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Abstract

Mechanism design, an important tool in microeconomics, has recently found widespread appli-
cations in modeling and solving decentralized design problems in many branches of engineering,
notably computer science, electronic commerce, and network economics. Mechanism design is
concerned with settings where a social planner faces the problem of aggregating the announced
preferences of multiple agents into a collective decision when the agents exhibit strategic behavior.
The objective of this paper is to provide a tutorial introduction to the foundations and key results
in mechanism design theory. The paper is in two parts. Part 1 focuses on basic concepts and clas-
sical results which form the foundation of mechanism design theory. Part 2 presents key advanced
concepts and deeper results in mechanism design.

Acronyms

SCF Social Choice Function

IC Incentive Compatibility (Compatible)

DSIC Dominant Strategy Incentive Compatible

BIC Bayesian Nash Incentive Compatible

AE Allocative Efficiency (Allocatively Efficient)

BB Budget Balance

IR Individual Rationality

IIR Interim Individually Rational

DSIC Dominant Strategy Incentive Compatibility (Compatible)

VCG Vickrey-Clarke-Groves Mechanisms

BIC Bayesian Incentive Compatibility (Compatible)

dAGVA d’Aspremont and Gérard-Varet mechanisms
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Notation

n Number of agents

N Set of agents: {1, 2, . . . , n}

Θi Type set of Agent i

Θ A type profile = (Θ1 × . . . × Θn)

Θ−i A profile of types of agents other than i = (Θ1 × . . . × Θi−1 × Θi+1 × . . . × Θn)

θi Actual type of agent i, θi ∈ Θi

θ A profile of actual types = (θ1, . . . , θn)

θ−i A profile of actual types of agents other than i = (θ1, . . . , θi−1, θi+1, . . . , θn)

θ̂i Reported type of agent i, θ̂i ∈ Θi

θ̂ A profile of reported types = (θ̂1, . . . , θ̂n)

θ̂−i A profile of reported types of agents other than i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂n)

Φi(.) A cumulative distribution function (CDF) on Θi

φi(.) A probability density function (PDF) on Θi

Φ(.) A CDF on Θ

φ(.) A PDF on Θ

X Outcome Set

x A particular outcome, x ∈ X

ui(.) Utility function of agent i

f(.) A social choice function

F Set of social choice functions

W (.) A social welfare function

M An indirect mechanism

D A direct revelation mechanism

g(.) Outcome rule of an indirect mechanism

Si Set of actions available to agent i in an indirect mechanism

S Set of all action profiles = S1 × . . . × Sn

bi A bid of agent i

b A profile of bids = (b1, . . . , bn)

b−i A profile of bids by agents other than i = (b1, . . . , bi−1, bi+1, . . . , bn)

b(k) kth highest element in (b1, . . . , bn)

(b−i)
(k) kth highest element in (b1, . . . , bi−1, bi+1, . . . , bn)

si(.) A strategy of agent i

s(.) A profile of strategies = (s1(.), . . . , sn(.))

K A Set of project choices

k A particular project choice, k ∈ K

ti Monetary transfer to agent i

vi(.) Valuation function of agent i

Ui(.) Expected utility function of agent i

Xf Set of feasible outcomes
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1 Introduction

In the second half of the twentieth century, game theory and mechanism design have found widespread
use in a gamut of applications in engineering. More recently, game theory and mechanism design have
emerged as an important tool to model, analyze, and solve decentralized design problems in engineering
involving multiple autonomous agents that interact strategically in a rational and intelligent way. The
importance of mechanism design in the current context can be seen by the fact that the Nobel Prize
in Economic Sciences for the year 2007 was jointly awarded to three economists, Leonid Hurwicz, Eric
Maskin, and Roger Myerson for having laid the foundations of mechanism design theory [1]. Earlier,
in 1996, William Vickrey, the inventor of the famous Vickrey auction had been awarded the Nobel
Prize in Economic Sciences.

The agents are rational in the game theoretic sense of making decisions consistently in pursuit of
their own individual objectives. Each agent’s objective is to maximize the expected value of his/her
own payoff measured in some utility scale. Selfishness or self-interest is an important implication of
rationality. Each agent is intelligent in the game theoretic sense of knowing everything about the
underlying game that a game theorist knows and each agent can make any inferences about the game
that a game theorist can make. In particular, each agent is strategic, that is, takes into account
his/her knowledge or expectation of behavior of other agents and is capable of doing the required
computations.

The theory of mechanism design is concerned with settings where a policy maker (or social planner)
faces the problem of aggregating the announced preferences of multiple agents into a collective (or
social) decision when the actual preferences are not publicly known. Mechanism design theory uses the
framework of non-cooperative games with incomplete information and seeks to study how the privately
held preference information can be elicited and the extent to which the information elicitation problem
constrains the way in which social decisions can respond to individual preferences. In fact, mechanism
design can be viewed as reverse engineering of games or equivalently as the art of designing the rules
of a game to achieve a specific desired outcome. The main focus of mechanism design is to design
institutions or protocols that satisfy certain desired objectives, assuming that the individual agents,
interacting through the institution, will act strategically and may hold private information that is
relevant to the decision at hand.

1.1 Mechanism Design: A Brief History

Hurwicz (Nobel laureate in Economic Sciences in 2007) first introduced the notion of mechanisms
with his work in 1960 [2]. He defined a mechanism as a communication system in which participants
send messages to each other and perhaps to a message center and a pre-specified rule assigns an
outcome (such as allocation of goods and payments to be made) for every collection of received
messages. Vickrey (Nobel laureate in Economic Sciences in 1996) wrote a classic paper in 1961 [3]
which introduced the famous Vickrey auction (second price auction). To this day, the Vickrey auction
continues to enjoy a special place in the annals of mechanism design. Harsanyi (Nobel laureate
in Economic Sciences in 1994 jointly with John Nash and Richard Selten) developed the theory of
games with incomplete information, in particular Bayesian games, through a series of three seminal
papers in 1967-68 [4, 5, 6]. Harsanyi’s work later proved to be of foundational value to mechanism
design. Hurwicz [7] introduced the key notion of incentive compatibility in 1972. This notion allowed
mechanism design to incorporate the incentives of rational players and opened up mechanism design.
Clarke [8] and Groves [9] came up with a generalization of the Vickrey mechanisms and helped define
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broad class of dominant strategy incentive compatible mechanisms in the quasi-linear environment.
There were two major advances in mechanism design in the 1970s. The first was the revelation

principle which essentially showed that direct mechanisms are the same as indirect mechanisms. This
meant that mechanism theorists needed to worry only about direct mechanisms, leaving the develop-
ment of real-world mechanisms (which are mostly indirect mechanisms) to mechanism designers and
practitioners. Gibbard [10] formulated the revelation principle for dominant strategy incentive com-
patible mechanisms. This was later extended to Bayesian incentive compatible mechanisms through
several independent efforts [1] - Maskin and Myerson (both Nobel laureates in Economic Sciences in
2007) had a leading role to play in this. In fact, Myerson developed the revelation principle in its
greatest generality [1]. The second major advance in mechanism design in the 1970s was on imple-
mentation theory which addresses the following problem: can a mechanism be designed so that all its
equilibria are optimal? Maskin [11] gave the first general solution to this problem.

Mechanism design has made numerous significant advances during 1980s, 1990s, and during the
past few years. It has found widespread applicability in a variety of disciplines. These include: design
of markets and trading institutions [1, 12, 13], regulation and auditing [1], social choice theory [1],
computer science [14], and network economics [15]. The above list is by no means exhaustive. In this
tutorial, our discussion is motivated by applications of mechanism design in network economics which
is concerned with an economics based approach to solving design problems in distributed systems and
networks. We now provide below several examples from network economics.

1.2 Examples of Mechanism Design Problems in Network Economics

1.2.1 Mechanism Design and Algorithms for Selfish Agents

In distributed settings, there are certain algorithmic problems where the agents cannot be assumed
to follow the algorithm but are driven by selfish goals [16]. In such situations, the agents are capable
of manipulating the algorithm. For example, in a shortest path problem where edges are owned
by individual agents and the costs of the edges are known only to the owning agents, the algorithm
designer is faced with the challenge of eliciting the true costs of the edges from the owning agents before
applying an algorithm for computing the shortest paths. The objective of the algorithm designer in
such situations should be to come up with a scheme which ensures that the agents’ interests are best
served by behaving truthfully. Mechanism design theory provides a handle for studying and designing
such algorithms. The mechanism is designed in a way that all agents are motivated to act truthfully
and according to the wishes of the algorithm designer.

1.2.2 Mechanism Design and Selfish Routing

A major difficulty that is faced by networks such as road transportation networks, communication
networks, and the Internet is that most of the time, the demand of the users for the network resources
exceeds the available supply of the resources. This phenomenon causes congestion in the network. The
traffic congestion can be avoided or mitigated if the arrival rates can be controlled and/or the traffic
can be routed across the network in an effective manner. However, in most of these networks, the
users of such networks are free to act according to their own interests and moreover, they are rational
and intelligent in the sense that they care more for their own individual welfare and less for the health
or performance of the overall network. Game theory and mechanism design can play an important
role in the analysis and design of protocols in such networks. Indeed, in the past few years, there has
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been a spurt of research activities in this direction. See, for example, the work of Roughgarden [17],
Feigenbaum et al [18, 19], Hershberger and Suri [20], and Nisan et al [21, 22].

1.2.3 Mechanism Design and Ad-hoc Networks

Wireless ad-hoc networks also face the traffic congestion problem just like other wired networks such as
communication networks and the Internet. However, due to the wireless nature of the communication
medium, the physics of the problem is somewhat different. In the case of wireless ad-hoc networks,
conservation of battery power by the individual nodes is of primary importance. Individual nodes are
required to forward packets so as to ensure connectivity in an ad-hoc network and nodes therefore
double up as routers. Forwarding of packets involves draining battery power and it may not always
be in the self-interest of a node to forward packets. Design of protocols that stimulate cooperative
actions from the nodes uses game theory and mechanism design in a significant way. There are
several recent efforts in this direction. See, for example, the work of Anderegg and Eidenbenz [23]
in unicast environment, where they use the VCG (Vickrey-Clarke-Groves) mechanism to compute a
power efficient path using which the nodes transmit or forward the packets. Eidenbenz, Santi, and
Resta [24] further generalize this model to achieve budget balance property. Wang and Li [25] propose
strategy-proof pricing schemes for multicast environment. Suri [26] has generalized the model of Wang
and Li and has proposed incentive compatible broadcast protocols in ad-hoc wireless networks.

1.2.4 Mechanism Design and Grid Computing

One of the most important issues concerned with grid computing is that of application scheduling. In a
global grid setting, the individual users must be provided with an incentive to offer their resources. The
situation becomes non-trivial because of the fact that these entities are rational and intelligent resource
providers who, for strategic reasons, may not provide truthful information about their processing power
and cost structure. Thus, resource allocation decisions in computational grids and other general
grids have to take into account the rationality of the grid resource providers. In particular, there
is a need for providing appropriate incentives to the nodes to stimulate their participation in grid
computing. Mechanism design is extremely useful in designing incentives and also in coming up
with auction based mechanisms for grid resource allocation. There are several recent efforts in this
direction. See, for example, the work of Grosu and Chronopoulos [27, 28], Das and Grosu [29],
Wellman, Walsh, Wurman, and Mackie-Mason [30], and Buyya [31]. Prakash [32] has recently proposed
several innovative mechanisms for resource procurement in computational grids with rational resource
providers.

1.2.5 Mechanism Design and Cryptography

Mechanism design can be viewed as a science of synthesis of protocols for selfish parties to achieve
certain properties. In mechanism design, it is often assumed that the central authority (or social
planner) can be trusted by the parties, but this might not always be true, especially in an Internet
environment. If the social planner is corrupt, then it may misuse the information received from the
agents. Privacy is therefore essential in order to ensure the social planer’s credibility [33]. This problem
was first stated by Varian [34]. Because cryptography deals with preserving privacy and integrity of
data in computer and communication systems, it is obvious that techniques from cryptography may
help implementing the mechanism design protocols in the real word. There has been some progress in
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the recent past in applying cryptographic tools and techniques to the problems of mechanism design.
For example, see the work related to privacy preserving auctions by Noar et al [35] and Brandt [36].

1.2.6 Mechanism Design and the World Wide Web

We know that the world wide web has become an integral part of our day-to-day life. As engineers and
scientists are making progress in developing innovative web based services, the hackers and spammers
are bent on making such services collapse. Examples of such services include search engines page
ranking system, recommender systems, and reputation systems. Note that it is not always the case
that these hackers and spammers invest their energy and efforts just for nothing. More often than not,
they do have a stake in not letting such systems run smoothly. The only solution for such a problem
is to design the system in a way that there is no incentive for the hackers and spammers to put their
energy and time in destroying it. Game theory and mechanism design theory play an important role in
designing such systems. For example see the work of Altman and Tennenholtz [37, 38] for a mechanism
design view of page ranking systems, and Gyongyi and Molina [39] for a kind of threat to the page
ranking system, namely link spam.

1.2.7 Mechanism Design and Electronic Commerce

Electronic commerce is an area where the rationality in general and self-interest in particular of the
participating agents is a significant factor to be taken into account. Game theory and mechanism
design, therefore, have come to play a natural role here. For example, in a bargaining problem
between a buyer and a seller, the seller would like to act as if the item is very expensive thus raising
its price and the buyer would like to pretend to have a low value for the object to keep the price
down. In this context, mechanism design helps to come up with a bargaining protocol that ensures
an efficient trade of the good, so that successful trade occurs whenever the buyer’s valuation exceeds
that of the seller.

There are a variety of game theoretic design problems currently being explored in the area of
electronic commerce. These design problems are well documented in the literature; the following is a
representative listing:

• Auctions for selling spectrum [40]

• Mechanisms for selling advertising space through keyword auctions [41, 42, 43]

• Auctions for selling products/services as part of private marketplaces set up by e-business com-
panies [44]

• Bandwidth exchanges [45]

• Procurement auctions and private marketplaces for e-procurement [46, 47, 48]

• Logistics and transportation marketplaces [49]

• Mechanisms for supply chain formation [50, 51, 52, 53]
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1.3 Outline of the Paper

This is Part 1 of the paper. The focus of this part is on basic concepts and key results that form the
foundation of mechanism design theory. We organize the material in this part as follows.

• We start by introducing the notion of a social choice function in Section 2, through several exam-
ples: bilateral trade, auctions for selling a single indivisible item, and a combinatorial auction.
These examples are used throughout the rest of the paper for bringing out important insights.
In Section 3, we introduce the concept of a mechanism and bring out the difference between
direct revelation mechanisms and indirect mechanisms. Section 4 is devoted to the notion of
implementation of a social choice function by a mechanism. We introduce two key notions of
implementation, namely dominant strategy implementation and Bayesian implementation.

• Next, we describe, in Section 5, the desirable properties of a social choice function, which include
ex-post efficiency, non-dictatorial-ness, dominant strategy incentive compatibility and Bayesian
Nash incentive compatibility. We then state and prove a fundamental result in mechanism design
theory, the revelation theorem in Section 6.

• Next we introduce, in Section 7, a landmark result - the Gibbard-Satterthwaite impossibility
theorem, which says that under fairly general conditions, no social choice function can satisfy
the three properties - ex-post efficiency, non-dictatorial, and dominant strategy incentive com-
patibility simultaneously. This impossibility theorem is a special case of the celebrated Arrow’s
impossibility theorem, which we present in Section 8.

• The Gibbard Satterthwaite theorem, while ruling out implementability of certain desirable mech-
anisms, suggests two alternative routes to design useful mechanisms. The first of these two routes
is to restrict the utility functions to what is known as a quasi-linear environment. We introduce
the quasi-liear environment in Section 9, where we show that ex-post efficiency is equivalent to
a combination of two properties, namely, allocative efficiency and budget balance. In Section
10, we study the celebrated VCG (Vickrey-Clarke-Groves) social choice functions (also known
as VCG mechanisms), which are non-dictatorial, dominant strategy incentive compatible, and
allocatively efficient.

• We explore the second route suggested by the Gibbard-Satterthwaite impossibility theorem in
Section 11. Here we look for Bayesian incentive compatibility instead of dominant strategy
incentive compatibility. We show that a class of social choice functions, known as dAGVA social
choice functions are ex-post efficient, non-dictatorial, and Bayesian Nash incentive compatible.
We then develop a characterization of Bayesian incentive compatible social choice functions in
linear environment.

• Finally, in Section 12, we provide pointers to further literature on all aspects discussed in this
part.

In Part 2 of this tutorial [54], we build upon the basic concepts and key results discussed in Part 1
and look into deeper issues and results in mechanism design theory. The topics that we cover in Part
2 include: (1) Revenue equivalence theorem; (2) Individual rationality; (3) Moulin mechanisms; (4)
Optimal auctions; (5) Characterization of dominant strategy incentive compatible (DSIC) mechanisms;
(6) DSIC implementation of Bayesian incentive compatible (BIC) rules; (7) Implementation theory;
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(8) Implementation in ex-post Nash equilibrium; (9) Mechanisms with interdependent types; and (10)
Dynamic mechanisms.

This tutorial assumes familiarity with basic game theory, in particular topics such as strategic
form games, Bayesian games, and notions such as dominant strategy equilibria, Nash equilibria, and
Bayesian Nash equilibria. There are numerous texts available, for example, the ones by Osborne [55]
and Myerson [56].

2 Social Choice Function

Definition 2.1 A social choice function (SCF) is a function f : Θ → X, which a social planner or
policy maker uses to assign a collective choice f(θ1, . . . , θn) to each possible profile of the agents’ types
θ = (θ1, . . . , θn) ∈ Θ.

Figure 1 illustrates the idea behind social choice function. In what follows, we present a few examples

Figure 1: The idea behind social choice function

of the mechanism design problem and the social choice function that is being used by the social
planner. Most of these examples are taken from [12].

2.1 Example: Allocation of a Single Unit of an Indivisible Private Good

Consider a situation where there is a set N of n agents and one of them is owning one unit of an
indivisible good. The owner wants to trade this good with other agents by means of money. The other
agents are interested in trading with him. Let us assume that there is an outside agent who plays the
role of a broker and facilitates the trading activities among these agents. Each of the n agents interact
directly with the broker agent in a personal manner but they do not interact among themselves. This
broker agent can be viewed as a social planner. Here the problem of the broker agent is to decide
whom to allocate the good and how much money to charge (or pay) from each agent. This can be
viewed as a mechanism design problem and the various building blocks of the underlying mechanism
design structure can be given in following manner.
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1. Outcome Set X: An outcome in this case may be represented by a vector x = (y1, . . . , yn, t1, . . . , tn),
where yi = 1 if the agent i receives the object, yi = 0 otherwise, and ti is the monetary transfer
received by the agent i. The set of feasible alternatives is then

X =

{

(y1, . . . , yn, t1, . . . , tn)|yi ∈ {0, 1}, ti ∈ R ∀ i,

n
∑

i=1

yi = 1,

n
∑

i=1

ti ≤ 0

}

2. Type Set Θi: In this example, the type θi of an agent i can be viewed as his valuation of the
good. We can take the set of possible valuations for agent i to be Θi =

[

θi, θi

]

⊂ R, where θi is

the least valuation and θi is the highest valuation the agent may have for the item.

3. Utility Function ui(·): The utility function of agent i can be given by

ui(x, θi) = ui(y1, . . . , yn, t1, . . . , tn, θi)

= θiyi + ti

4. Social Choice Function f(·): The general structure of the social choice function for this case
is

f(θ) = (y1(θ), . . . , yn(θ), t1(θ), . . . , tn(θ)) ∀ θ ∈ Θ

Two special cases of this example have received a great deal of attention in the literature - bilateral
trading and auctions. In what follows, we discuss each of these two.

2.2 Example: Bilateral Trade

This is a special case of the previous example. In this setting, we have n = 2. Agent 1 is interpreted
as the initial owner of the good (the “seller”), and agent 2 is the potential purchaser of the good (the
“buyer”). A few facts are in order. Note that

1. If θ1 < θ2 there are certain gains for both the agents from the trade regardless of θ1 and θ2.

2. If θ2 < θ1 then it is certain there are no gains for both the agents from the trade.

3. If θ2 < θ1 or θ1 < θ2 or both, then there may or may not be gains for the agents from trade,
depending on the realization of θ.

We will develop this example further in this paper as and when required.

2.3 Example: Single Unit - Single Item Auction

This is a special case of the example 2.1. For the purpose of illustration, we assume that there are
n+1 agents instead of n agents. Note that there is no loss of generality in doing so. Let agent 0 be the
owner of the good with the rest of the n agents interested in buying the good. In this case, the owner
of the good is known as auctioneer and the rest of the agents are known as bidders. The distinguishing
feature of this example which makes it a special case of the Example 2.1 is the following:

The type set of the seller is a singleton set, that is Θ0 = {θ0}, which is commonly known to all the
buyers.
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If θ0 = 0 then it implies that the auctioneer has no value for the good and he just wants to sell it
off. We call such a scenario as single unit single item auction without reserve price. For this example,
the various building blocks of the underlying mechanism design structure are the following.

X =

{

(y0, y1 . . . , yn, t0, t1, . . . , tn)|y0 = 0, t0 ≥ 0, yi ∈ {0, 1}, ti ≤ 0 ∀ i = 1, . . . , n,

n
∑

i=0

yi = 1,

n
∑

i=0

ti = 0

}

Θ0 = {θ0 = 0}

Θi =
[

θi, θi

]

⊂ R ∀ i = 1, . . . , n

u0(x, θ0) = u0(y0, y1 . . . , yn, t0, t1, . . . , tn, θ0) = t0

ui(x, θi) = ui(y0, y1 . . . , yn, t0, t1, . . . , tn, θi) = θiyi + ti ∀ i = 1, . . . , n

f(θ) = (y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ)) ∀ θ ∈ Θ

2.4 Example: Single Unit - Single Item Auction with Reserve Price

This is the same example as the previous one except that now auctioneer has some positive value for
the good, that is, θ0 > 0. The auctioneer announces a reserve price r > 0, which need not be the same
as θ0. All the other agents treat this reserve price as the valuation of the auctioneer for the good.
This scenario is known as single unit - single item auction with reserve price. For this example, the
various building blocks of the underlying mechanism design structure are the following.

X =

{

(y0, y1 . . . , yn, t0, t1, . . . , tn)|y0 ∈ {0, 1}, t0 ≥ 0, yi ∈ {0, 1}, ti ≤ 0 ∀ i = 1, . . . , n,

n
∑

i=0

yi = 1,

n
∑

i=0

ti = 0

}

Θ0 = {θ0 > 0}

Θi =
[

θi, θi

]

⊂ R ∀ i = 1, . . . , n

u0(x, θ0) = θ0y0 + t0

ui(x, θi) = θiyi + ti ∀ i = 1, . . . , n

f(θ) = (y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ))

2.5 Example: A Combinatorial Auction

This is a generalization of Example 2.3. Imagine a setting where an individual, say agent 0, is holding
one unit of each of m different items and wants to sell these items. Let there be n agents who are
interested in buying all the items or a non-empty subset (bundle) of the items. As before, the owner
of the good is known as auctioneer and the rest of the agents are known as bidders. The auctioneer
has no value for these items and just wants to sell them and this fact is a common knowledge among
the bidders. Below are a few distinguishing features of this example which make it a generalization of
Example 2.3.

1. The type set of the auctioneer is a singleton set, that is Θ0 = {θ0 = 0}. This means that
auctioneer has no value for any of the bundle S ⊂ M .
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2. The auctioneer’s type θ0 (also known as seller’s valuation for the bundles) is commonly known
to all the bidders.

3. The type of a bidder i consists of his valuation for every bundle of the items. Obviously, there
are 2m − 1 possible bundles of the items, therefore, a type θi of a bidder i consists of 2m − 1
numbers.

For this example, the various building blocks of the underlying mechanism design structure are the
following.

1. Outcome Set X: An outcome in this is a vector x = (yi(S), t0, t1, . . . , tn)i=1,...,n,S⊂M , where
yi(S) = 1 if bidder i receives the bundle S ⊂ M , yi(S) = 0 otherwise. t0 is the monetary
transfer received by the auctioneer and ti is the monetary transfer received by the bidder i. The
feasibility conditions require that each bidder i must be allocated at most one bundle, that is,
∑

S⊂M yi(S) ≤ 1. Also, each object j ∈ M must be allocated to at most one bidder, that is,
∑

S⊂M |j∈S

∑n
i=1 yi(S) ≤ 1. The set of feasible alternatives is then

X =

{

(yi(S), t0, t1, . . . , tn)i∈N,S⊂M |yi(S) ∈ {0, 1} ∀ i ∈ N,S ⊂ M ;

∑

S⊂M

yi(S) ≤ 1 ∀ i ∈ N ;
∑

S⊂M |j∈S

n
∑

i=1

yi(S) ≤ 1 ∀ j ∈ M ;

t0 ≥ 0; ti ≤ 0 ∀ i ∈ N ;

n
∑

i=0

ti = 0

}

2. Type Set Θi: In this example, the type set of the auctioneer is a singleton set Θ0 = {θ0 = 0}.
However, the type θi of each of the bidders i is a tuple (θi(S))S⊂M , where θi(S) ∈

[

Vi, Vi

]

⊂
R ∀ S ⊂ M represents the value of agent i for bundle S. Here we are assuming that bidder i’s
valuation for each bundle S lies in the interval

[

Vi, Vi

]

. Therefore, the set Θi can be defined in
the following manner:

Θi =
{

(θi(S))S⊂M |θi(S) ∈
[

Vi, Vi

]

⊂ R ∀ S ⊂ M
}

=
[

Vi, Vi

](2m−1)

3. Utility Function ui(·): The utility function of the auctioneer and bidders can be given by

u0 = t0

ui(x, θi) = ti +
∑

S⊂M

θi(S)yi(S) ∀ i ∈ N

4. Social Choice Function f(·): The general structure of the social choice function for this case
is

f(θ) = ((yi(S, θ))i∈N,S⊂M , t0(θ), . . . , tn(θ))
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3 The Mechanism Design Problem

All the above examples illustrate the concept of social choice function (SCF). However the problem
of mechanism design does not end just by choosing some SCF. The social planner needs to address
another problem, namely the problem of information elicitation. Having decided the SCF f(·), a
trivial solution for the information elicitation problem seems to be to request the agents to reveal
their types θi and then use them directly to compute the social outcome x = f(θ). However, given the
fact that an outcome x yields a utility of ui(x, θi) to agent i and agent i is a utility maximizing agent,
the agents’ preferences over the set X depend on the realization of the type profile θ = (θ1, . . . , θn). For
any given realization θ, different agents may prefer different outcomes. Therefore, it is not surprising
if agent i reveals untruthful type, say θ̂i, to the social planner because doing so may help him drive the
social outcome towards his most favorable choice, say x̂. This phenomenon is known as the information
revelation (or elicitation) problem and it is depicted in Figure 2. One way in which social planner can
tackle this problem is the use of an appropriate mechanism. A formal description of the mechanism

Figure 2: Information elicitation problem

design problem is provided below.

1. There are n individuals (or agents), indexed by i = 1, 2, . . . , n, who must make a collective choice
from some set X, called the outcome set.

2. Prior to the choice, however, each agent i privately observes his preferences over X. Formally,
this is modeled by supposing that agent i observes a parameter, or signal θi that determines his
preferences. The parameter θi is referred to as agent i’s type. The set of possible types of agent
i is denoted by Θi.

3. The agents’ types, denoted by θ = (θ1, . . . , θn) are drawn according to a probability distribution
function Φ ∈ ∆Θ, where Θ = Θ1× . . .×Θn, and ∆Θ is the set of all the probability distribution
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functions over the set Θ. Let φ be the corresponding probability density function.

4. Each agent i is rational and intelligent and this fact is modeled by assuming that the agents
always try to maximize a utility function ui : X × Θi → R.

5. The probability density φ(·), the type sets Θ1, . . . ,Θn, and the utility functions ui(·) are assumed
to be common knowledge among the agents. Note that the utility function ui(·) of agent i depends
on both the outcome x and the type θi. Even though, the type θi is not common knowledge, by
saying that ui(·) is common knowledge we mean that for any given type θi, the social planner
and every other agent can evaluate the utility function of agent i.

In the above situation, the social planner faces two problems:

1. Preference Aggregation Problem: The first problem that is faced by the social planner is
the following: “For a given type profile θ = (θ1, . . . , θn) of the agents, which outcome x ∈ X
should be chosen?”

2. Information Revelation (Elicitation) Problem: Assuming that the preference aggregation
problem has been solved, the next problem that is faced by the social planner is the following:
“How do we extract the true type θi of each agent i, which is the private information of agent
i?”

3.1 Mechanisms

Definition 3.1 A mechanism M = ((Si)i∈N , g(·)) is a collection of action sets (S1, . . . , Sn) and an
outcome function g : C → X, where C = S1 × . . . × Sn.

The set Si for each agent i describes the set of actions available to that agent. Based on his actual
type θi, each agent i will choose some action, say si ∈ Si. Once all the agents choose their actions,
the social planner uses this profile of the actions s = (s1, . . . , sn) to pick a social outcome x = g(c).
This phenomenon is depicted in Figure 3. In view of the above definition, the trivial scheme of asking
the agents to reveal their types becomes a special case; this special case is called a direct revelation
mechanism (DRM).

Definition 3.2 Given a social choice function f : Θ → X, a mechanism D = ((Θi)i∈N , f(·)) is known
as a direct revelation mechanism (DRM) corresponding to f(·).

• Given a social choice function f(·), note that a direct revelation mechanism is a special case of
a mechanism M = ((Si)i∈N , g(·)) with Si = Θi ∀ i ∈ N and g = f .

• Mechanisms that are not direct revelation mechanisms are typically referred to as indirect mech-
anisms.

The Figure 4 illustrates the idea behind direct revelation mechanism. In what follows, we present a
few examples of both direct revelation mechanism and indirect mechanism.

13



Figure 3: Abstract view of a mechanism

3.2 Example: Fair Bilateral Trade

Consider the previous bilateral trade example Example 2.2. Let us assume that the broker agent
invites the seller (agent 1) to report his type θ1 directly to him in a confidential manner. θ1 is the
minimum amount at which agent 1 is willing to sell the item. The broker agent also invites the buyer
(agent 2) to report his type θ2 directly to him in a confidential manner. θ2 is the maximum amount
that agent 2 is willing to pay for the item. Let us assume that seller reports his type to be θ̂1 which
may be different from actual type θ1 and buyer reports his type to be θ̂2 which also may be different
from actual type θ2. Now the broker agent uses these reported types θ̂1 and θ̂2 in order to decide an
outcome in the following manner. If θ̂1 < θ̂2 then the broker assigns the good to agent 2. The broker

charges an amount equal to θ̂1+θ̂2

2 from agent 2 and pays the same amount to the agent 1. However,

if θ̂2 < θ̂1 then no trade takes place.
In this example, the mechanism that is being used by the broker agent is a direct revelation mecha-

nism D = (Θ1,Θ2, f(·)), where the social choice function f(·) is given by f(θ) = (y1(θ), y2(θ), t1(θ), t2(θ)),
where θ = (θ1, θ2). The functions yi(·) are known as winner determination rules and the functions
ti(·) are known as payment rules. The winner determination and payment rules are given as follows

y2(θ) =

{

1 : θ1 < θ2

0 : otherwise

y1(θ) = 1 − y2(θ)

t1(θ) = y1(θ)

(

θ1 + θ2

2

)

t2(θ) = −t1(θ)

14



Figure 4: Abstract view of a direct revelation mechanism

3.3 Example: First-Price Sealed Bid Auction

Consider the Example 2.3 of single unit-single item auction without reserve price. Let us assume that
the auctioneer himself is a social planner and he invites each bidder i to bid an amount bi ≥ 0 directly
to him in a confidential manner. The bid bi means that bidder i is ready to pay an amount bi if he
receives the good. The agent i decides bid bi based on his actual type θi. The bids are opened by the
auctioneer and the bidder with the highest bid gets the good and pays to the auctioneer an amount
equal to his bid. The other bidders pay nothing. If there are several highest bids, we suppose that
the lowest numbered of these bids gets the good. We could also break the tie by randomly selecting
one of the highest bidders.

In this example, the mechanism that is being used by the auctioneer is an indirect mechanism
M = ((Si)i∈N , g(·)), where Si ⊂ R

+ is the set of bids that bidder i can submit to the auctioneer and
g(·) is the outcome rule given by g(b) = (y1(b), . . . , yn(b), t1(b), . . . , tn(b)), where b = (b1, . . . , bn). The
functions yi(·) are known as winner determination rules and the functions ti(·) are known as payment
rules. If we define b(k) to be the kth highest element in (b1, . . . , bn) and (b−i)

(k) to be the kth highest
element in (b1, . . . , bi−1, bi+1, . . . , bn), then winner determination and payment rule can be written in
following manner.

yi(b) =

{

1 : if bi = b(1)

0 : otherwise

ti(b) = −biyi(b)

A few remarks are in order with regard to this example.

• While writing the above winner determination and payment rule, we have assumed that any two
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bidders bidding the same bid value is a zero probability event.

• If Si = Θi =
[

θi, θi

]

∀ i ∈ N then this indirect mechanism becomes a direct revelation
mechanism.

3.4 Example: Second-Price Sealed Bid (Vickrey) Auction

The setting is the same as the first-price auction. The only difference here is in terms of the allocation
and payment rules invoked by the auctioneer. In the second-price sealed bid auction, the bidder with
the highest bid gets the good and pays to the auctioneer an amount equal to the second highest bid.
The winner determination and payment rules for this auction can be given as follows.

yi(b) =

{

1 : if bi = b(1)

0 : otherwise

ti(b) = −(b−i)
(1)yi(b)

This auction is also called as Vickrey auction, after the Nobel prize winning work of Vickrey [3].

3.5 Example: Generalized Vickrey Auction (GVA)

Once again, consider the example 2.5 of single unit-multi item auction without reserve price. Let us
assume that auctioneer himself is a social planner and he invites each bidder i to report hid bid bi

directly to him in a confidential manner. In this example, the bid structure is as follows:

bi = (bi(S))S⊂M ; bi(S) ≥ 0 ∀ S ⊂ M

The bids are opened by the auctioneer and the bidders are allocated to the bundles in such a way that
sum of the valuations of all the allocated bundles is maximized. Each bidder pays to the auctioneer
an amount equal to his marginal contribution to the trade.

In this example, the mechanism that is being used by the auctioneer is an indirect mechanism
M = ((Si)i∈N , g(·)), where Si ⊂ (R+)

2m−1
is the set of bids that bidder i can submit to the auctioneer

and g(·) is the outcome rule given by g(b) = ((y∗i (S, b))i∈N,S⊂M , t1(b), . . . , tn(b)), where b = (b1, . . . , bn).
The functions y∗i (·, ·) are known as winner determination rules and the functions ti(·) are known as
payment rules. The winner determination rule y∗i (·, ·) for this auction is basically solution of the
following optimization problem.

Maximize

n
∑

i=1

∑

S⊂M

bi(S)yi(S, b)

subject to

(i)
∑

S⊂M yi(S, b) ≤ 1 ∀ i ∈ N

(ii)
∑

S⊂M |j∈S

∑n
i=1 yi(S, b) ≤ 1 ∀ j ∈ M

(iii) yi(S, b) ∈ {0, 1} ∀ i ∈ N,S ⊂ M
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The payment rule ti(·) for this auction is given by the following relation

ti(b) =
∑

j 6=i

vj(k
∗(b), bj) −

∑

j 6=i

vj(k
∗
−i(b−i), bj)

where vj(k
∗(b), bj) =

∑

S⊂M bj(S)y∗j (S, b) is total value of the bundle which is allocated to the bidder
j. The quantity vj(k

∗
−i(b−i), bj) =

∑

S⊂M bj(S)y∗j (S, b−i) is the total value of the bundle that will be
allocated to the bidder j 6= i if the bidder i were not present into the system. It is easy to verify that
if set M consists of just one item then above winner determination and payment rule will precisely
be the same as winner determination and payment rule of the Vickrey auction, therefore, the name
Generalized Vickrey Auction.

3.6 Bayesian Game Induced by a Mechanism

In view of the definition of the indirect mechanism and direct revelation mechanism, we can say
that a social planner can either use an indirect mechanism M or a direct mechanism D to elicit
the information about the agents’ preferences in an indirect or a direct manner, respectively. As
we assumed earlier, all the agents are rational and intelligent. Therefore, after knowing about the
mechanism M = ((Si)i∈N , g(·)) chosen by the social planner, each agent i starts doing an analysis
regarding which action si will result in his most favorable outcome and comes up with a strategy
si : Θi → Si to take the action. This phenomenon leads to a game among the agents. A mechanism
M = ((Si)i∈N , g(·)) combined with possible types of the agents (Θ1, . . . ,Θn), probability density φ(·),
and utility functions (u1(·), . . . , un(·)) defines a Bayesian game of incomplete information that gets
induced among the agents when the social planner invokes this mechanism as a means to solve the
information elicitation problem. The induced Bayesian game Γb is given in the following manner:

Γb = (N, (Si)i∈N , (Θi)i∈N , φ(·), (ui)i∈N )

where ui : C × Θ → R is the utility function of agent i and is defined in following manner

ui(c, θ) = ui(g(c), θi)

where C = X
i∈N

Si, and Θ = X
i∈N

Θi.

Knowing the fact that choosing any mechanism M = ((Si)i∈N , g(·)) will induce the game among
the agents, and the agents will respond to it in a way suggested by the corresponding equilibrium
strategy of the game, the social planner now worries about whether or not the outcome of the game
matches with the outcome of the social choice function f(θ) (if all the agents had revealed their true
types when asked directly). This notion is captured in the definition that follows.

4 Implementing a Social Choice Function

Definition 4.1 We say that the mechanism M = ((Si)i∈N , g(·)) implements the social choice function
f(·) if there is a pure strategy equilibrium s∗(·) = (s∗1(·), . . . , s

∗
n(·)) of the Bayesian game Γb induced

by M such that g (s∗1(θ1), . . . , s
∗
n(θn)) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ.

The Figure 5 explains the idea behind what we mean by mechanism implementing a social choice
function. Depending on the underlying equilibrium concept, two ways of implementing an SCF f(·)
are standard in the literature.
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Figure 5: Mechanism M = ((Si)i∈N , g(·)) implements the social choice function f(·)

4.1 Implementing a Social Choice Function in Dominant Strategy Equilibrium

First, we define the notion of a weakly dominant strategy equilibrium of the Bayesian game Γb.

Definition 4.2 (Weakly Dominant Strategy Equilibrium) A pure strategy profile
sd(·) =

(

sd
1(·), . . . , s

d
n(·)

)

of the game Γb induced by the mechanism M , is said to be a weakly dominant
strategy equilibrium iff it satisfies the following condition.

ui(g(sd
i (θi), s−i(θ−i)), θi) ≥ ui(g(s

′

i(θi), s−i(θ−i)), θi)

∀i ∈ N,∀θi ∈ Θi,∀θ−i ∈ Θ−i,∀s
′

i(·) ∈ Si,∀s−i(·) ∈ S−i (1)

where Si is the set of pure strategies of the agent i in the induced Bayesian game Γb, and S−i is the
set of pure strategy profiles of all the agents except agent i.

Definition 4.3 We say that the mechanism M = ((Si)i∈N , g(·)) implements the social choice func-
tion f(·) in dominant strategy equilibrium if there is a weakly dominant strategy equilibrium sd(·) =
(

sd
1(·), . . . , s

d
n(·)

)

of the game Γb induced by M such that

g
(

sd
1(θ1), . . . , s

d
n(θn)

)

= f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ
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4.2 Implementing a Social Choice Function in Bayesian Nash Equilibrium

Definition 4.4 We say that the mechanism M = ((Si)i∈N , g(·)) implements the social choice func-
tion f(·) in Bayesian Nash equilibrium if there is a pure strategy Bayesian Nash equilibrium s∗(·) =
(s∗1(·), . . . , s

∗
n(·)) of the game Γb induced by M such that

g (s∗1(θ1), . . . , s
∗
n(θn)) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ

Following is the definition of Bayesian Nash equilibrium of the Bayesian game Γb.

Definition 4.5 (Bayesian Nash Equilibrium) A pure strategy profile s∗(·) = (s∗1(·), . . . , s
∗
n(·)) of

the game Γb induced by the mechanism M , is a Bayesian Nash equilibrium iff it satisfies the following
condition.

Eθ−i
[ui(g(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(g(s
′

i(θi), s
∗
−i(θ−i)), θi)|θi]

∀i ∈ N,∀θi ∈ Θi,∀s
′

i(·) ∈ Si (2)

Following is a proposition that establishes the relationship between two equilibrium concepts defined
above. The proof is straightforward.

Proposition 4.1 A weakly dominant strategy equilibrium sd(·) =
(

sd
1(·), . . . , s

d
n(·)

)

of the Bayesian
game Γb induced by M , is always a pure strategy Bayesian Nash equilibrium of the same Bayesian
game Γb. If the condition (2) holds for all s−i(·) ∈ S−i also, then the proposition holds in the other
direction also.

Corollary 4.1 If the mechanism M = ((Si)i∈N , g(·)) implements the social choice function f(·) in
dominant strategy equilibrium, then it also implements f(·) in Bayesian Nash equilibrium.

In what follows, we offer a few caveats to these definitions of implementing a social choice function.

1. The game Γb induced by the mechanism M may have more than one equilibrium, but the above
definition requires only that one of them induces outcomes in accordance with the SCF f(·).
Implicitly, then, the above definition assumes that, if multiple equilibria exist, the agents will
play the equilibrium that the mechanism designer (social planner) wants.

2. Another implicit assumption of the above definition is that the game induced by the mechanism
is a simultaneous move game, that is all the agents, after learning their types, choose their
actions simultaneously. However, it is quite possible that the mechanism forces some agent(s)
to lead the show, taking the action first followed by the actions of the remaining agents. In such
a case, the game induced by the mechanism becomes a Stackelberg game.

5 Properties of a Social Choice Function

We have seen that a mechanism provides a solution to both the problem of information elicitation and
the problem of preferences aggregation if it can implement the desired social choice function f(·). It
is obvious that some SCFs are implementable and some are not. Before we look into the question of
characterizing the space of implementable social choice functions, it is important to know which social
choice function ideally a social planner would prefer to be implemented. In this section, we highlight
a few properties of an SCF which ideally a social planner would wish the SCF to have.

19



Note that the fundamental characteristic of a social planner is that he is neutral to all the agents.
Therefore, it is obvious for the social planner to be concerned about whether the outcome f(θ1, . . . , θn)
is socially fair or not. For this, a social planner would always like to use an SCF f(·) which satisfies
as many desirable properties from the perspective of fairness as possible. A few important properties,
which ideally a social planner would want an SCF f(·) to satisfy, are the following.

5.1 Ex-Post Efficiency

Definition 5.1 The SCF f : Θ → X is said to be ex-post efficient (or Paretian) if for any profile of
agents’ types θ = (θ1, . . . , θn), and any pair of alternatives x, y ∈ X, such that ui(x, θi) ≥ ui(y, θi) ∀ i
and ui(x, θi) > ui(y, θi) for some i, we have y 6= f(θ1, . . . , θn).

An alternative definition of ex-post efficiency can be given in the following manner.

Definition 5.2 The SCF f : Θ → X is said to be ex-post efficient if for no profile of agents’ type θ =
(θ1, . . . , θn) does there exist an x ∈ X such that ui(x, θi) ≥ ui(f(θ), θi) ∀ i and ui(x, θi) > ui(f(θ), θi)
for some i.

5.2 Non-Dictatorial SCF

We define this through a dictatorial SCF.

Definition 5.3 The SCF f : Θ → X is said to be dictatorial if for every profile of agents’ type
θ = (θ1, . . . , θn), we have f(θ1, . . . , θn) ∈ {x ∈ X|ud(x, θd) ≥ ud(y, θd) ∀y ∈ X}, where d is a particular
agent known as dictator.

An SCF f : Θ → X is said to be non-dictatorial if it is not dictatorial.

5.3 Incentive Compatibility (IC)

Definition 5.4 The SCF f(·) is said to be incentive compatible (or truthfully implementable) if the di-
rect revelation mechanism D = ((Θi)i∈N , f(·)) has a pure strategy equilibrium s∗(·) = (s∗1(·), . . . , s

∗
n(·))

in which s∗i (θi) = θi,∀θi ∈ Θi,∀i ∈ N

That is, truth telling by each agent constitutes an equilibrium of the game induced by D . It is
easy to verify that if an SCF f(·) is incentive compatible then the direct revelation mechanism D =
((Θi)i∈N , f(·)) can implement it. That is, directly asking the agents to report their types and plugging
this information in f(·) to get the social outcome will solve both the problem of information elicitation
and the problem of preferences aggregation.

The notion of incentive compatibility, which is central to mechanism design theory, was first
introduced by Hurwicz [7]. Based on the type of equilibrium concept used, two types of incentive
compatibility are given below.

5.4 Dominant Strategy Incentive Compatibility (DSIC)

Definition 5.5 The SCF f(·) is said to be dominant strategy incentive compatible (or truthfully im-
plementable in dominant strategies)1 if the direct revelation mechanism D = ((Θi)i∈N , f(·)) has a
dominant strategy equilibrium sd(·) = (sd

1(·), . . . , s
d
n(·)) in which sd

i (θi) = θi,∀θi ∈ Θi,∀i ∈ N .

1Strategy-proof, cheat-proof, straightforward are the alternative phrases used for this property.
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That is, truth telling by each agent constitutes a dominant strategy equilibrium of the game induced
by D . Following is a necessary and sufficient condition for an SCF f(·) to be dominant strategy
incentive compatible:

ui (f (θi, θ−i) , θi) ≥ ui(f(θ̂i, θ−i), θi),∀i ∈ N,∀θi ∈ Θi,∀θ−i ∈ Θ−i,∀θ̂i ∈ Θi (3)

The above condition says that if the SCF f(.) is DSIC, then, irrespective of what the other agents are
doing, it is always in the best interest of agent i to report his true type θi.

5.5 Bayesian Incentive Compatibility (BIC)

Definition 5.6 The SCF f(·) is said to be Bayesian incentive compatible (or truthfully implementable
in Bayesian Nash equilibrium) if the direct revelation mechanism D = ((Θi)i∈N , f(·)) has a Bayesian
Nash equilibrium s∗(·) = (s∗1(·), . . . , s

∗
n(·)) in which s∗i (θi) = θi,∀θi ∈ Θi,∀i ∈ N .

That is, truth telling by each agent constitutes a Bayesian Nash equilibrium of the game induced by D .
Following is a necessary and sufficient condition for an SCF f(·) to be Bayesian incentive compatible:

Eθ−i
[ui (f (θi, θ−i) , θi) |θi] ≥ Eθ−i

[ui(f(θ̂i, θ−i), θi)|θi],∀i ∈ N,∀θi ∈ Θi,∀θ̂i ∈ Θi (4)

The following proposition illustrates the relationship between these two notions of incentive compati-
bility of a social choice function. The proof of this proposition is quite straightforward.

Proposition 5.1 If a social choice function f(·) is dominant strategy incentive compatible then it is
also Bayesian incentive compatible.

6 The Revelation Principle

This is one of the most fundamental results in the theory of mechanism design. This principle basically
illustrates the relationship between an indirect mechanism M and a direct revelation mechanism D

for any SCF f(·). This result enables us to restrict our inquiry about truthful implementation of an
SCF to the class of direct revelation mechanisms only.

6.1 The Revelation Principle for Dominant Strategy Equilibrium

Proposition 6.1 Suppose that there exists a mechanism M = (S1, . . . , Sn, g(·)) that implements the
social choice function f(·) in dominant strategy equilibrium. Then f(·) is truthfully implementable in
dominant strategy equilibrium (dominant strategy incentive compatible).

Proof: If M = (S1, . . . , Sn, g(·)) implements f(·) in dominant strategy, then there exists a profile of
strategies sd(·) =

(

sd
1(·), . . . , s

d
n(·)

)

such that

g
(

sd
1(θ1), . . . , s

d
n(θn)

)

= f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ (5)

and

ui(g(sd
i (θi), s−i(θ−i)), θi) ≥ ui(g(s

′

i(θi), s−i(θ−i)), θi)

∀i ∈ N,∀θi ∈ Θi,∀θ−i ∈ Θ−i,∀s
′

i(·) ∈ Si,∀s−i(·) ∈ S−i (6)
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Condition (6) implies, in particular, that

ui(g(sd
i (θi), s

d
−i(θ−i)), θi) ≥ ui(g(sd

i (θ̂i), s
d
−i(θ−i)), θi)

∀i ∈ N,∀θi ∈ Θi,∀θ̂i ∈ Θi,∀θ−i ∈ Θ−i (7)

Conditions (5) and (7) together implies that

ui (f (θi, θ−i) , θi) ≥ ui(f(θ̂i, θ−i), θi),∀i ∈ N,∀θi ∈ Θi,∀θ−i ∈ Θ−i,∀θ̂i ∈ Θi

But this is precisely condition (3), the condition for f(·) to be truthfully implementable in dominant
strategies.

Q.E.D.
The idea behind the revelation principle can be understood with the help of Figure 6. The set IDSE

Figure 6: Revelation principle for dominant strategy equilibrium

consists of all the social choice functions that are implementable by some indirect mechanism M in
dominant strategy equilibrium. The set DSIC consists of all the social choice functions that are
truthfully implementable by some direct mechanism D in dominant strategy equilibrium. Recall that
a direct mechanism D can also be viewed as an indirect mechanism. Therefore, it is obvious that we
must have

DSIC ⊂ IDSE (8)

In view of relation 8, we can say that the revelation principle for dominant strategy equilibrium
basically says that IDSE ⊂ DSIC, which further implies that IDSE = DSIC.

Thus, the revelation principle for dominant strategy equilibrium says that an SCF f(·) is imple-
mentable by an indirect mechanism M = (S1, . . . , Sn, g(·)) in dominant strategy equilibrium iff it is
truthfully implementable by the mechanism D = ((Θi)i∈N , f(·)) in dominant strategy equilibrium.

6.2 The Revelation Principle for Bayesian Nash Equilibrium

Proposition 6.2 Suppose that there exists a mechanism M = (S1, . . . , Sn, g(·)) that implements the
social choice function f(·) in Bayesian Nash equilibrium. Then f(·) is truthfully implementable in
Bayesian Nash equilibrium (Bayesian incentive compatible).
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Proof: If M = (S1, . . . , Sn, g(·)) implements f(·) in Bayesian Nash equilibrium, then there exists a
profile of strategies s∗(·) = (s∗1(·), . . . , s

∗
n(·)) such that

g (s∗1(θ1), . . . , s
∗
n(θn)) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ (9)

and

Eθ−i

[

ui(g(s∗i (θi), s
∗
−i(θ−i)), θi)|θi

]

≥ Eθ−i

[

ui(g(s
′

i(θi), s
∗
−i(θ−i)), θi)|θi

]

∀i ∈ N,∀θi ∈ Θi,∀s
′

i(·) ∈ Si (10)

Condition (10) implies, in particular, that

Eθ−i

[

ui(g(s∗i (θi), s
∗
−i(θ−i)), θi)|θi

]

≥ Eθ−i

[

ui(g(s∗i (θ̂i), s
∗
−i(θ−i)), θi)|θi

]

∀i ∈ N,∀θi ∈ Θi,∀θ̂i ∈ Θi (11)

Conditions (9) and (11) together implies that

Eθ−i
[ui (f (θi, θ−i) , θi) |θi] ≥ Eθ−i

[

ui(f(θ̂i, θ−i), θi)|θi

]

,∀i ∈ N,∀θi ∈ Θi,∀θ̂i ∈ Θi

But this is precisely condition (4), the condition for f(·) to be truthfully implementable in Bayesian
Nash equilibrium.

Q.E.D.
In a way similar to the revelation principle for dominant strategy equilibrium, the revelation principle
for Bayesian Nash equilibrium can be explained with the help of Figure 7. Following the similar line

Figure 7: Revelation principle for Bayesian Nash equilibrium

of arguments, we can get the following relation for this case also

BIC ⊂ IBNE (12)

In view of relation 12, we can say that the revelation principle for Bayesian Nash equilibrium basically
says that IBNE ⊂ BIC, which further implies that IBNE = BIC.
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Thus, the revelation principle for Bayesian Nash equilibrium says that an SCF f(·) is implementable
by an indirect mechanism M = (S1, . . . , Sn, g(·)) in Bayesian Nash equilibrium iff it is truthfully
implementable by the mechanism D = ((Θi)i∈N , f(·)) in Bayesian Nash equilibrium.

In view of the above revelation principle, from now onwards, we will be just focusing on direct
revelation mechanisms without loss of any generality.

7 The Gibbard-Satterthwaite Impossibility Theorem

Ideally, a social planner would prefer to implement a social choice function f(·) which is ex-post
efficient, non-dictatorial, and dominant strategy incentive compatible. Now the question is: does there
exist any such social choice function? The answer is no.

The Gibbard-Satterthwaite impossibility theorem shows that for a very general class of problems
there is no hope of implementing any satisfactory social choice function in dominant strategies. This is
an important landmark result which has shaped the course of research on incentives and implementa-
tion to a great extent and it was discovered independently by Gibbard in 1973 [10] and Satterthwaite
in 1975 [57]. To understand the precise statement of this theorem, we need to build up a few concepts.

Utility Function and Preference Relation

We have already seen that a given preference of an agent i, over the outcome set X, can also be
described by means of a utility function ui : X → R which assigns a numerical value to each element
in X. A utility function ui always induces a unique preference relation % i on X which can be described
in following manner

x % i y ⇔ ui(x) ≥ ui(y)

The following proposition establishes the relationship between these two ways of expressing the pref-
erences of an agent i over the set X - preference relation and utility function. The above preference
relation is often called a rational preference relation and it is formally defined as follows.

Definition 7.1 (Rational Preference Relation) We say that a relation % i on the set X is called
a rational preference relation if it possesses the following three properties:

1. Reflexivity: ∀ x ∈ X, we have x % i x

2. Completeness: ∀ x, y ∈ X, we have that x % i y or y % i x (or both).

3. Transitivity: ∀ x, y, z ∈ X, if x % i y and y % i z, then x % i z.

Proposition 7.1

1. If a preference relation % i over X can be induced by some utility function ui(·), then it will be
a rational preference relation.

2. For every preference relation % i∈ R, there need not exist a utility function which will induce it.
However, it is true when the set X is finite.

3. For a given preference relation % i∈ R, if there exists a utility function which induces it, then this
need not be the unique one. Indeed, if the utility function ui(·) induces % i, then v(x) = f(u(x))
is another utility function which will also induce % i, where f : R → R is a strictly increasing
function.
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Definition 7.2 (Strict-total Preference Relation) We say that a rational preference relation % i

is strict-total if it possesses the antisymmetry property, in addition to the reflexivity, completeness,
and transitivity. By antisymmetry, we mean that, for any x, y ∈ X such that x 6= y, we have either
x % i y or y % i x, but not both.

The set of all the rational preference relations and strict-total preference relations over the set X are
denoted by R and S , respectively. It is easy to see that S ⊂ R. The strict-total order relation is
also known as linear order relation because it satisfies the properties of the usual “greater than or
equal to” relationship on the real line.

Set of Ordinal Preference Relations

In the mechanism design problem, for agent i, the preference over the set X is described in the form
of a utility function ui : X × Θi → R. That is, for every possible type θi ∈ Θi of agent i, we can
define a utility function ui(., θi) over the set X. Let this utility function induce a rational preference
relation % i (θi) over X. The set Ri = {% i:% i=% i (θi)for some θi ∈ Θi} is known as the set of ordinal
preference relations for agent i. It is easy to see that Ri ⊂ R ∀ i = 1, . . . , n.

Now we can state the Gibbard-Satterthwaite impossibility theorem.

Theorem 7.1 (Gibbard-Satterthwaite Impossibility Theorem) Suppose that

1. The outcome set X is finite and contains at least three elements

2. Ri = S ∀ i = 1, . . . , n

3. f(Θ) = X, that is, the image of SCF f(·) is the set X.

Then the social choice function f(·) is truthfully implementable in dominant strategies iff it is dicta-
torial.

Here is a brief outline of the proof of the theorem. For a detailed proof, refer to Proposition 23.C.3
of [12]. To prove the necessity, we assume that the social choice function f(.) is dictatorial and it
is shown that f(.) is DSIC. This is fairly straightforward. The proof of the sufficiency part of the
theorem proceeds in three stages. We start with the assumption that f(.) is DSIC and in stage 1, we
prove that f(.) satisfies a monotonicity property. Next, in stage 2, it is shown that f(.) is ex-post
efficient. Finally, in stage 3, it is shown that monotonicity and ex-post efficiency together imply that
f(.) is dictatorial.

The Gibbard-Satterthwaite impossibility theorem gives a disappointing piece of news and the
question facing a social planner is what kind of SCF to look for in the face of this impossibility result.
There are two possible routes that one may take:

1. The first route is to focus on some restricted environment where at least one of the three re-
quirements of the Gibbard-Satterthwaite impossibility theorem is not fulfilled. Quasi-linear
environment is one such environment where the second condition of this theorem is not satisfied
and in fact all the social choice functions in such environments are non-dictatorial.

2. The other route is to weaken the implementation concept and look for an SCF which is ex-post
efficient, non-dictatorial, and Bayesian incentive compatible.
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The Gibbard-Satterthwaite impossibility theorem happens to be a special case of the celebrated
Arrow’s impossibility theorem in welfare economics. We now provide a discussion of this famous result
in the next section before returning to discuss the above two routes for circumventing the difficulties
arising out of the Gibbard-Satterthwaite theorem and the Arrow’s impossibility theorem.

8 Arrow’s Theorem

Suppose a person has to select one of three fruits, A, B, or C to purchase. The agent prefers to have A
over B and prefers C to B. The agent can now decide which fruit he would purchase, consistent with
his preferences. Suppose there are two friends who wish to purchase one fruit out of these three. They
may have different preferences, so they have to take a collective decision which is suitable for both of
them. The decision is not straightforward anymore. A social welfare function is useful for describing
the collective (or social) preference in such scenarios.

A social planner seeks to implement a desirable system wide solution. To have a socially desirable
outcome, the social planner has to aggregate the preferences of every individual, over the outcome set
X. A function, which the social planner uses to aggregate individual preference into a social preference
is referred to as social welfare function. Formally,

Definition 8.1 (Social Welfare Function) A social welfare function is a function W : Rn → R

that aggregates the preference profile (%1,%2, . . . ,%n) ∈ Rn of individual preferences into a public
or social preference %.

The Arrow’s theorem is a celebrated result in welfare economics which essentially says that a social wel-
fare function that is required to satisfy two desirable properties, namely unanimity and independence
of irrelevant alternatives (IIA) will necessarily belong to a restricted class of functions called dictato-
rial social welfare functions. We first define unanimity (also called Paretian), IIA, and dictatorship.

Definition 8.2 (Unanimity) A social welfare function W is said to satisfy unanimity (or Paretian)
if for every %∈ S ,W (%, . . . ,%) =%.

Unanimity means that if all agents have identical preferences then the social preference is the same as
the preference of each agent. As a simple example, in the case of the fruits situation described above,
if both the agents prefer A to B and B to C, then the social preference also will prefer A to B and B
to C.

Definition 8.3 (Independence of Irrelevant Alternatives) A social welfare function W : A →
R defined on the domain A ⊆ Rn, is said to satisfy independence of irrelevant alternatives conditions
if the social preference between any two alternatives depends only on the profile of individual preferences
over the same alternatives. Formally, for any pair, x, y ∈ X and for any pair of preference profiles
(%1,%2, . . . ,%n), (%′

1,%
′
2, . . . ,%

′
n), if we denote %= W (%1,%2, . . . ,%n) and %′= W (%′

1,%
′
2, . . . ,%

′
n),

then
x %i y ⇔ x %′

i y ∀ i implies x % y ⇔ x %′ y

This condition is quite a natural one. Independence of irrelevant alternatives means, that social
preference of two alternatives x, y should depend upon individual preferences over x, y and not on
other outcomes. This condition captures a certain consistency property, lack of which may lead to
strategic manipulation. The characteristic of independence of irrelevant alternatives is also called
pairwise independence.
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Definition 8.4 (Dictatorship) A social welfare function W is said to be dictatorial or is called a
dictatorship if there exists a dictator. A player i ∈ N is called a dictator if

W (%1, . . . ,%n) = %i ∀ %1, . . . ,%n∈ R

Theorem 8.1 (Arrow’s Impossibility Theorem) Suppose |X| ≥ 3 and that the domain of ad-
missible individual profiles denoted by A is either A = RnorS n. Then every social welfare function
W : A → R that is unanimous and satisfies independence of irrelevant alternatives, is dictatorial.

There are many proofs of this theorem. Interested readers can refer to the Section 21.C/22.D of
the book by Mas-Colell, Whinston, and Green [12]. An elegant proof is available in [58]. The proof
proceeds in two parts. Let W be a social welfare function that satisfies unanimity and independence
of irrelevant alternatives. Part 1 shows pairwise neutrality , by which we mean that the same social
ranking rule is taken within any pair of alternatives. Part 2 invokes pairwise neutrality to show that
there exists an agent id who is a dictator.

Example: The Condorcet Paradox

Suppose there are three agents who wish to buy one fruit out of three fruits, A,B,C, so, X = {A,B,C}.
Suppose that to decide social preference between any two alternatives, we are implement majority
voting between those two alternatives. That is, if 2 out of 3 prefer to go for fruit A over fruit B,
we will put B to be preferable to A as the social decision. It can be verified that the majority
voting function satisfies unanimity and IIA. Assume that the preferences of the three agents are: (1)
B %1 A %1 C; (2) A %2 C %2 B; (3) C %3 B %3 A. Let %= W (%1,%2,%3), where W is the majority
voting function. Now note that B % A as B is preferred over A by 2 out of 3 agents. Similarly, A % C,
C % B. But then we cannot decide any social ordering among these 3 alternatives at this preference
profile since that would imply B % A % C % B, which is contradiction.

We could not implement this social welfare function because majority voting is not a dictatorship.
This exemplifies the Arrow’s theorem which says that a social welfare function that satisfies unanimity
and IIA is necessarily a dictatorial.

Now, consider another social welfare function Z which is such that, if for any pair (a, b) ∈ X such
that a �1 b, Z prefers a over b. Clearly, this social welfare function satisfies unanimity and IIA and
this can be implemented. Here, agent 1 is a dictator and hence the function Z is a dictatorial social
welfare function.

Arrow’s Theorem and the Gibbard Satterthwaite Theorem

The Gibbard-Satterthwaite theorem asserts the dictatorship of social choice functions while Arrow’s
theorem asserts the dictatorship of social welfare functions. The Gibbard-Satterthwaite theorem
is a special case of the Arrow’s theorem, as shown by the following argument. Start with a non-
dictatorial SCF such that f(Θ) = X, that is, the image of SCF f(·) is the set X and |X| is at least
3. One can construct a social welfare function from this social choice function and show that it is
non-dictatorial, which immediately contradicts Arrow’s theorem. A detailed proof of the Gibbard-
Satterthwaite theorem as a special case of Arrow’s theorem can be found in [58].
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9 Quasi-Linear Environments

This is a special and much studied class of environments where the Gibbard-Satterthwaite theorem
does not hold. In this environment, an alternative x ∈ X is a vector of the form x = (k, t1, . . . , tn),
where k is an element of a set K, to be called as “project choice.” The set K is a compact subset of
a topological space. ti ∈ R is a monetary transfer to agent i. If ti > 0 then agent i will receive the
money and if ti < 0 then agent i will pay the money. We assume that we are dealing with a closed
system in which n agents have no outside source of funding, i.e.

∑n
i=1 ti ≤ 0. This condition is known

as weak budget balance condition. The set of alternatives X is therefore

X =

{

(k, t1, . . . , tn) : k ∈ K, ti ∈ R ∀ i = 1, . . . , n,
∑

i

ti ≤ 0

}

A social choice function in this quasi-linear environment takes the form f(θ) = (k(θ), t1(θ), . . . , tn(θ))
where ∀ θ ∈ Θ, k(θ) ∈ K and

∑

i ti(θ) ≤ 0.2 For a direct revelation mechanism D = ((Θi)i∈N , f(·))
in this environment, the agent i’s utility function takes the quasi-linear form

ui(x, θi) = ui(k, t1, . . . , tn, θi) = vi(k, θi) + mi + ti

where mi is agent i’s initial endowment of the money and the function vi(·) is known as agent i’s
valuation function. Recall condition 5 in the definition of mechanism design problem given in Section
3. This condition says that the utility function ui(·) is common knowledge. In the context of a
quasi-linear environment, this implies that for any given type θi of any agent i, the social planner
and every other agent j have a way to figure out the function vi(., θi). In many cases, the set Θi

of the direct revelation mechanism D = ((Θi)i∈N , f(·)) is actually the set of all feasible valuation
functions vi : K → R of agent i. That is, each possible function represents each possible type of agent
i. Therefore, in such settings reporting a type is the same as reporting a valuation function.

As far as examples of quasi-linear environment are concerned, all the previously discussed ex-
amples, such as fair bilateral trade (Example 3.2), first price auction (Example 3.3), second-price
auction (Example 3.4), and Generalized Vickrey Auction (Example 3.5) are all natural examples of
the mechanism in quasi-linear environment.

In the quasi-linear environment, we can define two important properties of a social choice function.

Definition 9.1 (Allocative Efficiency (AE)) We say that SCF f(·) = (k(·), t1(·), . . . , tn(·)) is al-
locatively efficient if for each θ ∈ Θ, k(θ) satisfies the following condition3

k(θ) ∈
arg max
k ∈ K

n
∑

i=1

vi(k, θi) (13)

Note that the above definition will make sense only when we ensure that for any given θ, the function
∑n

i=1 vi(., θi) : K → R attains a maximum over the set K. The simplest way to do this is to put a
restriction that the function vi(., θi) : K → R is an upper semi-continuous function for each θi ∈ Θi

and for each i = 1, . . . , n.

2Note that here we are using symbol k for both as an element of the set K and as a function going from Θ to K. It
should be clear from the context as to which of these two we are referring.

3We will keep using the symbol k∗(·) for a function k(·) that satisfies the Equation (13).
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Definition 9.2 (Budget Balance (BB)) We say that SCF f(·) = (k(·), t1(·), . . . , tn(·)) is budget
balanced if for each θ ∈ Θ, t1(θ), . . . , tn(θ) satisfies the following condition4

n
∑

i=1

ti(θ) = 0 (14)

The following lemma establishes an important relationship of these two properties of an SCF with the
ex-post efficiency of the SCF.

Lemma 9.1 A social choice function f(·) = (k(·), t1(·), . . . , tn(·)) is ex-post efficient in quasi-linear
environment if and only if it is allocatively efficient and budget balanced.

Proof: Let us assume that f(·) = (k(·), t1(·), . . . , tn(·)) is allocatively efficient and budget balanced.
This implies that for any θ ∈ Θ, we have

n
∑

i=1

ui(f(θ), θi) =
n

∑

i=1

vi(k(θ), θi) +
n

∑

i=1

ti(θ)

=

n
∑

i=1

vi(k(θ), θi) + 0

≥

n
∑

i=1

vi(k, θi) +

n
∑

i=1

ti ∀ x = (k, t1, . . . , tn)

=
n

∑

i=1

ui(x, θi) ∀ (k, t1, . . . , tn) ∈ X

That is if the SCF is allocatively efficient and budget balanced then for any type profile θ of the
agent the outcome chosen by the social choice function will be such that it maximizes the total utility
derived by all the agents. This will automatically imply that the SCF is ex-post efficient.

To prove the other part, we will first show that if f(·) is not allocatively efficient then it cannot be
ex-post efficient and next we will show that if f(·) is not budget balanced then it cannot be ex-post
efficient. These two facts together will imply that if f(·) is ex-post efficient then it will have to be
allocatively efficient and budget balanced, thus completing the proof of the lemma.

To start with, let us assume that f(·) is not allocatively efficient. This means that ∃ θ ∈ Θ, and
k ∈ K such that

n
∑

i=1

vi(k, θi) >

n
∑

i=1

vi(k(θ), θi)

This implies that there exists at least one agent j for whom vj(k, θi) > vj(k(θ), θi). Now consider the
following alternative x

x =
(

k, (ti = ti(θ) + vi(k(θ), θi) − vi(k, θi))i6=j , tj = tj(θ)
)

It is easy to verify that ui(x, θi) = ui(f(θ), θi) ∀ i 6= j and uj(x, θi) > uj(f(θ), θi) implying that f(·)
is not ex-post efficient.

4Many authors prefer to call this property as strong budget balance and they refer the property of having
P

n

i=1
ti(θ) ≤ 0

as weak budget balance. In this thesis, we will use the term budget balance to refer to strong budget balance.
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Next, we assume that f(·) is not budget balanced. This means that there exists at least one agent
j for whom tj(θ) < 0. Let us consider the following alternative x

x =
(

k, (ti = ti(θ))i6=j , tj = 0
)

It is easy to verify that for the above alternative x, we have ui(x, θi) = ui(f(θ), θi) ∀ i 6= j and
uj(x, θi) > uj(f(θ), θi) implying that f(·) is not ex-post efficient.

Q.E.D.
The next lemma summarizes another fact about the social choice function in quasi-linear environment.

Lemma 9.2 All social choice functions in quasi-linear environment are non-dictatorial.

Proof: If possible assume that SCF f(·) is dictatorial. This means that for each θ ∈ Θ, we have

ud(f(θ), θd) ≥ ud(x, θd) ∀ x ∈ X

where d is a dictatorial agent. However, because of quasi-linear environment, we have ud(f(θ), θd) =
vd(k(θ), θd) + td(θ). Now consider the following alternative x ∈ X :

x =

{

(k(θ), (ti = ti(θ))i6=d, td = td(θ) −
∑n

i=1 ti(θ)) :
∑n

i=1 ti(θ) < 0
(k(θ), (ti = ti(θ))i6=d,j , td = td(θ) + ǫ, tj = tj(θ) − ǫ) :

∑n
i=1 ti(θ) = 0

where ǫ > 0 is any arbitrary number and j is any agent other than d. It is easy to verify that for
the above constructed x, we have ud(x, θd) > ud(f(θ), θd) contradicting the assumption that f(·) is
dictatorial.

Q.E.D.
In view of the Lemma 9.2, the social planner need not have to worry about the non-dictatorial property
of the social choice function in quasi-linear environments and he can simply look for whether there
exists any SCF which is both ex-post efficient and dominant strategy incentive compatible. Further in
the light of Lemma 9.1, we can say that the social planner can look for an SCF which is allocatively
efficient, budget balanced, and dominant strategy incentive compatible. Once again the question arises
whether there exists any such social choice function which satisfies all these three properties - AE,
BB, and DSIC. We explore the answer to this question in what follows.

10 Groves Mechanisms

The following theorem, due to Groves [9] confirms that in quasi-linear environment, there exist so-
cial choice functions which are both allocatively efficient and truthfully implementable in dominant
strategies (dominant strategy incentive compatible).

Theorem 10.1 (Groves’ Theorem) Let the social choice function f(·) = (k∗(·), t1(·), . . . , tn(·)) be
allocatively efficient. This function can be truthfully implemented in dominant strategies if it satisfies
the following payment structure (popularly known as Groves payment (incentive) scheme) :

ti(θ) =





∑

j 6=i

vj(k
∗(θ), θj)



 + hi(θ−i) ∀ i = 1, . . . , n (15)

where hi(·) is any arbitrary function of θ−i up to satisfying the feasibility condition
∑

i ti(θ) ≤ 0 ∀ θ ∈
Θ .

30



For proof of the Groves theorem, refer to Proposition 23.C.4 of [12]. Following are a few interesting
implications of the above theorem.

1. Given the announcements θ−i of agents j 6= i, agent i’s transfer depends on his announced type
only through his announcement’s effect on the project choice k∗(θ).

2. The change in the monetary transfer of agent i when his type changes from θi to θ̂i is equal to
the effect that the corresponding change in project choice has on total value of the rest of the
agents. That is,

ti(θi, θ−i) − ti(θ̂i, θ−i) =
∑

j 6=i

[

vj(k
∗(θi, θ−i), θj) − vj(k

∗(θ̂i, θ−i), θj)
]

Another way of describing this is to say that the change in monetary transfer to agent i reflects
exactly the externality he is imposing on the other agents.

After the famous result of Groves, a direct revelation mechanism in which the implemented SCF is
allocatively efficient and satisfies the Groves payment scheme is called as Groves Mechanism.

Definition 10.1 (Groves Mechanisms) A direct revelation mechanism, D = ((Θi)i∈N , f(·)) in
which f(·) = (k(·), t1(·), . . . , tn(·)) satisfies (13) and (15) is known as Groves mechanism.5

In practice, Groves mechanisms are popularly known as Vickrey-Clarke-Groves (VCG) mechanisms
because Clarke mechanism is a special case of Groves mechanism and Vickrey mechanism is a special
case of Clarke mechanism. We will discuss this relationship later in this paper.

Groves theorem provides a sufficiency condition under which an allocatively efficient (AE) SCF
will be DSIC. The following theorem due to Green and Laffont [59] provides a set of conditions under
which the condition of Groves theorem also becomes a necessary condition for an AE SCF to be DSIC.
In this theorem, we let F denote the set of all possible functions f : K → R.

Theorem 10.2 (First Characterization Theorem of Green-Laffont) Suppose that for each agent
i = 1, . . . , n {vi(., θi) : θi ∈ Θi} = F ; that is, every possible valuation function from K to R arises
for some θi ∈ Θi. Then any allocatively efficient (AE) social choice function f(·) will be dominant
strategy incentive compatible (DSIC) if and only if it satisfies the Groves payment scheme given by
(15).

Note that in the above theorem, every possible valuation function from K to R arises for some θi ∈ Θi.
Therefore, in many cases, depending upon the structure of the compact set K , it is quite possible
that for some type profile θ = (θ1, . . . , θn), the maximum of the function

∑n
i=1 vi(., θi) over the set K

may not exist. In such cases, the set of AE social choice functions would be empty and the theorem
will make no sense. One possible way to get away with this difficulty is to assume that the set K is a
finite set. Another solution is to restrict the allowable valuation functions to the class of continuous
functions. The following characterization theorem of Green and Laffont [59] fixes this problem by
replacing the F with Fc where Fc denotes the set of all possible continuous functions f : K → R.

Theorem 10.3 (Second Characterization Theorem of Green-Laffont) Suppose that for each
agent i = 1, . . . , n {vi(., θi) : θi ∈ Θi} = Fc; that is, every possible continuous valuation function from
K to R arises for some θi ∈ Θi. Then any allocatively efficient (AE) social choice function f(·) will be
dominant strategy incentive compatible (DSIC) if and only if it satisfies the Groves payment scheme
given by (15).

5We will sometime abuse the terminology and simply refer to a SCF f(·) satisfying (13) and (15) as Groves mechanism.
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10.1 Groves Mechanisms and Budget Balance

Note that a Groves mechanism always satisfies the properties of AE and DSIC. Therefore, if a Groves
mechanism is budget balanced then it will solve the problem of the social planner because it will then
be ex-post efficient and dominant strategy incentive compatible. By looking at the definition of the
Groves mechanism, one can conclude that it is the functions hi(·) that decide whether or not the
Groves mechanism is budget balanced. The natural question that arises now is whether there exists a
way of defining functions hi(·) such that the Groves mechanism is budget balanced. In what follows,
we present one possibility and one impossibility result in this regard.

10.2 Possibility and Impossibility Results for Quasi-linear Environments

Green and Laffont [59] showed that in quasi-linear environment, if the set of possible types for each
agent is sufficiently rich then ex-post efficiency and DSIC cannot be achieved together. The precise
statement is given in the form of following theorem.

Theorem 10.4 (Green-Laffont Impossibility Theorem) Suppose that for each agent i = 1, . . . , n,
{vi(., θi) : θi ∈ Θi} = F ; that is, every possible valuation function from K to R arises for some θi ∈ Θi.
Then there is no social choice function which is ex-post efficient and DSIC.

Thus, the above theorem says that if the set of possible types for each agent is sufficiently rich then
there is no hope of finding a way to define the functions hi(·) in Groves payment scheme so that
we have

∑n
i=1 ti(θ) = 0. However, one special case in which a more positive result does obtain is

summarized in the form of following possibility result.

Theorem 10.5 (Possibility Result for Budge Balance of Groves Mechanisms ) If there is at
least one agent whose preferences are known (i.e. his type set is a singleton set) then it is possible to
choose the functions hi(·) so that

∑n
i=1 ti(θ) = 0.

Proof Let agent i be such that his preferences are known, that is Θi = {θi}. In view of this condition,
it is easy to see that for an allocatively efficient social choice function f(·) = (k∗(·), t1(·), . . . , tn(·)),
the allocation k∗(·) depends only on the types of the agents other than i. That is, the allocation k∗(·)
is a mapping from Θ−i to K. Let us define the functions hj(·) in the following manner.

hj(θ−j) =

{

hj(θ−j) : j 6= i
−

∑

r 6=i hr(θ−r) − (n − 1)
∑n

r=1 vr(k
∗(θ), θr) : j = i

It is easy to see that under the above definition of the functions hi(·), we will have ti(θ) = −
∑

j 6=i tj(θ).

10.3 Clarke (Pivotal) Mechanisms: Special Case of Groves Mechanisms

A special case of Groves mechanism was discovered independently by Clarke in 1971 [8] and is known as
Clarke, or pivotal mechanism. It is a special case of Groves mechanism in the sense of using a particular
form for the function hi(·). In Clarke mechanism, the function hi(·) is given by the following relation

hi(θ−i) = −
∑

j 6=i

vj(k
∗
−i(θ−i), θj) ∀ θ−i ∈ Θ−i,∀ i = 1, . . . , n (16)
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where k∗
−i(θ−i) ∈ K−i is the choice of a project which is allocatively efficient if there were only the

n − 1 agents j 6= i. Formally, k∗
−i(θ−i) must satisfy the following condition.

∑

j 6=i

vj(k
∗
−i(θ−i), θj) ≥

∑

j 6=i

vj(k, θj) ∀ k ∈ K−i (17)

where the set K−i is the set of project choices available when agent i is absent. Substituting the value
of hi(·) from Equation (16) in Equation (15), we get the following expression for agent i’s transfer in
the Clarke mechanism

ti(θ) =





∑

j 6=i

vj(k
∗(θ), θj)



 −





∑

j 6=i

vj(k
∗
−i(θ−i), θj)



 (18)

10.4 Clarke Mechanisms and Weak Budget Balance

Recall from the definition of Groves mechanisms that, for weak budget balance, we should choose the
functions hi(θ−i) in such a way that the weak budget balance condition

∑n
i=1 ti(θ) ≤ 0 is satisfied.

In this sense, the Clarke mechanism is a useful special-case because it achieves weak budget balance
under fairly general settings. In order to understand these general sufficiency conditions, we define
following quantities

B∗(θ) =







k ∈ K|k ∈
arg max
k ∈ K

n
∑

j=1

vj(k, θj)







B∗(θ−i) =







k ∈ K−i|k ∈
arg max
k ∈ K−i

∑

j 6=i

vj(k, θj)







where B∗(θ) is the set of project choices that are allocatively efficient when all the agents are present
there in the system. Similarly, B∗(θ−i) is the set of project choices that are allocatively efficient if
there were n − 1 agents j 6= i. It is obvious that k∗(θ) ∈ B∗(θ) and k∗

−i(θ−i) ∈ B∗(θ−i).
Using the above quantities, we define the following properties of a direct revelation mechanism in

quasi-linear environment.

Definition 10.2 (No Single Agent Effect) We say that mechanism M has no single agent effect
if for each agent i, each θ ∈ Θ, and each k∗(θ) ∈ B∗(θ), we have a k ∈ K−i such that

∑

j 6=i

vj(k, θj) ≥
∑

j 6=i

vj(k
∗(θ), θj)

In view of the above properties, we have the following proposition that gives sufficiency condition
for Clarke mechanism to be weak budget balanced.

Proposition 10.1 If the Clarke mechanism has no single agent effect, then transfer of each agent
would be non-positive, that is, ti(θi) ≤ 0 ∀ θ ∈ Θ; ∀ i = 1, . . . , n. In such a situation, the Clarke
mechanism would satisfy the weak budget balance property.
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Proof: Note that by virtue of no single agent effect, for each agent i, each θ ∈ Θ, and each k∗(θ) ∈
B∗(θ), ∃k ∈ K−i such that

∑

j 6=i

vj(k, θj) ≥
∑

j 6=i

vj(k
∗(θ), θj)

However, by definition of k∗
−i(θ−i), given by Equation (17), we have

∑

j 6=i

vj(k
∗
−i(θ−i), θj) ≥

∑

j 6=i

vj(k, θj) ∀ k ∈ K−i

Combining the above two facts, we get

∑

j 6=i

vj(k
∗
−i(θ−i), θj) ≥

∑

j 6=i

vj(k
∗(θ), θj)

⇒ 0 ≥ ti(θ)

⇒ 0 ≥

n
∑

i=1

ti(θ)

Q.E.D.
Now we can make following assertions with respect to these definitions. In what follows is an interesting
corollary of the above proposition.

Corollary 10.1

1. ti(θ) = 0 iff k∗(θ) ∈ B∗(θ−i). That is, agent i’s monetary transfer is zero iff his announcement
does not change the project decision relative to what would be allocatively efficient for agents
j 6= i in isolation.

2. ti(θ) < 0 iff k∗(θ) 6∈ B∗(θ−i). That is, agent i’s monetary transfer is negative iff his announce-
ment changes the project decision relative to what would be allocatively efficient for agents j 6= i
in isolation. In such situation, the agent i is known to be “pivotal” to the efficient project choice
and he pays a tax equal to his effect on the other agents.

The following picture summarizes the conclusions of this section by showing how the space of social
choice functions looks like in quasi-linear environment. In what follows we discuss a few examples
of direct revelation mechanisms in quasi-linear environment and study the various properties of the
underlying SCF.

10.5 Fair Bilateral Trade is BB+AE but not DSIC

Consider the fair bilateral trade Example 3.2 in which the good is always allocated to the agent who
values it the most. Therefore, the SCF is allocatively efficient. The SCF here is also budget balanced,
which is quite clear from the definition of SCF itself. However, it is easy to see that this SCF is not
dominant strategy incentive compatible. For example, let us assume that θ1 = 50 and θ2 = 100. Then,
it is easy to see that for any 50 < θ̂1 < 100

u1(f(θ̂1, θ2), θ1) > u1(f(θ1, θ2), θ1)

This violates the required condition of the dominant strategy incentive compatibility.
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Figure 8: Space of social choice functions in quasi-linear environment

10.6 First-Price Sealed Bid Auction is AE but neither DSIC nor BB

Consider the Example 3.3 of first-price auction. Let us assume that Si = Θi =
[

θi, θi

]

∀ i ∈ N . In
such a case, the first-price auction becomes a direct revelation mechanism D = ((Θi)i∈N , f(·)), where
f(·) is an SCF which is same as outcome rule of the first-price auction. Note that under the SCF
f(·), the good is always allocated to the bidder who values it the most. Therefore, the SCF f(·) is
allocatively efficient. It is an easy fact to note that the SCF f(·) is not budget balanced, because the
auctioneer is not considered as one of the agents. Moreover, the SCF used here is not DSIC because
truth telling is not a dominant strategy for the bidders. In order to show this, let us assume that there
are two bidders and for some instance we have θ1 = 50 and θ2 = 100. Then, it is easy to see that for
any 50 < θ̂2 < 100

u2(f(θ1, θ̂2), θ2) > u2(f(θ1, θ2), θ2)

This violates the required condition of the dominant strategy incentive compatibility.

10.7 Second-Price Sealed Bid (Vickrey) Auction is AE + DSIC but not BB

Consider Example 3.4 of second-price (Vickrey) auction. Once again we assume that Si = Θi =
[

θi, θi

]

∀ i ∈ N . In such a case, the second-price auction becomes a direct revelation mechanism
D = ((Θi)i∈N , f(·)), where f(·) is an SCF which is same as outcome rule of the second-price auction.
We have already shown that Vickrey auction is a special case of GVA in which the auctioneer is selling
just single unit of a single item. Given that the Vickrey auction a special case of the GVA, we can
assert that the SCF f(·) used by the auctioneer in Vickrey auction is AE + DSIC but not BB because
the SCF used in GVA is also AE + DSIC and not BB, which we are going to show next.
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10.8 Generalized Vickrey Auction is AE + DSIC but not BB

Consider Example 3.5 of generalized Vickrey auction. Let us assume that Si = Θi =
[

Vi, Vi

](2m−1)
∀ i ∈

N . In such a case, the GVA auction becomes a direct revelation mechanism D = ((Θi)i∈N , f(·)), where
f(·) is an SCF which is same as outcome rule of the GVA auction. It is easy to see that the under
this SCF f(·), the bundles are allocated in such a way that total value of all the agents gets maxi-
mized. This implies that the SCF in this example is allocatively efficient. Also, note that the payment
structure is the same as the Clarke mechanism. Thus, the direct revelation mechanism used by the
auctioneer in GVA is a Clarke mechanism. Therefore, the SCF is automatically DSIC. However, note
that SCF certainly not budget balanced because we are not including the auctioneer into the system.
If auctioneer is also part of the system then by virtue of theorem 10.5, we can claim that the SCF
would be BB also.

The Table 1 summarizes the properties of the SCFs discussed in above examples. Figure 9 sum-
marizes the relationship among various SCFs discussed in above examples.

SCF AE BB DSIC

Fair Bilateral Trade X X ×

First-Price Auction X × ×

Vickrey Auction X × X

GVA X × X

Table 1: Properties of social choice functions in quasi-linear environment

11 Bayesian Implementation

Recall that we mentioned two possible routes to get around the Gibbard-Satterthwaite impossibility
theorem. The first was to focus on restricted environments like quasi-linear environment, and the
second one was to weaken the implementation concept and look for an SCF which is ex-post efficient,
non-dictatorial, and Bayesian incentive compatible. In this section, our objective is to explore the
second route.

Throughout this section, we will once again be working within the quasi-linear environment. As
we saw earlier, the quasi-linear environments have a nice property that every social choice function in
these environments is non-dictatorial. Therefore, while working within quasi-linear environment, we
do not have to worry about non-dictatorial part of the social choice function. We can just investigate
whether there exists any SCF in quasi-linear environment, which is both ex-post efficient and BIC, or
equivalently which has three properties - AE, BB, and BIC. Recall that in the previous section, we
have already addressed the question whether there exists any SCF in quasi-linear environment which
is AE, BB, and DSIC and we found that hardly any function satisfies all these three properties. On
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Figure 9: Space of BIC and DSIC social choice functions in quasi-linear environment

the contrary, in this section, we will show that a wide range of SCF in quasi-linear environment satisfy
three properties - AE, BB, and BIC.

11.1 (AE + BB + BIC) is Possible: Expected Externality Mechanisms

The following theorem, due to d’Aspremont and Gérard-Varet [60] and Arrow [61] confirms that
in quasi-linear environment, there exist social choice functions which are both ex-post efficient (al-
locatively efficient + budget balance) and truthfully implementable in Bayesian Nash equilibrium
(Bayesian incentive compatible). We refer this theorem by dAGVA theorem.

Theorem 11.1 (The dAGVA Theorem) Let the social choice function f(·) = (k∗(·), t1(·), . . . , tn(·))
be allocatively efficient and the agents’ types be statistically independent of each other (i.e. the den-
sity φ(·) has the form φ1(·) × . . . × φn(·)). This function can be truthfully implemented in Bayesian
Nash equilibrium if it satisfies the following payment structure, popularly known as dAGVA payment
(incentive) scheme.

ti(θ) = E
θ̃−i





∑

j 6=i

vj(k
∗(θi, θ̃−i), θ̃j)



 + hi(θ−i) ∀ i = 1, . . . , n; ∀θ ∈ Θ (19)

where hi(·) is any arbitrary function of θ−i. Moreover, it is always possible to choose the functions
hi(·) such that

∑n
i=1 ti(θ) = 0.

Proof: Let the social choice function f(·) = (k∗(·), t1(·), . . . , tn(·)) be allocatively efficient, i.e. it
satisfies the condition (13), and also satisfies the dAGVA payment scheme (19). Consider

Eθ−i
[ui(f(θi, θ−i), θi)|θi] = Eθ−i

[vi(k
∗(θi, θ−i), θi) + ti(θi, θ−i)|θi]
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Since θi and θ−i are statistically independent, the expectation can be taken without conditioning on
θi. This will give us

Eθ−i
[ui(f(θi, θ−i), θi)|θi] = Eθ−i



vi(k
∗(θi, θ−i), θi) + hi(θ−i) + E

θ̃−i





∑

j 6=i

vj(k
∗(θi, θ̃−i), θ̃j)









= Eθ−i





n
∑

j=1

vj(k
∗(θi, θ−i), θj)



 + Eθ−i
[hi(θ−i)]

Since k∗(·) satisfies the condition (13),

n
∑

j=1

vj(k
∗(θi, θ−i), θj) ≥

n
∑

j=1

vj(k
∗(θ̂i, θ−i), θj) ∀ θ̂i ∈ Θi

Thus we get

Eθ−i





n
∑

j=1

vj(k
∗(θi, θ−i), θj)



 + Eθ−i
[hi(θ−i)] ≥ Eθ−i





n
∑

j=1

vj(k
∗(θ̂i, θ−i), θj)



 + Eθ−i
[hi(θ−i)] ∀ θ̂i ∈ Θi

Again by making use of statistical independence we can rewrite the above inequality in the following
form

Eθ−i
[ui(f(θi, θ−i), θi)|θi] ≥ Eθ−i

[

ui(f(θ̂i, θ−i), θi)|θi

]

∀ θ̂i ∈ Θi

This shows that when agents j 6= i announce their types truthfully, agent i finds the truth telling is
his optimal strategy, thus proving that the SCF is BIC. We now show that the functions hi(·) can be
chosen to guarantee

∑n
i=1 ti(θ) = 0. Let us define,

ξi(θi) = E
θ̃−i





∑

j 6=i

vj(k
∗(θi, θ̃−i), θ̃j)



 ∀ i = 1, . . . , n

hi(θ−i) = −

(

1

n − 1

)

∑

j 6=i

ξj(θj) ∀ i = 1, . . . , n

In view of the above definitions, we can say that

ti(θ) = ξi(θi) −

(

1

n − 1

)

∑

j 6=i

ξj(θj)

⇒

n
∑

i=1

ti(θ) =

n
∑

i=1

ξi(θi) −

(

1

n − 1

) n
∑

i=1

∑

j 6=i

ξj(θj)

⇒

n
∑

i=1

ti(θ) =

n
∑

i=1

ξi(θi) −

(

1

n − 1

) n
∑

i=1

(n − 1)ξj(θj)

⇒
n

∑

i=1

ti(θ) = 0
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Q.E.D.
The budget balanced payment structure of the agents in the above mechanism can be given a nice
graph theoretic interpretation. Imagine a directed graph G = (V,A) where V is the set of n+1 vertices,
numbered 0, 1, . . . , n, and A is the set of [n + n(n − 1)] directed arcs. The vertices starting from 1
through n correspond to the n agents involved into the system and the vertex number 0 corresponds
to the social planner. The set A consists of two types of the directed arcs:

1. Arcs 0 → i ∀i = 1, . . . , n

2. Arcs i → j ∀i, j ∈ {1, 2, . . . , n} ; i 6= j

Each of the arcs 0 → i carries a flow of ti(θ) and each of the arcs i → j carries a flow of ξi(θi)
n−1 .

Thus the total outflow from a node i ∈ {1, 2, . . . , n} is ξi(θi) and total inflow to the node i from nodes

j ∈ {1, 2, . . . , n} is −hi(θ−i) =
(

1
n−1

)

∑

j 6=i ξj(θj) Thus for any node i, ti(θ)+hi(θ−i) is the net outflow

which it is receiving from node 0 in order to respect the flow conservation constraint. Thus, if ti(·) is
positive then the agent i receives the money from the social planner and if it is negative, then the agent
pays the money to the social planner. However, by looking at flow conservation equation for node 0,
we can say that total payment received by the planner from the agents and total payment made by
the planner to the agents will add up to zero. In graph theoretic interpretation, the flow from node
i to node j can be justified as follows. Each agent i first evaluates the expected total valuation that
would be generated together by all his rival agents in his absence, which turns out to be ξi(θi). Now,
agent i divides it equally among the rival agents and pays to every rival agent an amount equivalent
to this. The idea can be better understood with the help of Figure 10 which depicts the three agents
case.

Figure 10: Payment structure in budget balance expected externality mechanism

After the results of d’Aspremont and Gérard-Varet [60] and Arrow [61], a direct revelation mech-
anism in which SCF is allocatively efficient and satisfies the dAGVA payment scheme is called as
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dAGVA mechanism/expected externality mechanism/expected Groves mechanism.

Definition 11.1 (dAGVA/expected externality/expected Groves Mechanisms) A direct rev-
elation mechanism, D = ((Θi)i∈N , f(·)) in which f(·) = (k(·), t1(·), . . . , tn(·)) satisfies (13) and (19)
is known as dAGVA/expected externality/expected Groves Mechanism.6

In view of the definition of dAGVA mechanisms, the Figure 8 can be enriched by including the space
of dAGVA mechanisms. This is shown in Figure 11.

Figure 11: Space of social choice functions in quasi-linear environment

11.2 BIC in Linear Environment

The linear environment is a special, but often-studied, subclass of quasi-linear environment. This
environment is a restricted version of the quasi-linear environment in following sense.

1. Each agent i’s type lies in an interval Θi = [θi, θi] ⊂ R with θi < θi

2. Agents’ types are statistically independent, that is, the density φ(·) has the form φ1(·)×. . .×φn(·)

3. φi(θi) > 0 ∀ θi ∈ [θi, θi] ∀ i = 1, . . . , n

4. Each agent i’s utility function takes the following form

ui(x, θi) = θivi(k) + mi + ti

6We will sometime abuse the terminology and simply refer to a SCF f(·) satisfying (13) and (19) as dAGVA/expected
externality/expected Groves Mechanisms.

40



The linear environment has very interesting properties in terms of characterizing the BIC social choice
functions. Before we present Myerson’s characterization theorem for BIC social choice functions in
linear environment, we would like to define following quantities with regard to any social choice
function f(·) = (k(·), t1(·), . . . , tn(·)) in this environment.

• Let ti(θ̂i) = Eθ−i
[ti(θ̂i, θ−i)] be agent i’s expected transfer given that he announces his type to

be θ̂i and that all agents j 6= i truthfully reveal their types.

• Let vi(θ̂i) = Eθ−i
[vi(θ̂i, θ−i)] be agent i’s expected “benefits” given that he announces his type

to be θ̂i and that all agents j 6= i truthfully reveal their types.

• Let Ui(θ̂i|θi) = Eθ−i
[ui(f(θ̂i, θ−i), θi)|θi] be agent i’s expected utility when his type is θi, he

announces his type to be θ̂i, and that all agents j 6= i truthfully reveal their types. It is easy to
verify from previous two definitions that

Ui(θ̂i|θi) = θivi(θ̂i) + ti(θ̂i)

• Let Ui(θi) = Ui(θi|θi) be the agent i’s expected utility conditional on his type being θi when he
and all other agents report their true types. It is easy to verify that

Ui(θi) = θivi(θi) + ti(θi)

In view of the paraphernalia developed, we now present Myerson’s [62] theorem for characterizing the
BIC social choice functions in this environment.

Theorem 11.2 (Myerson’s Characterization Theorem) In linear environment, a social choice
function f(·) = (k(·), t1(·), . . . , tn(·)) is BIC if and only if, for all i = 1, . . . , n,

1. vi(·) is non-decreasing

2. Ui(θi) = Ui(θi) +
∫ θi

θi

vi(s)ds ∀ θi

For proof of the above theorem, refer to Proposition 23.D.2 of [12]. The above theorem shows that to
identify all BIC social choice functions in linear environment, we can proceed as follows: First identify
which functions k(·) lead every agent i’s expected benefit function vi(·) to be non-decreasing. Then,
for each such function identify transfer functions t1(·), . . . , tn(·) that satisfy the second condition of
the above proposition. Substituting for Ui(·) in the second condition above, we get that expected
transfer functions are precisely those which satisfy, for i = 1, . . . , n,

ti(θi) = ti(θi) + θivi(θi) − θivi(θi) +

∫ θi

θi

vi(s)ds

for some constant ti(θi). Finally, choose any set of transfer functions t1(·), . . . , tn(·) such that Eθ−i
[ti(θi, θ−i)] =

ti(θi) for all θi. In general, there are many such functions, ti(·, ·); one, for example, is simply
ti(θi, θ−i) = ti(θi)

In what follows we discuss a few examples where the environment is linear and analyze the BIC
property of the social choice function by means of Myerson’s characterization theorem.
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11.3 Fair Bilateral Trade in Linear Environment

Once again consider the Example 3.2 of fair bilateral trade. Recall that each agent i’s type lies in an
interval Θi = [θi, θi]. Let us impose the additional conditions on the environment to make it linear.
We assume that

1. Agents’ types are statistically independent, that is, the density φ(·) has the form φ1(·) × φ2(·)

2. Let each agent i draw his type from the set [θi, θi] by means of a uniform distribution, that is

φi(θi) = 1/(θi − θi) ∀ θi ∈ [θi, θi] ∀ i = 1, 2

Note that the utility function of the agents in this example are given by

ui(f(θ), θi) = θiyi(θ) + ti(θ) ∀ i = 1, 2

Thus, viewing yi(θ) = vi(k(θ)) will confirm that these utility functions also satisfy the fourth condition
required for linear environment. Now we can apply Myerson’s characterization theorem to test the
Bayesian incentive compatibility of the SCF involved here. It is easy to see that v1(θ1) = y1(θ1) =
1 − Φ2(θ1) is not a non-decreasing function. Therefore, we can claim that fair bilateral trade is not
BIC.

11.4 First-Price Sealed Bid Auction in Linear Environment

Once again consider the Example 3.3 of first-price sealed bid auction. Let us assume that Si = Θi =
[

θi, θi

]

∀ i ∈ N . In such a case, the first-price auction becomes a direct revelation mechanism
D = ((Θi)i∈N , f(·)), where f(·) is an SCF which is same as outcome rule of the first-price auction.
Let us impose the additional conditions on the environment to make it linear. We assume that

1. Bidders’ types are statistically independent, that is, the density φ(·) has the form φ1(·)×. . .×φn(·)

2. Let each bidder draw his type from the set [θi, θi] by means of a uniform distribution, that is

φi(θi) = 1/(θi − θi) ∀ θi ∈ [θi, θi] ∀ i = 1, . . . , n

Note that the utility function of the agents in this example are given by

ui(f(θ), θi) = θiyi(θ) + ti(θ) ∀ i = 1, . . . , n

Thus, viewing yi(θ) = vi(k(θ)) will confirm that these utility functions also satisfy the fourth condition
required for linear environment. Now we can apply Myerson’s characterization theorem to test the
Bayesian incentive compatibility of the SCF involved here. It is easy to see that for any bidder i, we
have

vi(θi) = Eθ−i
[vi(θi, θ−i)]

= Eθ−i
[yi(θi, θ−i)]

= 1.P
(

(θ−i)(n−1) ≤ θi

)

+ 0.
(

1 − P
(

θi < (θ−i)(n−1)

))

= P
(

(θ−i)(n−1) ≤ θi

)

(20)

where P
(

(θ−i)(n−1) ≤ θi

)

is the probability that the given type θi of the bidder i is the highest among
all the bidders’ types. This implies that in the presence of independence assumptions made above,
vi(θi) is a non-decreasing function.
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We know that for first-price sealed bid auction, ti(θ) = −θiyi(θ). Therefore, we can claim that for
first-price sealed bid auction, we have

ti(θi) = −θivi(θi) ∀ θi ∈ Θi

The above values of vi(θi) and ti(θi) can be used to compute Ui(θi) in following manner.

Ui(θi) = θivi(θi) + ti(θi) = 0 ∀ θi ∈ [θi, θi] (21)

The above equation can be used to test the second condition of the Myerson’s theorem, which require

Ui(θi) = Ui(θi) +

∫ θi

θi

vi(s)ds

In view of the Equations (20) and (21), it is easy to see that this second condition of Myerson’s
characterization theorem is not being met by the SCF used in the first-price sealed bid auction.
Therefore, we can finally claim that first-price sealed bid auction is not BIC in linear environment.

11.5 Second-Price Sealed Bid Auction in Linear Environment

Once again consider the example 3.4 of second-price sealed bid auction. Let us assume that Si = Θi =
[

θi, θi

]

∀ i ∈ N . In such a case, the second-price auction becomes a direct revelation mechanism
D = ((Θi)i∈N , f(·)), where f(·) is an SCF which is same as outcome rule of the second-price auction.
We have already seen that this SCF f(·) is DSIC in quasi-linear environment and linear environment
is a special case of quasi-linear environment, therefore, it is DSIC in the linear environment also.
Moreover, we know that DSIC implies BIC. Therefore, we can directly claim that SCF used in the
Vickrey auction is BIC in linear environment.

Table 2 summarizes the properties of the SCFs discussed in above examples in linear environments.

SCF AE BB DSIC BIC

Fair Bilateral Trade X X × ×

First-Price Auction X × × ×

Vickrey Auction X × X X

Table 2: Properties of social choice functions in linear environment

12 Conclusions

In the first part of this tutorial, we have seen important basic notions and key foundational results in
mechanism design. In the second part of this tutorial [54], we will build upon these concepts and results
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to discuss deeper issues and results in mechanism design theory. The topics that we cover in Part
2 include: (1) Revenue equivalence theorem; (2) Individual rationality; (3) Moulin mechanisms; (4)
Optimal auctions; (5) Characterization of dominant strategy incentive compatible (DSIC) mechanisms;
(6) DSIC implementation of Bayesian incentive compatible (BIC) rules; (7) Implementation theory;
(8) Implementation in ex-post Nash equilibrium; (9) Mechanisms with interdependent types; and (10)
Dynamic mechanisms.

12.1 To Probe Further

For a more detailed treatment of mechanism design, the readers are requested to refer to textbooks,
such as the ones by Mas-Colell, Whinston, and Green [12] (Chapter 23), Green and Laffont [59], and
Laffont [63]. There is an excellent recent survey article by Nisan [58]. There are many other scholarly
survey papers on mechanism design - for example by Myerson [64] and by Jackson [65, 66]. The Nobel
Prize website has a highly readable technical summary of mechanism design theory [1]. The recent
edited volume on Algorithmic Game Theory by Nisan, Roughgarden, Tardos, and Vazirani [14] also
has valuable articles related to mechanism design.

The current paper is not to be treated as a survey on auctions in general. There are widely
popular books (for example, by Milgrom [13] and Krishna [67]) and surveys on auctions (for example,
[68, 69, 70, 71, 72]) which deal with auctions in a comprehensive way.

The current paper is also not to be treated as a survey on combinatorial auctions (currently an
active area of research). Exclusive surveys on combinatorial auctions include the articles by de Vries
and Vohra [73, 74], Pekec and Rothkopf [75], and Narahari and Pankaj Dayama [44]. Cramton,
Ausubel, and Steinberg [40] have brought out a comprehensive edited volume containing expository
and survey articles on varied aspects of combinatorial auctions.

For a more comprehensive treatment of mechanism design and its applications in network eco-
nomics, the readers are referred to the forthcoming monograph by Narahari, Garg, Rama suri, and
Prakash [15].
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