically independent.

Suppose that a given pair of Bayesian Nash equilibria of two different auction procedures are such that:
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• For every bidder i, for each possible realization of (θ1, · · · , θn), bidder i has an identical proba-
bility of getting the good in the two auctions.

• Every bidder i has the same expected payoff in the two auctions when his valuation for the object
is at its lowest possible level.

Then the two auctions generate the same expected revenue for the seller.

Proof: By the revelation principle, it is enough we investigate two Bayesian incentive compatible
social choice functions in this auction setting. It is enough we show that two Bayesian incentive
compatible social choice functions having (a) the same allocation functions (y1(θ), · · · , yn(θ)) ∀θ ∈ Θ,
and (b) the same values of U1(θ1), · · · , Un(θn) will generate the same expected revenue to the seller.

We first derive an expression for the seller’s expected revenue given any Bayesian incentive com-
patible mechanism. Expected revenue to the seller

=

n∑

i=1

Eθ[−ti(θ)] (1)

Now, we have:

Eθ[−ti(θ)] = Eθi
[−Eθ−i

[ti(θ)]]

=

∫ θi

θi

[yi(θi)θi − Ui(θi)]φi(θi)dθi

=

∫ θi

θi

[

yi(θi)θi − Ui(θi)] −

∫ θi

θi

yi(s)ds

]

φi(θi)dθi

The last step is an implication of Myerson’s characterization of Bayesian incentive compatible functions
in linear environment. The above expression is now equal to

=

[
∫ θi

θi

(

yi(θi)θi −

∫ θi

θi

yi(s)ds

)

φi(θi)dθi

]

− Ui(θi)

Now, applying integration by parts with
∫ θi

θi
yi(s)ds as the first function, we get

∫ θi

θi

(
∫ θi

θi

yi(s)ds

)

φi(θi)dθi

=

∫ θi

θi

yi(θi)dθi −

∫ θi

θi

yi(θi)Φi(θi)dθi

=

∫ θi

θi

yi(θi)[1 − Φi(θi)]dθi

Therefore we get

E[−ti(θi)] = −Ui(θi) +

[
∫ θi

θi

yi(θi)

{

θi −
1 − Φi(θi)

φi(θi)

}

φi(θi)dθi

]
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= −Ui(θi) +

[
∫ θ1

θ1

· · ·

∫ θi

θn

yi(θ1, · · · , θn)

×

(

θi −
1 − Φi(θi)

φi(θi)

)




n∏

j=1

φj(θj)



 dθn · · · dθ1





since

yi(θi) =

∫ θ1

θ1

· · ·

∫ θn

θn

yi(θ1, · · · , θn) dθn · · · dθ1
︸ ︷︷ ︸

without dθi

Therefore the expected revenue of the seller

=

[ ∫ θ1

θ1

· · ·

∫ θn

θn

n∑

i=1

yi(θ1, · · · , θn)

(

θi −
1 − Φi(θi)

φi(θi)

)]




n∏

j=1

φj(θj)



 dθn · · · dθ1

−
n∑

i=1

Ui(θi)

By looking at the above expression, we see that any two Bayesian incentive compatible social choice
functions that generate the same functions (y1(θ), · · · , yn(θ)) and the same values of (U1(θ1), · · · , Un(θn))
generate the same expected revenue for the seller.

This proves the proposition. With this in hand, we now prove the revenue equivalence theorem in
three stages.

Part 1: Revenue Equivalence of First Price Auction and Second Price Auction

The first price auction and the second price auction satisfy the conditions of the above proposition.

• In both the auctions, the bidder with the highest valuation wins the auction

• bidders’ valuations are drawn from [θi, θi] and a bidder with valuation at the lower limit of the
interval has a payoff of zero in both the auctions.

Thus the proposition can be applied to the equilibria of the two auctions: Note that in the case of first
price auction, it is a Bayesian Nash equilibrium while in the case of second price auction, it is a weakly
dominant strategy equilibrium. In fact, it can be shown in any symmetric auction setting (where the
bidders’ valuations are independently drawn from identical distributions) that the conditions of the
above proposition will be satisfied by any Bayesian Nash equilibrium of first price auction and the
weakly dominant strategy equilibrium of the second price scaled bid auction.

Part 2: Equivalence of Dutch Auction and First Price Auction

To prove this, consider the situation facing a bidder in these two auctions. In each case, the bidder
must choose how high to bid without knowing the other bidders’ decisions. If he wins, the price he
pays equals his own bid. This result is true irrespective of which of the assumptions in the benchmark
model apply. Note that the equilibrium in the underlying Bayesian game in the two cases here is a
Bayesian Nash equilibrium.
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Part 3: Equivalence of English Auction and Second Price Auction

First we analyze the English auction. Note that a bidder drops out as soon the going price exceeds his
valuation. The second last bidder drops out as soon as the price exceeds his own valuation. This leaves
only one bidder in the fray and he wins the auction. Note that the winning bidder’s valuation is the
highest among all the bidders and he earns some payoff in spite of the monopoly power of the seller.
Only the winning bidder knows how much payoff he receives because only he knows his own valuation.
Suppose the valuations of the n bidders are v(1), v(2), · · · , v(n). Since the bidders are symmetric, these
valuations are draws from the same distribution and without loss of generality, assume that these are
in descending order. The winning bidder gets a payoff of v(1) − v(2).

Next we analyze the second price auction. In the second price auction, the bidder’s choice of bid
determines only whether or not he wins; the amount he pays if he wins is beyond his control. Suppose
the bidder considers lowering his bid below his valuation. The only case in which this changes the
outcome occurs when this lowering of his bid results in his bid now being lower than someone else’s.
Because he would have earned non-negative payoff if he won, lowering his bid cannot make him better
off. Suppose the bidder considers raising his bid above his valuation. The only case in which this
changes the outcome occurs when some other bidder has submitted a bid higher than the first bidder’s
valuation but lower than his new bid. Thus raising the bid causes this bidder to win but he must pay
more for the item than it is worth to him; raising his bid beyond his valuation cannot make him better
off. Thus, each bidder’s equilibrium best response strategy is to bid his own valuation for the item.
The payment here is equal to the actual valuation of the bidder with the second highest valuation
(i.e., realization of the second order statistic). Thus the expected payment and payoff are the same in
English auction and the second price auction. This establishes Part 3 and therefore proves the revenue
equivalence theorem.

Note that the outcomes of the English auction and the second price auction satisfy a weakly
dominant strategy equilibrium. That is, each bidder has a well defined best bid regardless of how high
he believes his rivals will bid. In the second price auction, the weakly dominant strategy is to bid time
valuation. In the English auction, the weakly dominant strategy is to remain in the bidding until the
price reaches the bidder’s own valuation.

2.4 Some Observations on the Revenue Equivalence Theorem

We now make a few important observations.

• The theorem does not imply that the outcomes of the four auction forms are always exactly the
same. They are only equal on average.

– Note that in the English auction or the second price auction, the price exactly equals the
valuation of the bidder with the second highest valuation, v(2). In Dutch auction or the first
price auction, the price is the expectation of the second highest valuation conditional on
the winning bidder’s own valuation. The above two prices will be equal only by accident,
however they are equal on average.

• Bidding logic is very simple in the English auction and second price auction. In the former, a
bidder remains in bidding until the price reaches his valuation. In the latter, he submits a sealed
bid equal to his own valuation.

• On the other hand, the bidding logic is quite complex in the Dutch auction and the first price
auction. Here the bidder bids some amount less than his true valuation. Exactly how much less
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depends upon the probability distribution of the other bidders’ valuations and the number of
competing bidders. Finding the Nash equilibrium bid is a non-trivial computational problem.

• The revenue equivalence theorem is devoid of empirical predictions about which type of auction
will be chosen by the seller in any particular set of circumstances. However when the assumptions
of the benchmark model are relaxed, particular auction forms emerge as being superior.

• The variance of revenue is lower in English auction or second price auction than in Dutch auction
or first price auction. Hence if the seller were risk averse, he would choose English or second
price rather than Dutch or first price.

• For more details on the revenue equivalence theorem, the reader is referred to the classic survey
paper by McAfee and McMillan [7], and the books by Milgrom [8] and Krishna [9].

3 Concept of Individual Rationality

Note that if a social choice function is BIC then each agent i finds it in his best interest to tell truth
if all the other agents are also doing so. However, note that neither agent i nor the social planner has
any control over the types that are being revealed by the agents other than i. Therefore, agent i may
wonder what if any one or more of his rival agents announce untruthful types. In such a situation,
telling truth should not result in any kind of loss to the agent i. Otherwise, either agent i will also
start lying or, alternatively, he may quit the mechanism itself because participation in the mechanism
is voluntary. Thus, in order to avoid such a situation, the social planner needs to ensure that each
agent, despite what the rival agents are reporting, will be better off telling truth than not participating
in the mechanism. These constraints are known as participation constraints or individual rationality
constraints. Thus, individual rationality adds one more dimension to the desirable properties of a
social choice function.

There are three stages at which participation constraints may be relevant in any particular appli-
cation.

3.1 Ex-Post Individual Rationality Constraints

These constraints become relevant when any agent i is given a choice to withdraw from the mechanism
at the ex-post stage that arise after all the agents have announced their types and an outcome in X
has been chosen. Let ui(θi) be the utility that agent i receives by withdrawing from the mechanism
when his type is θi. Then, to ensure agent i’s participation, we must satisfy the following ex-post
participation (or individual rationality) constraints

ui(f(θi, θ−i), θi) ≥ ui(θi) ∀ (θi, θ−i) ∈ Θ

3.2 Interim Individual Rationality Constraints

Let the agent i be allowed to withdraw from the mechanism only at an interim stage that arises after
the agents have learned their type but before they have chosen their actions in the mechanism. In
such a situation, the agent i will participate in the mechanism only if his interim expected utility
Ui(θi|f) = Eθ−i

[ui(f(θi, θ−i), θi)|θi] from social choice function f(·), when his type is θi, is greater
than ui(θi). Thus, interim participation (or individual rationality) constraints for agent i require that

Ui(θi|f) = Eθ−i
[ui(f(θi, θ−i), θi)|θi] ≥ ui(θi) ∀ θi ∈ Θi
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3.3 Ex-Ante Individual Rationality Constraints

Let agent i be allowed to refuse to participate in the mechanism only at ex-ante stage that arises
before the agents learn their type. In such a situation, the agent i will participate in the mechanism
only if his ex-ante expected utility Ui(f) = Eθ[ui(f(θi, θ−i), θi)] from social choice function f(·) is
greater than Eθi

[ui(θi)]. Thus, ex-ante participation (or individual rationality) constraints for agent i
require that

Ui(f) = Eθ[ui(f(θi, θ−i), θi)] ≥ Eθi
[ui(θi)]

The following proposition establishes a relationship among the three different participation constraints
discussed above.

Proposition 3.1 For any social choice function f(·), we have

f(·) is ex-post IR ⇒ f(·) is interim IR ⇒ f(·) is ex-ante IR

The next proposition establishes the individual rationality of Clarke mechanism. First, we provide
two definitions.

Definition 3.1 (Choice Set Monotonicity) We say that a mechanism M is choice set monotone
if the the set of feasible outcomes X (weakly) increases as additional agents are introduced into the
system. An implication of this property is K−i ⊂ K ∀ i = 1, . . . , n.

Definition 3.2 (No Negative Externality) Consider a choice set monotone mechanism M . We
say that the mechanism M has no negative externality if for each agent i, each θ ∈ Θ, and each
k∗
−i(θ−i) ∈ B∗(θ−i), we have

vi(k
∗
−i(θ−i), θi) ≥ 0

It is easy to verify that the mechanisms in all the previous examples - fair bilateral trade, first-price
sealed bid auction, Vickrey auction, and GVA satisfy all the three properties described above.

Proposition 3.2 (Ex-Post Individual Rationality of Clarke Mechanism ) Let us consider a
Clarke mechanism in which

1. ui(θi) = 0 ∀θi ∈ Θi; ∀ i = 1, . . . , n

2. The mechanism satisfies choice set monotonicity property

3. The mechanism satisfies no negative externality property

Then the Clarke mechanism is ex-post individual rational.

Proof: Recall that utility ui(f(θ), θi) of an agent i in Clarke mechanism is given by

ui(f(θ), θi) = vi(k
∗(θ), θi) +




∑

j 6=i

vj(k
∗(θ), θj)



−




∑

j 6=i

vj(k
∗
−i(θ−i), θj)





=




∑

j

vj(k
∗(θ), θj)



−




∑

j 6=i

vj(k
∗
−i(θ−i), θj)
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By virtue of choice set monotonicity, we know that k∗
−i(θ−i) ∈ K. Therefore, we have

ui(f(θ), θi) ≥




∑

j

vj(k
∗
−i(θ−i), θj)



−




∑

j 6=i

vj(k
∗
−i(θ−i), θj)





= vi(k
∗
−i(θ−i), θi)

≥ 0 = ui(θi)

The last step follows due to the fact that mechanism has no negative externality.
Q.E.D.

Let us now investigate the individual rationality of the social choice functions of the examples discussed
earlier.

3.4 Individual Rationality in Fair Bilateral Trade

Let us consider the example of fair bilateral trade. Let us assume that utility ui(θi) derived by the
agents i from not participating into the trade, when his type is θi, is as follows.

u1(θ1) = θ1 ∀ θ1 ∈ [θi, θi]

u2(θ2) = 0 ∀ θ2 ∈ [θi, θi]

In view of the above definitions, it is now easy to see that the SCF used in this example is ex-post IR.

3.5 Individual Rationality in First-Price Sealed Bid Auction

Let us consider the example of first-price sealed bid auction. If for each possible type θi, the utility
ui(θi) derived by the agents i from not participating into the auction is 0, then it is easy to see that
the SCF used in this example would be ex-post IR.

3.6 Individual Rationality in Vickrey Auction

Let us consider the example of second-price sealed bid auction. If for each possible type θi, the utility
ui(θi) derived by the agents i from not participating into the auction is 0, then it is easy to see that
the SCF used in this example would be ex-post IR. Moreover, the ex post IR of this example also
follows directly from Proposition 3.2 because this is a special case of Clarke mechanism satisfying all
the required conditions in the proposition.

3.7 Individual Rationality in GVA

Let us consider the example of generalized Vickrey auction. If for each possible type θi, the utility
ui(θi) derived by the agents i from not participating into the auction is 0, then by virtue of Proposition
3.2, we can claim that SCF used here would be ex-post IR.

By including the above facts regarding individual rationality in Table 1 and Table 2 of part 1 [1]
of this tutorial, we get Tables 1 and 2.
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SCF AE BB DSIC Ex-Post IR

Fair Bilateral Trade X X × X

First-Price Auction X × × X

Vickrey Auction X × X X

GVA X × X X

Table 1: Properties of social choice functions in quasi-linear environment

SCF AE BB DSIC BIC Ex-Post IR

Fair Bilateral Trade X X × × X

First-Price Auction X × × × X

Vickrey Auction X × X X X

Table 2: Properties of social choice functions in linear environment

3.8 The Myerson-Satterthwaite Theorem

In the previous section, we saw that we did not even have a single example where we have all the
desired properties in a SCF - AE, BB, BIC, and IR. This provides a motivation to study the feasibility
of having all these properties in a social choice function.

The Myerson-Satterthwaite theorem is one disappointing news in this direction, which tells us that
in a bilateral trade setting, whenever the gains from the trade are possible but not certain, then there
is no SCF which satisfies AE, BB, BIC, and Interim IR all together. The precise statement of the
theorem is as follows.

Theorem 3.1 (Myerson-Satterthwaite Impossibility Theorem) Consider a bilateral trade set-
ting in which the buyer and seller are risk neutral, the valuations θ1 and θ2 are drawn independently
from the intervals [θ1, θ1] ⊂ R and [θ2, θ2] ⊂ R with strict positive densities, and (θ1, θ1)

⋂
(θ2, θ2) 6= ∅.

Then there is no Bayesian incentive compatible social choice function that is ex-post efficient and gives
every buyer type and every seller type non-negative expected gains from participation.

For proof of the above theorem, refer to Proposition 23.E.1 of [10].
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4 Moulin Mechanisms

When we are given a problem to design a mechanism, we have to start with what properties we desire
from the mechanism. In this section, we will see the mechanisms designed by Moulin, which we refer
to as Moulin Mechanisms [3].

Recall that the Green-Laffont theorem rules out the possibility of a DSIC mechanism that satisfies
both allocative efficiency and strict budget balance. So we have to, in the least, compromise on
one of these three properties. Either we can achieve budget balance and DSIC or achieve allocative
efficiency as well as budget balance but settle for Bayesian incentive compatibility. The Green-Laffont
theorem says that the search for mechanisms which are DSIC and allocative efficient ends with the
Groves mechanisms. As we have seen, the groves mechanisms are not necessarily budget balanced.
Moulin [3] has designed a groves mechanism, which minimizes the budget imbalance. He has proposed
the redistribution of surplus created in a way that the mechanism remains a Groves mechanism and
achieves minimum budget imbalance.

4.1 Almost Budget Balanced Assignments

Suppose there are p identical objects and n agents (n > p) claim one unit each of these objects. For
example, we might be interested in distributing p tickets to a movie among n friends. Obviously, not
all claims can be satisfied. As p < n, the idea is to have a fair allocation, that is, allocate the p objects
to those p agents, who value the object most. If the Groves Mechanism is used, we will have dominant
strategy truthful revelation and efficient assignments. But the Groves Mechanism inherently possesses
the problem of budget imbalance, resulting in a deficit or a surplus. This budget imbalance depends
upon the type profiles of the agents. It would be nice to have a third party that would perform the
role of a residual claimant, supplying money if needed and burning out the surplus, if generated.

Moulin [3] defines the notion of efficiency loss. The surplus loss of a mechanism is measured as
the ratio of budget surplus to efficient surplus. The efficiency loss of a mechanism as defined as the
worst case value of such ratio over all possible profiles of valuations. It is denoted by L(n, p) in the
above allocation problem.

If the imbalance of a mechanism is negative, that is, the surplus is negative, somebody has to
supply the deficit amount and such a mechanism is said to be infeasible. For a mechanism to be
feasible, the surplus therefore should be positive. One more desirable property to satisfy would be
Voluntary Participation (VP), that is, no participant ends in loss at any profile of valuation. This is
the same as ex-post individual rationality discussed in Section 3. Let L̂(n, p) be the smallest efficiency
loss possible over all feasible Groves mechanisms. Moulin has designed a Groves mechanism which
achieves this efficiency loss. He has also found the smallest efficiency loss L∗(n, p) possible over all
feasible Groves mechanisms which also satisfies the VP constraints. He has designed a feasible Groves
mechanism satisfying VP and achieving efficiency loss L∗(n, p).

4.2 The Model

The model under consideration and the notation used in the rest of this section are described in Table
3. Recall that a general Groves mechanism is described by n arbitrary functions hi defined on R

N\{i}.
The payment by agent i is given by

ti(θ) = hi(θ−i) −

p+1
∑

j 6=i,j=1

θ∗j
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p Number of identical objects

N Set of agents N = {1, 2, . . . , n}

θi Valuation of agent i

θ Type profile (profile of valuations) of all the agents
θ ∈ R

n
+

θ∗ Permutation of type profile θ,
where coordinates are arranged in decreasing order

θ∗1 ≥ θ∗2 ≥ . . . ≥ θ∗n

θ−i Profile θ obtained by deleting ith coordinate

θ∗−i Permutation of θ−i

where coordinates are arranged in decreasing order

Sp(θ) Efficient surplus given p objects
and profile of valuations θ

Sp(θ) = θ∗1 + θ∗2 + . . . + θ∗p

Sp(θ−i) Sp(θ−i) = θ∗1−i + θ∗2−i + . . . + θ∗p−i

ti(θ) Payment made by the agent i

ui(θ) Utility of an agent i at profile θ

∆(θ) Budget imbalance

∆(a) =
∑

i∈ N ti(.)

L(n, p) Efficiency loss

Table 3: Notation for Moulin mechanisms

Therefore the utility of agent i is:
ui(θ) = Sp(θ) − hi(θ−i)

The budget imbalance of this mechanism is

∆(θ) =
∑

i∈N

ti(θ) =
∑

i∈N

hi(θ−i) − (n − 1)Sp(θ)

In most Groves mechanisms, the sign of ∆ is arbitrary. Money can flow in or flow out. A residual
claimant will absorb the surplus (if the sign is positive) or cover any deficit ( if the sign is negative.)
This measure has to normalized for the comparison among different mechanisms. Moulin has defined
the performance index of mechanism by

L(n, p) = max
Money Imbalance

Efficient surplus
= max

θ∈RN
+
\{0}

|∆(θ)|

Sp(θ)
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If ∆(θ) > 0, the residual claimant receives a part of the efficient surplus in cash, so we can interpret
|∆(θ)|
Sp(θ) as a relative efficiency loss. This interpretation is not valid if ∆(θ) < 0, because in this case the

residual claimant subsidizes the participants. We then regard |∆(θ)|
Sp(θ) as the relative cost of running the

mechanism, and
Sp(θ)
|∆(θ)| as the multiplicative effect of the subsidy.

We will focus our attention on self-sufficient mechanisms where the money only flows out. We call
these mechanisms feasible:

Feasibility : ∆(θ) ≥ 0 ⇔
∑

i∈N

hi(θ−i) ≥ (n − 1)Sp(θ) ∀ θ ∈ Θ (2)

Under feasibility, we call the index L(n, p) the worst efficiency loss, or simply the efficiency loss of the
mechanism:

L(n, p) = max
outflow of money

efficient surplus
= max

θ∈R
N
+
\{0}

∆(θ)

Sp(θ)

Voluntary participation can be expressed as:

Voluntary Participation (V P ) : ui(θ) ≥ 0 ∀ θ,∀ i (3)

⇔ hi(θ−i) ≤ Sp(θ−i) ∀ θ−i,∀ i

Note that F and V P imply 0 ≤ L(n, p) ≤ 1. Indeed, the inequality (3) gives

hi(θ−i) ≤ Sp(θ−i) ≤ Sp(θ)∀i

which sums to ∆(θ) ≤ Sp(θ).
The Vickrey auction which is basically Clarke mechanism applied to a combinatorial auction is

a benchmark mechanism in which the residual claimant “owns” the objects and sells them at the
(p + 1)st highest price. Thus,

hvick
i (θ−i) = Sp(θ−i) and

uvick
i (θ) = Sp(θ) − Sp(θ−i) ∀ i and ∀ θ. (4)

The Vickrey auction is feasible and individually rational: p highest bidders get

uvick
i (θ) = θi − θ∗(p+1)

If θ∗1 = . . . = θ∗(p+1), then ui(θ) = 0 ∀ i ∈ N . The residual claimant will capture the whole surplus
implying Lvick(n, p) = 1. Thus, the Vickrey auction has the largest efficiency loss among all feasible
and voluntary Groves mechanisms. In view of Definition (4), inequality (3) reads

uvick
i (θ) ≤ ui(θ) ∀ i and θ

This means a Groves mechanism is voluntary if and only if it is Pareto superior to the Vickrey auction.
For the sake of convenience, we will write the functions hi(θ−i) as

hi(θ−i) = Sp(θ−i) − rp(i; θ−i)

The function rp(i; θ−i) is a rebate function. We can interpret it as the rebate given to an agent i,
which in turn will help to reduce the budget imbalance. Note that the rebate of agent i depends upon

17



the type profile of other agents and not on the valuation of agent i. Thus by giving a rebate, we
are not destroying the structure of the Groves payments, ensuring that allocative efficiency and DSIC
properties are retained. Thus, the utility to agent i in Moulin’s mechanism is

ui(θ) = Sp(θ) − Sp(θ−i) + rp(i; θ−i) = uvick
i (θ) + rp(i; θ−i) ∀ θ ∈ R

N
+

When voluntary participation holds, rp(i; θ−i) ≥ 0 and then, we interpret rp(i; θ−i) as agent i’s share
of the sellers revenue in the Vickrey auction. For the sake of simplicity, we will drop the first i and
will simply write rp(θi) for rebate function.

4.3 Optimal Feasible Mechanisms: Voluntary and Unvoluntary

The word optimal here refers to optimality with respect to efficiency loss. This is not to be confused
with the optimal mechanisms that we will see in detail in Section 5. Define:

Bt,u
s =

u∑

k=t

(
s
k

)

, Bt→
s = Bt,s

s , B→t
s = B0,t

s

Moulin [3] has proved the following results:

Theorem 4.1 Under feasibility and voluntary participation, the smallest efficiency loss is given by,

L∗(n, p) =

(
n − 1

p

)

Bp→
n−1

The following linear rebate functions define an optimal mechanism:

r∗p(θ−i) =
n−1∑

k=p+1

(−1)k−p−1 pL∗(n, p)

kL∗(n, k)
θ∗k−i if p ≤ n − 2; rn−1(θ−i) = 0

The corresponding budget surplus is

∆∗(θ) = pL∗(n, p){
n∑

k=p+1

(−1)k−p−1θ∗k}

Theorem 4.2 Under feasibility, the smallest efficiency loss, L̂(n, p) is given by,

L̂(n, 1) = L∗(n, 1); L̂(n, p) =

(
n − 1

p

)

Bp→
n−1 + n

p
B

→(p−2)
n−2

The following linear rebate functions define an optimal mechanism.

r̂1(θ−i) = r∗1(θ−i)

r̂p(θ−i) = L̂(n, p){

p−1
∑

k=1

γkθ
∗k
− i} + (1 −

L̂(n, p)

L∗(n, p)
)θ∗p− i +

n−1∑

k=p+1

(−1)k−p−1 pL̂(n, p)

kL∗(n, k)
θ∗k− i (5)
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γk = −
n

n − 1

B
(n−k)→
n−2

(
n − 2

n − k − 1

) −
1

n − 1
if p-k is odd; γk =

n

n − 1

B
(n−k)→
n−2

(
n − 2

n − k − 1

)

Note that the right summation in Equation (5) is zero if p = n − 1. The budget surplus is

∆̂(θ) = L̂(n, p){

≤p−1
∑

k=1,3,

(p − k)(θ∗(p−k) − θ∗(p−k+1)) + p
n∑

k=p+1

(−1)k−p−1a∗k}

We will see this with an example. Let us compute L∗(n, p), r∗p(θ−i) for n = 3, p = 1.

L∗(3, 1) =

(
2
1

)

B1→
2

=
2

(
2
1

)

+

(
2
2

) =
2

3

r∗1(θ−i) =

2∑

k=2

(−1)k−2 L∗(3, 1)
kL∗(3, k)

θ∗k−i =
2
3

2
a∗k−i =

1

3
a∗2−i

Consider the type profile (1, 1, 0). With this type profile, agent 1 wins. Agent i has rebate 0 and pays
1 − 0 = 1. So its utility is 0. Agent 2 has rebate 0, which is also its utility. Agent 3’s rebate is 1/3
which means it pays 0− 1/3, that is, it receives 1/3. Budget imbalance is 1− 1

3 = 2
3 . Efficient surplus

is 1. So surplus loss at profile (1, 1, 0) is 2
3 . Note this is precisely L∗(3, 1).

4.4 Some Observations

• The rebate functions in Theorem 4.1 and Theorem 4.2 are not the only rebate functions achieving
respective efficiency losses. Moulin has shown that if we restrict the rebate functions to be
symmetric, these are the only choices for the rebate functions achieving corresponding efficiencies.

• We discuss first the case p = 1. Here, voluntary participation comes free: the optimal linear
rebates under F define a voluntary mechanism, therefore the optimal efficiency loss under F is
also the optimal loss under F and V P :

L̂(n, 1) = L∗(n, 1) =
n − 1

2n−1 − 1
≃

2n

2n

• Consider the situation when p = n−1. It is easy to see that L∗(n, n−1) = 1 and r∗n−1(θ−i) = 0.
This clearly indicates that we cannot improve upon the Vickrey mechanism when p = n − 1.
However, the optimal feasible (unvoluntary) mechanism achieves an efficiency loss even smaller
than in the one object case:

L̂(n, n − 1) =
n − 1

n2n−2 − 1′
≃

4

2n

• In general, Moulin mechanisms achieve budget balance asymptotically with respect to n. The
summary of asymptotic behavior is as follows:
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1. L∗(n, p) increases strictly in p and decreases strictly in n.

2. L̂(n, p) increases in n for p ≤ n ≤ 2p − 1, L̂(n, p) decreases in n if 2p ≤ n

3. L̂(n, p) increases in p for 1 ≤ p ≤ {n
2 } decreases in p if {n

2 } ≤ p ≤ n. {n
2 } = n

2 if n is even
and = 2n−1

2 otherwise.

4. Loosely speaking, L̂(n, p) and L∗(n, p) converge exponentially fast to zero in n if p
n

< 1
2

and as 1√
n

if p
n
≃ 1

2 .

5. If p
n

> 1
2 , unvoluntary mechanisms still allow exponentially fast efficiency while voluntary

ones preclude asymptotic efficiency altogether.

• Though the Moulin Mechanisms achieve the least efficiency loss, that is, the least worst case
budget imbalance, they inherently have some problems. Consider a mechanism with F and V P
conditions. Let the type profile be (1, 1, . . . , 1

︸ ︷︷ ︸

p+1 times

, 0, . . . , 0). The p < n − 1 objects are given to

the first p agents. The rebate to p + 1 agents having valuation 1 is 0 and so is the utility. The
rebate to remaining agents is 1−L∗(n,p)

n−p−1 > 0. The agents having least preferences will have strict
positive utility. So obviously, the agents having higher valuation will envy the agents having least
valuation. In general, in Moulin’s mechanisms under F and V P conditions, the utilities are not
in the same order as type values of the agents. So this mechanism in which this property holds
true is called an envy free mechanism. For example, Vickrey auctions are envy free. Moulin’s
mechanism are not envy free. It is noteworthy that the Vickrey Auction is the only envy free
auction among all feasible Groves mechanisms which have bounded efficiency loss.

• For the Vickrey auction, ui(θ) is weakly increasing in p and weakly decreasing in n. Both
properties have been violated by mechanisms given in Theorem 4.1.

4.5 Space of Mechanisms

We have seen a variety of mechanisms having different sets of properties. Figure 1 depicts different
classes of mechanisms we have studied so far and their inter-relationships.

5 Optimal Mechanisms

An obvious problem that faces a social planner is to decide which direct revelation mechanism (or
equivalently, social choice function) is optimal for a given problem. In the rest of this paper, our
objective is to familiarize the reader with a couple of techniques which social planner can adopt to
design an optimal direct revelation mechanism for a given problem at hand.

One notion of optimality in multi-agent systems is that of Pareto efficiency . We now define three
different notions of efficiency: ex-ante, interim, and ex-post.

Definition 5.1 (Ex-Ante Efficiency) For any given set of social choice functions F , and any mem-
ber f(·) ∈ F , we say that f(·) is ex-ante efficient in F if there is no other f̂(·) ∈ F having the following
two properties

Eθ[ui(f̂(θ), θi)] ≥ Eθ[ui(f(θ), θi)] ∀ i = 1, . . . , n

Eθ[ui(f̂(θ), θi)] > Eθ[ui(f(θ), θi)] for some i
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Figure 1: Design space of mechanisms with quasi-linear utilities

Definition 5.2 (Interim Efficiency) For any given set of social choice functions F , and any mem-
ber f(·) ∈ F , we say that f(·) is interim efficient in F if there is no other f̂(·) ∈ F having the following
two properties

Eθ−i
[ui(f̂(θ), θi)|θi] ≥ Eθ−i

[ui(f(θ), θi)|θi] ∀ i = 1, . . . , n, ∀ θi ∈ Θi

Eθ−i
[ui(f̂(θ), θi)|θi] > Eθ−i

[ui(f(θ), θi)|θi] for some i and some θi ∈ Θi

Definition 5.3 (Ex-Post Efficiency) For any given set of social choice functions F , and any mem-
ber f(·) ∈ F , we say that f(·) is ex-post efficient in F if there is no other f̂(·) ∈ F having the following
two properties

ui(f̂(θ), θi) ≥ ui(f(θ), θi) ∀ i = 1, . . . , n, ∀ θ ∈ Θ

ui(f̂(θ), θi) > ui(f(θ), θi) for some i and some θ ∈ Θ

Using the above definition of ex-post efficiency, we can say that a social choice function f(·) is ex-post
efficient in the sense of definition 5.1 in [1] if and only if it is ex-post efficient in the sense of definition
5.3 when we take F = {f : Θ → X}.

The following proposition establishes a relationship among these three different notions of efficiency.
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Proposition 5.1 Given any set of feasible social choice functions F and f(·) ∈ F , we have

f(·) is ex-ante efficient ⇒ f(·) is interim efficient ⇒ f(·) is ex-post efficient

For proof of the above proposition, refer to Proposition 23.F.1 of [10]. Also, compare the above
proposition with the Proposition 3.1.

With this setup, we now try to formalize the design objectives of a social planner. For this, we
need to define the concept known as social utility function.

Definition 5.4 (Social Utility Function) A social utility function is a function w : R
n → R that

aggregates the profile (u1, . . . , un) ∈ R
n of individual utility values of the agents into a social utility.

Consider a mechanism design problem and a direct revelation mechanism D = ((Θi)i∈N , f(·)) proposed
for it. Let (θ1, . . . , θn) be the actual type profile of the agents and assume for a moment that they will
all reveal their true types when requested by the planner. In such a case, the social utility that would
be realized by the social planner for every possible type profile θ of the agents is given by:

w(u1(f(θ), θ1), . . . , un(f(θ), θn)) (6)

However, recall the implicit assumption behind a mechanism design problem, namely, that the agents
are autonomous and they would report a type as dictated by their rational behavior. Therefore,
the assumption that all the agents will report their true types is not true in general. In general,
rationality implies that the agents report their types according to a strategy suggested by a Bayesian
Nash equilibrium s∗(·) = (s∗1(·), . . . , s

∗
n(·)) of the underlying Bayesian game. In such a case, the social

utility that would be realized by the social planner for every possible type profile θ of the agents is
given by

w(u1(f(s∗(θ)), θ1), . . . , un(f(s∗(θ)), θn)) (7)

In some instances, the above Bayesian Nash equilibrium may turn out to be a dominant strategy equi-
librium. Better still, truth revelation by all agents could turn out to be a Bayesian Nash equilibrium
or a dominant strategy equilibrium.

5.1 Optimal Mechanism Design Problem

In view of the above notion of social utility function, it is clear that the objective of a social planner
would be to look for a social choice function f(·) that would maximize the expected social utility for
a given social utility function w(·). However, being the social planner, it is always expected of him to
be fair to all the agents. Therefore, the social planner would first put a few fairness constraints on the
set of social choice functions which he can probably choose from. The fairness constraints may include
any combination of all the previously studied properties of a social choice function, such as ex-post
efficiency, incentive compatibility, and individual rationality. This set of social choice functions is
known as set of feasible social choice functions and is denoted by F . Thus, the problem of a social
planner can now be cast as an optimization problem where the objective is to maximize the expected
social utility and the constraint is that the social choice function must be chosen from the feasible
set F . This problem is known as the optimal mechanism design problem and the solution of the
problem is some social choice function f∗(·) ∈ F which is used to define the optimal mechanism
D∗ = ((Θi)i∈N , f∗(·)) for the problem that is being studied.
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Depending on whether the agents are loyal or autonomous entities, the optimal mechanism design
problem may take two different forms.

maximize
f(·) ∈ F

Eθ [w(u1(f(θ), θ1), . . . , un(f(θ), θn))] (8)

maximize
f(·) ∈ F

Eθ [w(u1(f(s∗(θ)), θ1), . . . , un(f(s∗(θ)), θn))] (9)

The problem (8) is relevant when the agents are loyal and always reveal their true types whereas the
problem (9) is relevant when the agents are rational. At this point of time, one may ask how to define
the set of feasible social choice functions F . There is no unique definition of this set. The set of
feasible social choice functions is a subjective judgment of the social planner. The choice of the set
F depends on what all fairness properties the social planner would wish to have in the optimal social
choice function f∗(·). If we define

F
DSIC

= {f : Θ → X|f(·) is dominant strategy incentive compatible}

F
BIC

= {f : Θ → X|f(·) is Bayesian incentive compatible}

F
ExPostIR

= {f : Θ → X|f(·) is ex-post individual rational}

F
IntIR

= {f : Θ → X|f(·) is interim individual rational}

F
ExAnteIR

= {f : Θ → X|f(·) is ex-ante individual rational}

F
Ex−AnteEff

= {f : Θ → X|f(·) is ex-ante efficient}

F
IntEff

= {f : Θ → X|f(·) is interim efficient}

F
Ex−PostEff

= {f : Θ → X|f(·) is ex post efficient}

The set of feasible social choice functions F may be either any one of the above sets or intersection of
any combination of the above sets. For example, the social planner may choose F = F

BIC

⋂
F

IntIR
. In

the literature, this particular feasible set is known as incentive feasible set due to Myerson [11]. Also,
note that if the agents are loyal then the sets F

DSIC
and F

BIC
will be equal to the whole set of all the

social choice functions.
If the environment is quasi-linear, then we can also define the set of allocatively efficient social

choice functions F
AE

and the set of budget balanced social choice functions F
BB

. In such an environ-
ment, we will have F

Ex−PostEff
= F

AE

⋂
F

BB
.

5.2 Myerson’s Optimal Auction: An Example of Optimal Mechanism

Let us consider Example 2.1 in [1], of single unit - single item auction without reserve price and
discuss an optimal mechanism developed by Myerson [4]. The objective function here is to maximize
the auctioneer’s revenue.

Recall that each bidder i’s type lies in an interval Θi = [θi, θi]. We impose the following additional
conditions on the environment.

1. The auctioneer and the bidders are risk neutral

2. Bidders’ types are statistically independent, that is, the joint density φ(·) has the form φ1(·) ×
. . . × φn(·)
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3. φi(·) > 0 ∀ i = 1, . . . , n

4. We generalize the outcome set X relative to that considered in Example 2.1 in [1], by allowing a
random assignment of the good. Thus, we now take yi(θ) to be buyer i’s probability of getting
the good when the vector of announced types is θ = (θ1, . . . , θn). Thus, the new outcome set is
given by

X =

{

(y0, y1 . . . , yn, t0, t1, . . . , tn)|y0 = 0, t0 ≥ 0, yi ∈ [0, 1], ti ≤ 0 ∀ i = 1, . . . , n,

n∑

i=0

yi ≤ 1,

n∑

i=0

ti = 0

}

Recall that the utility functions of the agents in this example are given by

ui(f(θ), θi) = ui(y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ), θi) = θiyi(θ) + ti(θ) ∀ i = 1, . . . , n

Thus, viewing yi(θ) = vi(k(θ)) in conjunction with the second and third conditions above, we can
claim that the underlying environment here is linear.

In the above example, we assume that the auctioneer is the social planner and he is looking for an
optimal direct revelation mechanism to sell the good. Myerson’s [4] idea was that the auctioneer must
use a social choice function which is Bayesian incentive compatible and interim individual rational
and at the same time fetches the maximum revenue to the auctioneer. Thus, in this problem, the set
of feasible social choice functions is given by F = F

BIC

⋂
F

InterimIR
. The objective function in this

case would be to maximize the total expected revenue of the seller which would be given by

Eθ [w(u1(f(θ), θ1), . . . , un(f(θ), θn))] = −Eθ

[
n∑

i=1

ti(θ)

]

Note that in above objective function we have used f(θ) not f(s∗(θ)). This is because in the set
of feasible social choice functions we are considering only BIC social choice functions and for these
functions we have s∗(θ) = θ ∀ θ ∈ Θ. Thus, Myerson’s optimal auction design problem can be
formulated as the following optimization problem.

maximize
f(·) ∈ F

− Eθ

[
n∑

i=1

ti(θ)

]

(10)

where

F = {f(·) = (y1(·), . . . , yn(·), t1(·), . . . , tn(·))|f(·) is BIC and interim IR}

By invoking Myerson’s Characterization Theorem (Theorem 11.2 in [1]) for BIC SCF in linear envi-
ronment, we can say that an SCF f(·) in the above context would be BIC iff it satisfies the following
two conditions

1. yi(·) is non-decreasing for all i = 1, . . . , n

2. Ui(θi) = Ui(θi) +
θi∫

θi

yi(s)ds ∀ θi ∈ Θi; ∀ i = 1, . . . , n
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Also, we can invoke the definition of interim individual rationality to claim that the an SCF f(·) in
the above context would be interim IR iff it satisfies the following conditions

Ui(θi) ≥ 0 ∀θi ∈ Θi; ∀ i = 1, . . . , n

where

• ti(θ̂i) = Eθ−i
[ti(θ̂i, θ−i)] be bidder i’s expected transfer given that he announces his type to be

θ̂i and that all the bidders j 6= i truthfully reveal their types.

• yi(θ̂i) = Eθ−i
[yi(θ̂i, θ−i)] is the probability that bidder i would receive the object given that he

announces his type to be θ̂i and all bidders j 6= i truthfully reveal their types.

• Ui(θi) = θiyi(θi) + ti(θi)

In view of the above paraphernalia, problem (10) can be rewritten as follows.

maximize
(yi(·), Ui(·))i∈N

n∑

i=1

θi∫

θi

(θiyi(θi) − Ui(θi)) φi(θi)dθi (11)

subject to

(i) yi(·) is non-decreasing ∀ i = 1, . . . , n

(ii) yi(θ) ∈ [0, 1],
∑n

i=1 yi(θ) ≤ 1 ∀i = 1, . . . , n,∀ θ ∈ Θ

(iii) Ui(θi) = Ui(θi) +
θi∫

θi

yi(s)ds ∀ θi ∈ Θi; ∀ i = 1, . . . , n

(iv) Ui(θi) ≥ 0 ∀ θi ∈ Θi; ∀ i = 1, . . . , n

We first note that if constraint (iii) is satisfied then constraint (iv) will be satisfied iff Ui(θi) ≥ 0 ∀ i =
1, . . . , n. As a result, we can replace the constraint (iv) with

(iv’) Ui(θi) ≥ 0 ∀ i = 1, . . . , n
Next, substituting for Ui(θi) in the objective function from constraint (iii), we get

n∑

i=1

θi∫

θi




θiyi(θi) − Ui(θi) −

θi∫

θi

yi(s)ds




φi(θi)dθi

Integrating by parts the above expression, the auctioneer’s problem can be written as one of choosing
the yi(·) functions and the values U1(θ1), . . . , Un(θn) to maximize

θ1∫

θ1

. . .

θn∫

θn

[
n∑

i=1

yi(θi)Ji(θi)

][
n∏

i=1

φi(θi)

]

dθn . . . dθ1 −
n∑

i=1

Ui(θi)
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subject to constraints (i), (ii), and (iv’), where

Ji(θi) =

(

θi −
1 − Φi(θi)

φi(θi)

)

=

(

θi −
Φi(θi)

φi(θi)

)

where, we define Φi(θi) = 1−Φi(θi). It is evident that solution must have Ui(θi) = 0 for all i = 1, . . . , n.
Hence, the auctioneer’s problem reduces to choosing functions yi(·) to maximize

θ1∫

θ1

. . .

θn∫

θn

[
n∑

i=1

yi(θi)Ji(θi)

] [
n∏

i=1

φi(θi)

]

dθn . . . dθ1

subject to constraints (i) and (ii).
Let us ignore constraint (i) for the moment. Then inspection of the above expression indicates

that yi(·) is a solution to this relaxed problem iff for all i = 1, . . . , n, we have

yi(θ) =

{
0 : if Ji(θi) < max {0,maxh 6=i Jh(θh)}
1 : if Ji(θi) > max {0,maxh 6=i Jh(θh)}

(12)

Note that Ji(θi) = max {0,maxh 6=i Jh(θh)} is a zero probability event.
In other words, if we ignore the constraint (i) then yi(·) is a solution to this relaxed problem iff the

good is allocated to a bidder who has highest non-negative vale for Ji(θi). Now, recall the definition
of yi(·). It is easy to write down the following expression

yi(θi) = Eθ−i
[yi(θi, θ−i)] (13)

Now, if we assume that Ji(·) is non-decreasing in θi then it is easy to see that above solution yi(·), given
by (12), will be non-decreasing in θi, which in turn implies, by looking at expression (13), that yi(·) is
non-decreasing in θi. Thus, the solution to this relaxed problem actually satisfies constraint (i) under
the assumption that Ji(·) is non-decreasing. Assuming that Ji(·) is non-decreasing, the solution given
by (12) seems to be the solution of the optimal mechanism design problem for single unit- single item
auction. The condition that Ji(·) is non-decreasing in θi is met by most of the distribution functions
such as Uniform and Exponential.

So far we have computed the allocation rule for the optimal mechanism and now we turn out
attention towards the payment rule. The optimal payment rule ti(·) must be chosen in such a way
that it satisfies

ti(θi) = Eθ−i
[ti(θi, θ−i)] = Ui (θi) − θiyi (θi) =

θi∫

θi

yi(s)ds − θiyi (θi) (14)

Looking at the above formula, we can say that if the payment rule ti(·) satisfies the following formula
(15), then it would also satisfy the formula (14).

ti(θi, θ−i) =

θi∫

θi

yi(s, θ−i)ds − θiyi (θi, θ−i) ∀ θ ∈ Θ (15)
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The above formula can be rewritten more intuitively, as follows. For any vector θ−i, let we define

zi(θ−i) = inf {θi|Ji(θi) > 0 and Ji(θi) ≥ Jj(θj) ∀ j 6= i}

Then zi(θ−i) is the infimum of all winning bids for bidder i against θ−i, so

yi(θi, θ−i) =

{
1 : if θi > zi(θ−i)
0 : if θi < zi(θ−i)

This gives us

θi∫

θi

yi(s, θ−i)ds =

{
θi − zi(θ−i) : if θi ≥ zi(θ−i)
0 : if θi < zi(θ−i)

Finally, the formula (15) becomes

ti(θi, θ−i) =

{
−zi(θ−i) : if θi ≥ zi(θ−i)
0 : if θi < zi(θ−i)

That is bidder i must pay only when he gets the good, and then he pays the amount equal to his
lowest possible winning bid.

A few interesting observations are worth mentioning here.

1. When the various bidders have differing distribution function Φi(·) then, the bidder who has
the largest value of Ji(θi) is not necessarily the bidder who has bid the highest amount for the
good. Thus Myerson’s optimal auction need not be allocatively efficient and therefore, need not
be ex-post efficient.

2. If the bidders are symmetric, that is,

• Θ1 = . . . = Θn = Θ

• Φ1(·) = . . . = Φn(·) = Φ(·)

then the allocation rule would be precisely the same allocation rule of first-price and second-
price auctions. In such a case the object would be allocated to the highest bidder. In such a
situation, the optimal auction would also become allocatively efficient. Also, note that in such a
case the payment rule that we described above would coincide with the payment rules in second-
price auction. In other words, the second price (Vickrey) auction would be the optimal auction
when the bidders are symmetric. Therefore, many a time, the optimal auction is also known as
modified Vickrey auction.

Riley and Samuelson [12] also have studied the problem of design of an optimal auction for
selling a single unit of a single item. They assume that the bidders to be symmetric and also
that Myerson’s [4] work on optimal auctions is more general.
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5.3 Extensions to Myerson’s Auction

5.3.1 Efficient Optimal Auctions

Krishna and Perry [13] have argued in favor of an auction which will maximize the revenue subject to
allocative efficiency (AE) and also DSIC and IIR constraints. The Green Laffont theorem (Theorem
10.2 in [1]) tells us that any DSIC and AE mechanism is necessarily a VCG mechanism. So, we have
to look for a VCG mechanism which will maximize the revenue to the seller. Krishna and Perry [13]
define, social utility as the value of an efficient allocation:

SW (θ) =

j=n
∑

j=1

vj(k
∗(θ), θj)

SW−i(θ) =
∑

j 6=i

vj(k
∗(θ), θj)

With these functions, we can write the payment rule in Clarke’s pivotal mechanism as

ti(θ) = SW−i(0, θ−i) − SW−i(θ)

Now fix a vector, s = (s1, s2, . . . , sn) ∈ Θ. The VCG mechanism with basis s is defined by

ti(θ|si) = SW−i(si, θ−i) − SW−i(θ)

It can be seen that this new mechanism is also DSIC. Now choosing an appropriate basis, one can
always find an optimal auction in the class of VCG mechanisms. Krishna and Perry [13] have shown
that the classical Vickrey auction is an optimal and efficient auction for a single indivisible item. They
have also shown that the Vickrey auction is an optimal one among VCG mechanisms for multi-unit
auctions, when all the bidders have downward sloping demand curves.

5.3.2 Armstrong’s Two Item Optimal Auction

In [14], Armstrong has considered an optimal auction for two objects. There is a single seller who wishes
to sell two items. Armstrong has designed an optimal auction for such setting. He has considered two
different models. In the first model, he assumes that the valuation is binary and has developed an
optimal auction which is efficient as well. In the second model, he relaxes the assumption of binary
valuation and designed an optimal auction. This auction may not be efficient.

Let A and B be the two objects that the seller wishes to sell. There are n bidders who have
valuations for object k ∈ {A,B}. The valuation θk of bidder k belongs to the binary set {θk

L, θk
H}. Thus

the number of possible types of each bidder is 4. Let us refer to the four types as {LL,LH,HL,HH}.
When we say a bidder has type LH, we mean, his type for object A is θA

L and for B is θB
H .

Armstrong defines three auctions.

1. Independent Auction: Each object is allocated to the bidder who has highest valuation for that
object (and is allocated fairly and randomly in the event of tie).

2. Bundling Auction: Consider a modification to the above auction: if there is one or more bidder
with a high value for an object, then as above that object is allocated to that bidder (or allocated
randomly if there is more than one such bidder). In the case of object A, if there is no bidder
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with a high value for the object, then the object is definitely allocated to a type LH bidder
if such a bidder exists, and if all bidders have type LL then the object is randomly allocated
to these bidders. A similar rule is followed for object B. Thus, compared to the independent
auction, the difference here is that a type LH bidder always wins object A against a type LL
bidder.

3. Mixed Auction: After the types have been announced, the seller allocates the object k using the
independent auction above with probability 1−γ and using the bundling auction with probability
γ.

Armstrong has found an optimal auction for this setting. Depending upon the correlation between
the valuations of objects A and B, he has shown that an optimal auction is one of the above three
auctions or a combination of the above auctions. Readers are referred to [14] for technical details.

5.3.3 Optimal Combinatorial Auctions in the Presence of Single Minded Bidders

In combinatorial auctions, it may happen that a bidder may not be willing to bid on all possible subsets
of the items. When a bidder is interested in bidding only on a specific bundle of the items, we say
the bidder is single minded. This scenario is realistic as shown by the FCC (Federal Communications
Commission) [15] auctions where a majority of the bidders are interested in a specific bundle of
spectrum wavelengths. Recently Ledyard [16] has characterized an optimal combinatorial auction
when the bidders are single minded. Table 4 provides the notation used in this section.

I Set of items the seller is interested in selling {1, 2, . . . ,m}
θi True valuation of agent i for its bundle interest,

θi ∈ [θi, θ̄i]
bi Bid of the buyer i
b Bid vector, (b1, b2, . . . , bn)
b−i Bid vector without the agent i, i.e. (b1, b2, . . . , bi−1, bi+1, . . . , bn)
ti(b) Payment by the agent i when submitted bid vector is b
ti(bi) Expected payment by the buyer i when he submits bid bi

Expectation is taken over all possible values of b−i

yi = yi(b) 1, if the agent i gets his bundle, 0 otherwise
φi(θi) Probability density function of (θi)
Φi(θi) Cumulative distribution function of fi(θi)
Ji(θi) Virtual cost function for the buyer i,

Ji(θi) = θi + 1−Φi(θi)
φi(θi)

X Set of all feasible allocations of m objects among n agents.
Each agent gets either its bundle of interest or gets nothing
X ⊆ {0, 1}N

x x ∈ X,x = (x1, x2, . . . , xn) xi = 1 means ith agent gets his bundle
interest. 0 otherwise.

Table 4: Notation for optimal combinatorial auctions with single minded bidders

29



Using BIC constraints, Ledyard has shown that an optimal auction for the seller is given by

max
x∈X

∫
[

i=n∑

i=1

(
θi −

1 − Φi(θi)

φi(θi)

)
xidΦ

]

where X is set of all feasible allocations of m objects among n agents in which each agent either gets
his bundle of interest or doesn’t get any object. Define the following virtual cost function:

Ji(θi) = θi −
1 − Φi(θi)

φi(θi)

Consider the following regularity condition: Ji(θi) is non-decreasing in θi. The optimal auction when
the regularity condition is satisfied is given by,

max
x∈X

n∑

i=1

Ji(bi)yi(bi) (16)

where bi is the bid submitted by the agent i, with yi ∈ {0, 1} indicating whether the agent i gets its
bundle of interest or not. The payment made by the agent i if it gets the bundle of interest is given
by

ti(bi, b−i) = infimum {b′i|xi(b
′
i, b−i) = 1 in (16)}

It can be noted that it is a weakly dominant strategy for each agent i to bid truthfully when the
regularity condition holds true.

5.3.4 An Optimal Auction for Multi-Unit Procurement with Capacitated Bidders

Here we look at a procurement situation where a buyer is interested in procuring multiple units of the
same object and present an optimal auction [17]. In practice, a seller is usually capacitated, that is,
there is an upper bound on the quantity of the object that the seller can supply. The capacity of a
bidder is typically private information in addition to production cost. Thus the problem of incentive
compatibility becomes two dimensional. The sellers might be able to do better by misreporting their
capacities. For example, if each seller is paid an amount equal to the first losing bid, a seller might
report a capacity that is less than the actual capacity, therefore increasing the value of the losing bid
leading to more profit. In most situations, it can be safely assumed that the seller will never inflate
the capacity, as it can be detected. We make this assumption.

Let yi(b) be the quantity to be procured from the seller i and yi(bi), the expected value of yi(b)
(expectation taken over all possible values of b−i). The buyer has to offer incentive to the sellers to
bid truthfully. Suppose the following incentive is chosen:

∀i ∈ N, ρi(bi) = ti(bi) − ĉiyi(bi), where bi = (ĉi, q̂i)

Note that in this case, each bidder will be biding the capacity (q̂i) and unit cost (ĉi). We assume that
the true cost to the seller i, ci belongs to [ci, c̄i] and qi ∈ [qi, q̄i]. Kumar and Iyengar [18] have proved
that:

Theorem 5.1 Any mechanism in the presence of the capacitated sellers is BIC and IR iff

1. ρi(bi) = ρi(c̄i,q̂i) +
∫ c̄i

ĉi
yi(s, q̂i)ds

30



2. ρi(bi) non-negative, and non-decreasing in q̂i ∀ ĉi ∈ [ci, c̄i]

3. The quantity which the seller i is asked to supply, yi(ci, qi), is non-increasing in ci, ∀qi ∈ [qi, q̄i].

Define a virtual cost of bidder i by

Ji(ci, qi) = ci +
Fi(ci|qi)

fi(ci|qi)

where Fi(ci|qi) is the conditional CDF for agent i and fi(ci|qi) is the conditional PDF for agent i.
Assume that Ji(ci, qi) is non-increasing in qi and non-decreasing in ci. This regularity assumption
is similar to Myerson’s [4] regularity assumption. Under this assumption, the following auction for
multi-unit procurement can be shown to be optimal:

1. Collect the bids from the sellers

2. Sort the bidders in increasing order of their virtual costs

3. If the capacity of the first seller is greater than the required quantity, order the required quantity

4. Else, order the seller to supply his full capacity

5. Remove the above seller from the list. Reduce the required quantity by the amount to be supplied
by the just deleted seller

6. Go to Step 3.

At the end of the auction, each agent is paid according to Theorem 5.1. It can be shown for each seller
i that the best response is to bid truthfully irrespective of whatever the other sellers are bidding. Thus,
this mechanism satisfies dominant strategy incentive compatibility. The above property is a direct
consequence of the result proved by Mookherjee, and Stefan [6] who have provided the monotonicity
conditions for DSIC implementation of a BIC mechanism. Under these regularity assumptions, yi

satisfies these conditions. So we have a DSIC mechanism.

5.4 Optimal Auctions - A Network Perspective

Malakhov and Vohra [19] have presented a novel perspective for an optimal auction in the presence of
capacitated bidders. They have used a network approach to solve this problem when the type set of
each bidder is finite. They provide an innovative interpretation to the optimal auction design problem
as an instance of the parametric shortest path problem on a lattice.

As the type set is finite, we can index it, that is, we can write Θ = {θ1, . . . , θk} as the set of all
possible types for all agents. Each θi ∈ Θ can be multidimensional. Let Ti be the payment made by
any agent when it reports the valuation to be θi. Incentive compatibility requires:

Ti − Tj ≤ E[v(k(θi, .)|θi)] − E[v(k(θj , .)|θi)]

Now we can draw a directed graph with the types as vertices. A length E[v(k(θi, .)|θi)]−E[v(k(θj , .)|θi)]
is assigned to a directed edge (j, i). One more vertex, call it a dummy type, θ0 is added. Utility to
this type is 0 at all allocations. Now, the optimization problem of an optimal auction in this finite
multidimensional type set reduces to determining the shortest path in this network. For more details
about this, the article by Malakhov and Vohra [19] may be consulted.
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6 Characterization of DSIC Mechanisms

In the previous part of the tutorial, we have seen the notion of DSIC mechanisms. In our study of
DSIC mechanisms, due to the power of the revelation principle, we can restrict our attention to direct
revelation mechanisms and hence to DSIC SCFs. In this section, we will present some important
results on the characterization of dominant strategy incentive compatible SCFs.

We have seen that a direct revelation mechanism is specified as D =
(

(Θi)i∈N , f(.)
)

, where f is

the underlying social choice function and Θi is the type set of agent i. A valuation function of each
agent i, vi(.), associates a value of the allocation chosen by f to agent i, that is, vi : K → R.

In the case of an auction for selling a single unit of a single item, suppose each agent i has a
valuation for the object θi ∈ [θi, θi]. If agent i gets the object, vi(., θi) = θi. Otherwise the valuation
is zero. Thus for the agent i, the set of valuation functions over the set of allocations K, can be written
as Θi = [θi, θi]. Thus Θi is single dimensional in this environment.

In a general setting Θi, may not be single dimensional. If we are considering all real valued
functions on X and allowing each user to have a valuation function to be any of these functions, we
say Θi is unconstrained. In this case, Θi = R

K . Suppose |K| = m, then θi ∈ Θi is an m-dimensional
vector:

θi = (θi1 , . . . , θij , . . . , θim)

Note that θij will be the valuation of agent i if the jth allocation from K is selected. In other words,
vi(j) = θij . With such unconstrained type sets/valuation functions, we will study a characterization
of DSIC SCFs.

6.1 Direct Characterization

Proposition 6.1 A social choice function f is DSIC iff ∀i ∈ N ,

(a) The payment rule is of the form
ti : K × Θ−i → R

That is, ti depends only on the allocation and valuations of the other agents and not on θi. In
other words, ∀i ∈ N, ∀θiinΘi s.t. f(θi, θ−i) = k,

ti(θi, θ−i) = tk

(b) The mechanism maximizes the utility for each player. That is,

f(θi, θ−i) ∈ arg max
k∈K

(vi(k) − tk)

Proof : We first prove the sufficiency followed by necessity.

Part 1: Sufficiency: Let θi be the true type of the player i and suppose θ−i is the vector of types
reported by players other than i. Let the SCF f choose x = f(θi, θ−i) and x′ = f(θ′i, θ−i) with
allocations k and k′ respectively. Denote tk = ti(θi, θ−i) and tk′ = ti(θ

′
i, θ−i). The utility of i when

reporting the truth is vi(k) − tk. Even though the agent reports its type to be θ′i instead of its true
type θi, note that its valuation function will not change. Only the outcome will change from x to x′.
As the SCF f satisfies statement (b) of the proposition, we have

vi(k) − tk ≥ vi(k
′) − tk′
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Hence reporting truth is a best response to every agent i, irrespective of the types reported by the
other agents. Thus the SCF f satisfying the above two properties is DSIC.

Part 2: Necessity: Let f be a DSIC SCF.

• Suppose, for some θi, θ′i, the SCF f(.) chooses the same outcome from X, that is, f(θi, θ−i) =
f(θ′i, θ−i), but, ti(θi, θ−i) > ti(θ

′
i, θ−i). Then an agent with type θi will increase its utility by

declaring θ′i. Thus, if the payment rule is of not the form defined in statement (a) of the theorem,
f may not be incentive compatible.

• If f(θi, θ−i) chooses allocation rule k and k 6∈ arg maxk∈K(vi(k) − tk), then fix k′ as:

k′ ∈ arg max
a∈K

(vi(a) − ta)

in the range of allocation rules selected by f(., θ−i), and thus k′ will be the allocation rule for
some θ′i. Now an agent with type θi will increase its utility by declaring θ′i. This is a contradiction
to the fact that f is DSIC.

�

The above proposition is a characterization of the payment rule for DSIC implementation of a social
choice function. Now we will provide a characterization that involves the social choice function in the
next subsection.

6.2 Weak Monotonicity

Definition 6.1 A social choice function f satisfies Weak Monotonicity (WMON) property if for all
i ∈ N , for all θ−i ∈ Θ−i, we have that f(θi, θ−i) = x 6= y = f(θ′i, θ−i) implies that vi(x) − vi(y) ≥
v′i(x) − v′i(y).

The WMON property means that if the social choice function chooses a different outcome when an
agent changes its valuation, then it must be because the agent derives more value out of the new
outcome relative to the value derived out of the original outcome.

Theorem 6.1 If the direct revelation mechanism D =
(

(Θi)i∈N , f(.)
)

is dominant strategy incentive

compatible, then f satisfies the WMON property. If Θis are convex subsets of the Euclidean spaces
and f satisfies the WMON property, then there exists a social choice function f ′ having the same
allocation rule as f and payments t1, t2, . . . , tn, such that f ′ is DSIC.

Using proposition 6.1, one can prove that the DSIC property implies the WMON property. Proving
the second statement of the theorem is quite involved and we refer the reader to [10] for a proof.

6.3 Roberts’ Theorem

We have seen the Gibbard-Satterthwaite impossibility theorem (Theorem 7.1 in [1]). In this subsection,
we will see another impossibility theorem under an unrestricted domain of preferences. This theorem
is due to Roberts [5]. It turns out that in this environment, that is, when type set Θi is unconstrained
for all i, the only DSIC mechanisms are variations of the VCG mechanism. These variants are often
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referred to as the weighted VCG mechanisms. In a wighted VCG mechanism, we are allowed to give
weights to the agents and weights to the alternatives. The resulting SCF is said to be an affine
maximizer . The notion of an affine maximizer is defined below. Next we state the Roberts’ theorem.

Definition 6.2 A social choice function f is called an affine maximizer if for some subrange A′ ⊂ X,
for some agent weights w1, w2, . . . , wn ∈ R

+, and for some outcome weights cx ∈ R, and for every
x ∈ A′, we have that

f(θ1, θ2, . . . , θn) ∈ arg max
x∈A′

(cx +
∑

i

wivi(x))

Theorem 6.2 (Roberts’ Theorem) If |X| ≥ 3 and for each agent i ∈ N , Θi is unconstrained, then
any DSIC function f has non-negative weights w1, w2, . . . , wn (not all of them zero) and constants
{cx}x∈X , such that for all θ ∈ Θ = Θ1 × Θ2 × . . . × Θn,

f(θ) ∈ arg max
x∈X

{
i=n∑

i=1

wivi(x) + cx}

For a proof of this important theorem, we refer the reader to the article by Roberts in [5]. Lavi,
Mu’alem, and Nisan have provided two more proofs for the theorem - interested readers might refer
to their paper [20] as well.

There have been positive results for DSIC SCFs for single dimensional domains. Roberts showed
that such results are impossible in unrestricted domains. In unconstrained domain, the DSIC SCFs
have to be necessarily affine maximizers. For domains which lie between single dimensional and
unrestricted domains, there are no significant possibility or impossibility results.

6.4 A Variant of Quasi-linear Environment

In this section, we consider a variant of the quasi-linear environment which is commonly encountered
in applications. In this environment, we make the following change in the settings of quasi-linear
environment: we assume that K = R. Note, this new set of project choices is no more a compact set.
Next, we assume that for each agent i and each of its types θi ∈ Θi, we have

1. vi(., θi) : K → R is a twice continuously differentiable function

2. ∂2vi(k,θi)
∂k2 < 0

3. ∂2vi(k,θi)
∂k ∂θi

> 0

4. θi ∈
[
θi, θi

]
⊂ R

It is easy to verify that even in this modified environment, there is no special choice function which is
dictatorial. We now define a special class C of the social choice functions in this environment.

C =
{
f : Θ → R

n+1| f is a continuously differentiable function
}

The social choice functions of this class are commonly encountered in applications and they have some
very interesting properties. In what follows we characterize the social choice functions of this class C

from the perspective of various properties satisfied by them.
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Proposition 6.2 (Characterization of AE SCFs) If an SCF f ∈ C is AE then ∀ i = 1, . . . , n
and ∀ θ ∈ Θ, k(θ) is non-decreasing in θi.

Proposition 6.3 (Characterization of DSIC SCFs) An SCF f ∈ C is DSIC iff ∀ i = 1, . . . , n
and ∀ θ ∈ Θ, we have

1. k(θ) is non-decreasing in θi

2. ti(θi, θ−i) = ti(θi, θ−i) −
∫ θi

θi

∂vi(k(s,θ−i),s)
∂k

∂k(s,θ−i)
∂s

ds

Proposition 6.4 (Characterization of AE+DSIC SCFs) An AE SCF f ∈ C is DSIC iff it sat-
isfies the Groves payment scheme, that is, ∀ i = 1, . . . , n and ∀ θ ∈ Θ, we have

ti(θ) =




∑

j 6=i

vj(k
∗(θ), θj)



+ hi(θ−i) ∀ i = 1, . . . , n (17)

where hi(·) is any arbitrary function of θ−i.

7 Dominant Strategy Implementation of BIC Rules

Due to the impossibility theorems by Gibbard-Satterthwaite and Roberts, there is no hope for dom-
inant strategy implementation of social choice functions in unrestricted or in most general settings.
But, by restricting our attention to only quasi-linear environments, we can have DSIC mechanisms,
for example, the Groves mechanisms.

Also, we have shown that, by settling for Bayesian incentive compatibility, we can implement a
wider class of SCFs. However, BIC implementation has a few striking drawbacks. Bayesian imple-
mentation assumes the private information structure to be common knowledge. It also assumes that
the social planner knows a common prior distribution. In some cases, this requirement might be
quite demanding. Also, slight mis-specification of the common prior may lead the equilibrium to shift
discontinuously. These may cause the mechanism to incur significant losses when compared to the
optimal revenue or optimal cost that is obtainable with an exact specification of the common prior
distribution. DSIC implementation overcomes these problems in a simple way since the equilibrium
strategy does not depend upon the common prior distribution. We would therefore always wish to
have a DSIC implementation. However, because of the restricted nature of SCFs that are possible in
the DSIC domain, generally a mechanism designer would be forced to look for BIC SCFs to achieve de-
sired goals. At this stage, we can ask the question: can we implement a BIC SCF as a DSIC rule with
the same expected interim utilities to all the players? Mookherjee and Stefan [6] have answered this
question by characterizing BIC rules which can be equivalently implemented in dominant strategies.

7.1 Some Definitions

The environment is similar to the one we described in Section 10 of part 1 of this tutorial, but is
modeled slightly differently. Each agent i observes private signal θi ∈ [θi, θ̄i]. Depending upon the
type profile θ of all agents, the social planner makes public decision k ∈ K. The monetary transfer to
each agent is ti(k, θ). When rule k is implemented agent i incurs cost vi(k, θi) unlike rest of the paper.
In rest of the paper, agent i has value vi(k, θi) when allocation rule is k. To compensate this cost,
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principal agent pays him ti(k, θ). Hence, in this setting, agent i’s utility is ui(k, θi) = ti(k)− vi(k, θi).
And social choice function is,

f : Θ → K × R
n.

Definition 7.1 A BIC SCF f(.) = (k(.), t1(.), t2(.), . . . , tn(.)) can be equivalently implemented in
dominant strategies by another SCF f ′(.) = (k(.), t̄1(.), . . . , t̄n(.)) , if the SCF f ′ is DSIC and

Eθ−i
[ti(θi, θ−i) − t̄i(θi, θ−i)|θi] = 0 ∀ θi ∈ Θi, ∀ i ∈ N

The equivalent implementation means that the allocation k(.) is unchanged at all type profiles in the
new SCF and the original payment transfers, ti(.) are replaced with t̄i(.). In the new SCF, reporting
truth is a dominant strategy and the interim utility of every agent is unchanged.

Definition 7.2 We say the allocation rule k(.) is implementable in dominant strategies if there exist
payment rules (t1(.), t2(.), . . . , tn(.)) such that (k(.), t1(.), t2(.), . . . , tn(.)) is a DSIC SCF.

Definition 7.3 (Weak Single Crossing Property) The valuation function vi(.) satisfies the weak
single crossing property if, for any two allocation rules k1, k2 ∈ K,∃ θ̃i ∈ Θi s.t

(∂/∂θi)vi(k1, θ̃i) > (∂/∂θi)vi(k2, θ̃i) then (∂/∂θi)vi(k1, θi) > (∂/∂θi)vi(k2, θi) ∀θi ∈ Θi

7.2 Conditions for Equivalent Dominant Strategy Implementation

We now state some conditions for a BIC rule to admit equivalent dominant strategy implementation,
as given by Mookherjee and Stefan [6].

Proposition 7.1 A BIC SCF (k(.), t1(.), t2(.), . . . , tn(.)) can be equivalently implemented in dominant
strategies iff the allocation rule k(.) is implementable in dominant strategies.

This proposition characterizes the BIC SCFs that are dominant strategy implementable. In the next
proposition, we will give a sufficient condition under which an allocation rule k(.) is implementable in
dominant strategies.

Proposition 7.2 An allocation rule k(.) is dominant strategy implementable if

γi(θ−i, t|θi) ≡
∂

∂θi
vi(k(θ−i, t), θi) (18)

is decreasing in t for all θ−i ∈ Θ−i, θi ∈ Θi i ∈ N

The above proposition provides a sufficient condition for DSIC implementation of allocation rule k(.).
If k(.) satisfies the weak single crossing property, then the monotonicity condition in Equation (18)
becomes necessary.

Proposition 7.3 Suppose the valuation functions of the agents satisfy the weak single crossing prop-
erty. Then the BIC allocation rule (k(.), t1(.), t2(.), . . . , tn(.)) can be equivalently implemented in dom-
inant strategies iff the monotonicity condition (18) is satisfied.

For a proof of the above results, we refer the reader to the paper by Mookherjee and Reichelstein [6].
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8 Implementation Theory

Dominant strategy incentive compatibility ensures that reporting true types is a weakly dominant
strategy equilibrium. Bayesian incentive compatiblity ensures that reporting true types is a Bayesian
Nash equilibrium. Typically, the Bayesian game underlying a given mechanism may have multiple
equilibria, in fact, could have infinitely many equilibria. These equilibria typically will produce differ-
ent outcomes. Thus it is possible that non-optimal outcomes are produced by truth telling.

The implementation problem addresses the above difficulty caused by multiple equilibria. The
implementation problem seeks to design mechanisms in which all the equilibrium outcomes are optimal.
This property is called the weak implementation property . If it also happens that every optimum
outcome is also an equilibrium, we call the property as full implementation property . Maskin [21]
provided a general characterization of Nash implementable social choice functions using a monotonicity
property, which is now called Maskin Monotonicity . Maskin’s work shows that Maskin monotonicity,
in conjunction with another property called no-veto-power will guarantee that all Nash equilibria will
produce an optimal outcome. Maskin’s results have now been generalized in many directions, for
example, see the references in [2].

9 Implementation in Ex-Post Nash Equilibrium

Dominant strategy implementation and Bayesian implementation are widely used for implementing
a social choice function. There exists another notion of implementation, called ex-post Nash im-
plementation, which is stronger than Bayesian implementation but weaker than dominant strategy
implementation. We discuss this briefly here.

Hurwicz [22] introduced the notion of incentive compatibility in 1972. Gibbard [23] was the first
to describe the revelation principle for dominant strategy implementation. This motivated mechanism
design researchers to look for dominant strategy incentive compatible mechanisms. Impossibility
results such as the Gibbard-Satterthwaite theorem (Theorem 7.1 in part 1 of this tutorial) spurred
researchers to look for implementations other than dominant strategy implementation [24, 25, 21].
Maskin [21] formalized the notion of Nash Equilibrium implementation. This is now known as Ex-
post Nash implementation. Dasgupta, Hammond, and Maskin [26] generalized this to Bayesian Nash
implementation. We have already discussed Bayesian implementation in detail in the section 11 of
part 1 [1] of this tutorial.

Definition 9.1 A profile of strategies
(

s∗1(.), s
∗
2(.), . . . , s

∗
n(.)
)

is an ex-post Nash equilibrium if for

every θ = (θ1, . . . θn) ∈ Θ, the profile
(

s∗1(θ1), . . . s
∗
n(θn)

)

is a Nash equilibrium of the complete

information game defined by (θ1, . . . , θn). That is ∀ i ∈ N, ∀ θ ∈ Θ, we have
∀θ ∈ Θ and ∀s′i ∈ Si, we have

ui(s
∗
i (θi), s

∗
−i(θ−i), θi) ≥ ui(s

′
i(θi), s

∗
−i(θ−i), θi) ∀ s′i ∈ Si

This ex-post Nash equilibrium notion is stronger than Bayesian Nash equilibrium. In Bayesian
Nash equilibrium, the equilibrium is strategy is played by the agents after observing their own private
types and computing an expectation over others types. It is an equilibrium only in expected sense.
In ex-post Nash equilibrium, even after the players are informed with the types of the other players,
it is still a Nash equilibrium for each agent i to play an action according to s∗i . This is called lack of
regret feature. That is, even if agents come to know about the others’ types, the agent need not regret
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playing this action. Bayesian Nash equilibrium may not have this feature since the agents may like to
revise their strategies after knowing the types of the other agents.

Definition 9.2 We say that the mechanism M = ((Si)i∈N , g(·)) implements the social choice func-
tion f(·) in ex-post Nash equilibrium if there is a pure strategy ex-post Nash equilibrium s∗(·) =
(s∗1(·), . . . , s

∗
n(·)) of the game Γb induced by M such that

g (s∗1(θ1), . . . , s
∗
n(θn)) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ

For example, consider the first price sealed bid auction with two bidders. Let, Θ1 = Θ2 = [0, 1]
and θ1 denote the valuation of the first agent and θ2 that of the agent 2. It can be shown that it is a
Bayesian Nash equilibrium for each bidder to bid according to the strategy (b∗1(θi), b

∗
2(θ2)) = (θ1

2 , θ2

2 ).
Now suppose agent 1 is informed that the other agent values the object at 0.6. If agent 1 has a
valuation of 0.8, say, it is not a Nash equilibrium for him to bid 0.4 even if agent 2 is still following
Bayesian Nash strategy.

Though ex-post implementation is stronger than Bayesian Nash implementation, it is still much
weaker than dominant strategy implementation. Also note that, Bayesian Nash equilibrium is only
in the expected sense and hence ex-post Nash equilibrium implies Bayesian Nash equilibrium. In the
next section, we will present an example of an auction in which it is an ex-post Nash equilibrium (but
not a dominant strategy) for each agent to report its true type.

10 Interdependent Values

We have so far assumed that the private values or signals observed by the agents are independent of
one another. This is a reasonable assumption in many situations. However, in the real world, there are
environments where the valuation of agents might depend upon the information available or observed
by the other agents. We will look at two examples.

Example:
Consider an auction for an antique painting. There is no guarantee that the painting is an original

one or a plagiarized version some nice art work. If all the agents know that the painting is not an
original one, they will have a very low value for it independent of one another, whereas on the other
hand, they will have a high value for it when it is a genuine piece of work. But suppose they have
no knowledge about its authenticity. In such a case, if a certain bidder happens to get information
about its genuineness, the valuations of all the other agents will naturally depend upon this signal
(indicating the authenticity of the painting) observed by this agent.

Example:
Consider an auction for oil drilling rights. At the time of the auction, buyers usually conduct

geological tests and their private valuations depend upon the results of these tests. If a prospective
bidder knew the results of the tests of the others, his own willingness to pay for the drilling rights
would be modulated suitably based on the information available.

The interdependent private value models have also been studied in the mechanism design literature.
Among the various interdependent private value models, there exists a popular model called the
common value model (which we have already seen in Section 4).
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10.1 An Optimal Auction With Interdependent Demands

Cremer and McLean [27] consider a situation when a seller is trying to sell an indivisible good or a
fixed quantity of a divisible good. The value of the received good for the bidders depends upon each
others’ private signals. Also, the private signals observed by the agents are interdependent of specified
properties. In such a scenario, Cremer and McLean [27] have designed an auction that extracts a
revenue from the bidders, which is equal to what could have been extracted when the actual signals of
the bidders are known. In this auction, it is an ex-post Nash equilibrium for the agents to report their
true types. This auction is interim individually rational but may not be ex-post individually rational.
We will illustrate this auction with the following example.

A seller is trying to sell a single unit of a indivisible item. There are two bidders. Table 5 provides
the notation.

Θi Type set of the agent i = 1, 2.
= {1, 2}

θ (θ1, θ2), true type profile of the bidders.

θ̂ (θ̂1, θ̂2), profile of types reported by the bidders.

yi(θ̂) Probability of agent i winning the good when agents report the types as θ̂

vi(θ) Valuation of a good for the agent i, if the agent gets it when true type profile is θ.
vi(θ) = θ1 ∗ θ2

ti(θ̂) Payment made by the agent i, when the profile of reported types is (θ̂)

ui(θ̂, θ) Utility to agent i when the reported types are θ̂1, θ̂2
and the actual types are θ1, θ2

= yi(θ̂) ∗ θ1 ∗ θ2 − ti(θ1, θ2)

p(θ1, θ2) Probability that the agents will have type profile (θ1, θ2).

Table 5: Notation for Cremer and McLean Auction

Let, p(1, 1) = 1
3 , p(1, 2) = 1

6 , p(2, 1) = 1
6 and p(2, 2) = 1

3 . Assign the object to the agent who reports
higher type. If a tie occurs, award the object randomly to any of the agents. Define the payment rule
as: t1(1, 1) = t2(1, 1) = 1

3 , t1(1, 2) = t2(2, 1) = 1
3 , t1(2, 1) = t2(1, 2) = 4

3 , and t1(2, 2) = t2(2, 2) = 7
3 . It

can be verified that it is an ex-post Nash equilibrium for each agent to report its type truthfully. As
an example, we will verify it for the type profile (2, 2).

u1((2, 2), (2, 2)) = y1(2, 2) ∗ 2 ∗ 2 − t1(2, 2)

=
1

2
∗ 4 −

7

3

= −
1

3
= u1((1, 2), (2, 2))

≥ u1((1, 2), (2, 2))
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Similarly, u2((2, 2), (2, 2)) ≥ u2((2, 1), (2, 2)). Thus reporting true type is a Nash equilibrium even
if the agents are informed of the types of the other agents. However, it is not a dominant strategy
equilibrium. If agent 1 is not using Nash equilibrium strategy, that is, reports false type ‘1’ when the
actual type is ‘2’, then agent 2’s best response is to report its type to be ‘1’, even if its type were ‘2’.

Now we will show that the ex-ante revenue to the seller in this auction is the same as the ex-
ante revenue in a complete information setting. The expected revenue to the seller in the complete
information setting is:

1

3
∗ 1 +

1

6
∗ 2 +

1

6
∗ 2 +

1

3
∗ 4 =

7

3

The expected revenue to the seller in the above defined payment rules is:

1

3
∗ (

1

3
+

1

3
) +

1

6
∗ (

1

3
+

4

3
) ∗ 2 +

1

3
∗ (

7

3
+

7

3
)) ∗ 4 =

7

3

10.2 Other Results with Interdependent Types

As we have already seen, the Vickrey auction is allocatively efficient under independent value model.
However, in the common value model it is not efficient. Similarly, it has been shown that the gen-
eralized Vickrey auction will be efficient under the common value model only if the buyers’ private
information is single dimensional. In general, if the buyers’ private signals are multi-dimensional, effi-
ciency is unattainable. In a broad class of cases, Dasgupta and Maskin [28] have designed an auction
which is constrained-efficient in the sense of being efficient subject to incentive constraints.

Jehiel and Moldavanu [29] have given necessary conditions for Bayesian incentive compatibility
and allocative efficient mechanisms. These conditions are satisfied by independent private value mod-
els. But, in general, these conditions may not be satisfied. In [29], authors have studied the linear
environment. Bergemann and Valimaki [30] have given necessary conditions for incentive compatible,
efficient mechanisms in non-linear environment. They also give weaker sufficient conditions.

11 Other Topics in Mechanism Design

11.1 Dynamic Mechanisms

In the discussion so far, we have assumed that agents observe their private values and take actions
depending upon their values and the rules of mechanism. The social planner has to take the decision
exactly once based upon the actions by the agents. Such a mechanism can be categorized as a static
implementation. Let us consider a dynamic scenario such as described below.

Consider an air carrier which wishes to sell the tickets for the flights. The buyers are arriving at
different times and each buyer could have a unique demand. The valuation a buyer attaches to the
air-ticket constitutes the buyer’s private information. The air carrier’s goal is to maximize revenue in
such a dynamic environment.

To handle such scenarios, we need mechanisms which are dynamic. When a sequence of decisions
is required to be made, a static mechanism cannot be employed if the parties receive information over
time that should affect the decisions. For example, agents who are involved in a long-term relationship
may need to make a sequence of trading and investment decisions in a changing environment. A pro-
curement authority may wish to conduct a sequence of auctions, where bidders have serially correlated
values or capacity constraints or learning-by-doing. In recent times, the design of mechanisms in a
dynamic environment has emerged as an interesting area of research.
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Athey and Segal [31] have considered a dynamic environment in which agents observe a sequence
of private signals over a number of periods/time slots. The number of periods can either be finite or
countably infinite. In each time slot, the agents report their private signals. Based on the reported
signals, the public decision is made. The probability distribution over future signals may depend on
both past signals and past decisions. In such an environment, Athey and Segal have designed a BIC
mechanism which is also efficient and budget balanced.

Contracts to operate public facilities such as airports or to use natural resources such as forests,
are renewed periodically. The current winner of the contract receives additional information about it,
learns most about the value of the resource. This enables this current winner to revise its valuation.
In such dynamic settings, Bapna and Weber [32] and Bergemann and Valimaki [30] have designed a
BIC and efficient mechanism in this settings.

11.2 Iterative Mechanisms

In many situations, the decisions can be made sequentially. The information acquisition for making
decisions can either be made in one go or sequentially over the length of the period. The sequential way
proves to be more efficient. This approach is also useful even in settings in which the resource allocation
decision is a one-time decision. Two outstanding examples of well known iterative mechanisms are
the English auction and the Dutch auction.

The computational and communication costs of the agents may be reduced by making the decisions
sequentially. For example, in case of combinatorial auctions, the total number of bundles is exponential
and the agents need to find out valuations for all the bundles. In such scenarios, rather than having
a static combinatorial auction, iterative auctions could be used to reduce the cost of computing
valuations and allocations. Iterative auctions are also efficient in the case where the agents learn
about their valuations over a period of time. So, initially they have to just bid low and can increase
their bids as the auction progresses and progressively they come to know about their valuations. The
survey paper by Parkes [33] is an excellent source of material on iterative mechanisms.

11.3 Stochastic Mechanisms

Consider a scenario in which the decision maker has to solve a stochastic optimization problem and the
parameters for optimization are private to the agents. For example, consider the following situation
discussed by Ieong et al. There is a university book seller, who sells course material. The seller has two
options: (1) Get it printed from a printing press, which costs less, but takes more time; (2) Photocopy
the material with less turnaround time, but higher cost than the first option. If the seller has prior
knowledge about how many students will be registering for the course, the seller can directly print
the copies. The students are not sure, before semester starts, whether or not they would be taking
the course. However, each student may have a probability distribution that gives the probability of
this student taking the course. If the students report their distributions to the book seller truthfully,
the book seller can simply solve a two stage stochastic optimization problem. However, the students
may not reveal this distribution function truthfully. In such a scenario, mechanism design can be
used. Ieong et al . [34] have proposed a two stage stochastic mechanism which is BIC. It is not known
whether one can design a dominant strategy implementation of a stochastic mechanism.
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11.4 Cost Sharing Mechanisms

If a set of users share a common resource, they have to share the cost for it as well. For example,
suppose there is a common facility to pump water out of a well. A number of users may use this facility.
There is a cost associated with the creation and running of the facility. This cost has to be shared
among the users. There has to be some mechanism for sharing this cost. This type of mechanism is
called a cost sharing mechanism. In a cost sharing mechanism, each user (simultaneously) demands
a quantity of output after which the mechanism distributes the cost among users. Moulin [35] has
designed a cost sharing mechanism, namely Serial Cost Sharing which is DSIC.

11.5 Robust Mechanisms

In his seminal work, Harsanyi [36] introduced games with incomplete information. He suggested the
modeling of these games by introducing notion as a type space and adding nature as a player in a
game. The nature assigns a random variable to each player over the player’s type space. It is assumed
that the all the players share a common prior distribution, from which using one’s own type, each
agent can compute the probability over the types of other players. But this requirement may not be
satisfied in general. Also, mis-specification of the common prior distribution could lead to a drastic
shift in equilibria. This may result in huge losses for the agents.

In such situations, a desirable line of attack is to develop models that are independent of the
common prior distribution. Bergemann and Morris [37] have tackled this problem by enhancing
the type spaces. The authors also assume the knowledge of payoff functions of other players to be
uncertain. It is assumed that a player knows only his own payoff type. Under this setting, the authors
have studied the implementation of social choice correspondence over this newly constructed type
spaces.

11.6 Virtual Implementation of a Social Choice Function

Due to the impossibility theorems on SCF implementation, either we have to restrict the domain of the
SCFs or we have to weaken the solution concept from dominant strategies, to Bayesian implementation.
If we want to implement an SCF in dominant strategies and also we want this class of SCFs to be
rich, then a way out is virtual implementation of an SCF. In virtual implementation, the SCF may
not be exactly implementable, but we have an approximate implementation of it.

An SCF f is ǫ close to f ′, if for all preference/type profiles of users, the outcome of f and f ′

are ǫ close to each other. An SCF f is said to be virtually implementable if, for every ǫ > 0,
there exists another SCF f ′, which is implementable and is ǫ close to f . For more details on virtual
implementation, the readers are referred to [38, 39].

12 To Probe Further

For a more detailed treatment of mechanism design, the readers are requested to refer to textbooks,
such as the ones by Mas-Colell, Whinston, and Green [10] (Chapter 23), Green and Laffont [40], and
Laffont [41]. There is an excellent recent survey article by Nisan [42]. There are many other scholarly
survey papers on mechanism design - for example by Myerson [43] and by Jackson [44, 45]. The Nobel
Prize website has a highly readable technical summary of mechanism design theory [2]. The recent
edited volume on Algorithmic Game Theory by Nisan, Roughgarden, Tardos, and Vazirani [46] also
has valuable articles related to mechanism design.

42



The current paper is not to be treated as a survey on auctions in general. There are widely
popular books (for example, by Milgrom [8] and Krishna [9]) and surveys on auctions (for example,
[7, 47, 48, 49, 50]) which deal with auctions in a comprehensive way.

The current paper is also not to be treated as a survey on combinatorial auctions (currently an
active area of research). Exclusive surveys on combinatorial auctions include the articles by de Vries
and Vohra [51, 52], Pekec and Rothkopf [53], and Narahari and Pankaj Dayama [54]. Cramton,
Ausubel, and Steinberg [15] have brought out a comprehensive edited volume containing expository
and survey articles on varied aspects of combinatorial auctions.

For a more comprehensive treatment of mechanism design and its applications in network eco-
nomics, the readers are referred to the forthcoming monograph by Narahari, Garg, Rama suri, and
Prakash [55].
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