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Utilities play a central role in game theory. They capture the preferences the players have for different

outcomes in terms of real numbers thus enabling real-valued functions to be used in game theoretic analysis.

The utility theory developed by Von Neumann and Oskar Morgenstern provides the foundation for using

utilities to represent preferences. This chapter introduces their utility theory.

1 Introduction

The outcomes in a strategic form game are typically n-dimensional vectors of strategies, where n is
the number of players. Suppose X is the set outcomes in a given game. Each player has preferences on
the different outcomes which can be expressed formally in terms of a binary relation called preference

relation defined on X. The utility function of the player maps the outcomes to real numbers, so as to
reflect the preference the player has for these outcomes. For example, in the case of BOS game, the
set of outcomes is

X = {(A,A), (A,B), (B,A), (B,B)}

The utility function of player 1 is

u1(A,A) = 2; u1(A,B) = 0; u1(B,A) = 0; u1(B,B) = 1

The utility function of player 2 is

u1(A,A) = 1; u1(A,B) = 0; u1(B,A) = 0; u1(B,B) = 2

The real numbers 2, 0, 0, 1 above capture the preference level the players have for the four outcomes of
the game. Note that the utility function is a single dimensional function that maps (possibly complex)
multi-dimensional information into real numbers to capture preferences. The question arises whether
it is possible at all to capture all the preferences without losing any information. Utility theory deals
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with this problem in a systematic and scientific way. There are many different utility theories which
have been developed over the last century. The theory developed by von Neumann and Morgenstern
[1] is one of the most influential among these and certainly the most relevant for game theory. In
this chapter, we undertake a study of various issues involved in coming up with a satisfactory way of
defining utilities in a game setting. The discussion is based on the development of these ideas in the
books by Straffin [2], Shoham and Leyton-Brown [3], and Myerson [4].

2 Ordinal Utilities

Consider a game with two players 1 and 2 and four outcomes, X = {u, v,w, x}. Suppose player 1
prefers u the most, followed by v,w, and x in that order. Let us denote this by, u ≻ v ≻ w ≻ x.
Assume that player 2′s preferences are exactly the reverse, that is x ≻ w ≻ v ≻ u. If it is
required to assign real numbers to these outcomes to reflect the precedence ordering, then there are
innumerable ways. One possible immediate assignment would be:

Player 1 : u : 4; v : 3; w : 2; x : 1

Player 2 : u : −4; v : −3; w : −2; x : −1

Clearly, there will exist an uncountably infinite number of utility functions u1 : X → ℜ and u2 : X → ℜ
that represent the preferences of players 1 and 2, respectively. A scale on which larger numbers
represent more preferred outcomes in a way that only the order of the numbers matters and not their
absolute or relative magnitude is called ordinal scale. Utility numbers determined from preferences in
this way are called ordinal utilities.

3 Cardinal Utilities

A utility scale such that not only the orders of numbers but also the ratios of differences of numbers
is meaningful is called an interval scale. Numbers which are chosen according to an interval scale
reflecting the underlying preferences are called cardinal utilities.

Cardinal utilities are necessitated because we need to meaningfully capture the notion of mixed
strategies. For example, consider the zero-sum game shown in Figure 1. Assume that a > b, d > c,
d > b, and a > c. It can be verified that the above game has a Nash equilibrium with the equilibrium
strategy of player 1 given by

(

A :
(d − c)

(d − c) + (a − b)
; B :

(a − b)

(d − c) + (a − b)

)

while the equilibrium strategy of player 2 is given by
(

A :
(d − b)

(d − b) + (a − c)
; B :

(a − c)

(d − b) + (a − c)

)

For these mixed strategies to make sense, the numbers a, b, c, d must be assigned in such a way that
the ratios of the differences

d − c

a − b
;

d − b

a − c
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2
1 A B

A a, −a b, −b

B c, −c d, −d

Figure 1: A zero sum game

are meaningful. von Neumann and Morgenstern came up with an extremely elegant theory for deter-
mining cardinal utilities.

4 Von Neumann - Morgenstern Utilities

Let X be a set of outcomes. Consider a player i and suppose we focus on the preferences that the
player has over the outcomes in X. These preferences can be expressed in the form of a binary relation
� on X. Given x1, x2 ∈ X, let us define the following:

• x1 � x2 : outcome x1 is weakly preferred to outcome x2

• x1 ≻ x2 : outcome x1 is strictly preferred to outcome x2

• x1 ∼ x2 : outcomes x1 and x2 are equally preferred ( player i is indifferent between x1 and x2)

Note immediately that

• x1 ≻ x2 ⇐⇒ x1 � x2 and ∼ (x2 � x1)

• x1 ∼ x2 ⇐⇒ x1 � x2 and x2 � x1

It is clear that the relation � is reflexive. To describe the interaction of preferences with uncertainty
about which outcome will be selected, the notion of a lottery (or probability distribution) is a natural
tool that can be used. Suppose X = {x1, x2, . . . , xm}. Then a lottery on X is a probability distribution

[p1 : x1; p2 : x2; . . . ; pm : xm]

Note that

pj ≥ 0 for j = 1, 2, . . . ,m and
m

∑

j=1

pj = 1.

We now present, in the form of six axioms, several natural and desirable properties that we would like
preferences to satisfy. These axioms are: completeness, transitivity, substitutability, decomposability,
monotonicity, and continuity. These axioms were enunciated by Von Neumann and Morgenstern.

Axiom 1 (Completeness)

This can be formally expressed as

∀x1, x2 ∈ X, x1 ≻ x2 ]; or x2 ≻ x1 or x1 ∼ x2.

The completeness property means that the preference relation � induces an ordering on X which
allows for ties among outcomes.
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Axiom 2 (Transitivity)

This states that
x1 � x2 and x2 � x3 =⇒ x1 � x3 ∀x1, x2, x3 ∈ X

To see why transitivity is natural requirement, we have to just visualize what would happen if tran-
sitivity is not satisfied. Suppose x1 � x2 and x2 � x3 but x3 ≻ x1. Assume that the player in
question is willing to pay a certain amount of money if she is allowed to exchange a current outcome
with a more preferable outcome. Then the above three relationships will lead to the conclusion that
the player is willing to pay a non-zero sum of money to exchange outcome x3 with the same out-
come! Such a situation is popularly known as a money pump situation and clearly corresponds to an
inconsistent situation.

We now extend the relation � to lotteries over outcomes using the following axioms.

Axiom 3 (Substitutability)

If x1 ∼ x2, then for all sequences of one or more outcomes x3, . . . , xm, and sets of probabilities
p, p3, . . . , pm such that

p +
m

∑

j=3

pj = 1,

the lotteries [p : x1; p3 : x3 ; . . . ; pm : xm] and [p : x2; p3 : x3 ; . . . ; pm : xm] are indifferent to the
player. We write this as

[p : x1; p3 : x3 ; . . . ; pm : xm] ∼ [p : x2; p3 : x3 ; . . . ; pm : xm]

Substitutability implies that the outcome x1 can always be substituted with outcome x2 as long as
the above technical condition is satisfied.

Axiom 4 (Decomposability)

Suppose σ is a lottery over X and let Pσ(xi) denote the probability that xi is selected by σ. An
example of σ for X = {x1, x2, x3} would be

σ = [0.6 : x1; 0.4 : [0.4 : x1; 0.6 : x2]]

This would mean that Pσ(x1) = 0.76;Pσ(x2) = 0.24; and Pσ(x3) = 0. The decomposability axiom
states that

Pσ1
(xi) = Pσ2

(xi) ∀xi ∈ X =⇒ σ1 ∼ σ2

As a consequence of this axiom, the following lotteries will all be indifferent to a player:

σ1 = [0.76 : x1; 0.24 : x2; 0 : x3]]

σ2 = [0.6 : x1; 0.4 : [0.4 : x1; 0.6 : x2]]

σ3 = [0.4 : x1; 0.6 : [0.6 : x1; 0.4 : x2]]

σ4 = [0.5 : [x1; 0.8 : 0.2 : x2]; 0.5 : [0.72 : x1; 0.28 : x2]]
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Axiom 5 (Monotonicity)

Consider a player who prefers outcome x1 to outcome x2. Suppose σ1 and σ2 are two lotteries over
{x1, x2}. Monotonicity implies that the player would prefer the lottery that assigns higher probability
to x1. More formerly, ∀x1, x2 ∈ X,

x1 ≻ x2 and 1 ≥ p > q ≥ 0 =⇒ [p : x1; 1 − p : x2] ≻ [q : x1; 1 − q : x2]

Intuitively, monotonicity means that players prefer more of a good thing.

Axiom 6 (Continuity)

This axiom states that ∀x1, x2, x3 ∈ X,

x1 ≻ x2 and x2 ≻ x3 =⇒ ∃ p ∈ [0, 1] ∋ x2 ∼ [p : x1; 1 − p : x3]

A Useful Lemma

We now state (without proof) a lemma and then state and prove an important theorem.

Lemma: Suppose a relation � satisfies completeness, transitivity, decomposability, and monotonicity.
Then if x1 ≻ x2 and x2 ≻ x3, there would exist a probability p such that

x2 ≻ [q : x1; 1 − q : x3] ∀ 0 ≤ q < p

[r : x1; 1 − r : x3] ≻ x2 ∀ 1 ≥ r > p

The proof is left as an exercise (see problems at the end of the chapter). Using axioms (1) to (6) and
the above lemma, we are now in a position to state and prove the key result due to von Neumann and
Morgenstern [1].

5 Von Neumann - Morgenstern Theorem

Theorem: Given a set of outcomes X and a preference relation � on X that satisfies completeness,
transitivity, substitutability, decomposability, monotonicity and continuity, there exists a utility func-
tion u : X → [0, 1] with the following properties:

1. u(x1) ≥ u(x2) iff x1 � x2

2. u([p1 : x1; p2 : x2 ; ... ; pm : xm]) =

m
∑

j=1

pju(xj)

Proof : First we look at the degenerate case when xi ∼ xj ∀ i, j ∈ {1, 2, ...,m}. That is, the player
is indifferent among all xi ∈ X. Consider the function u(xi) = 0 ∀ xi ∈ X. Part 1 of the theorem
follows immediately. Part 2 follows from decomposability.

If this degenerate case is not satisfied, then there must exist at least one most preferred outcome
and at least one least preferred outcome with the former different from the latter. Suppose x̄ ∈ X is
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a most preferred outcome and x ∈ X is a least preferred outcome. Clearly, x̄ ≻ x. Now, given any
xi ∈ X, by continuity, there exists a probability pi uniquely such that

xi ∼ [pi : x̄; 1 − pi : x]

Define u : X → [0, 1] as
u(xi) = pi ∀xi ∈ X

For this choice of u, we will now prove Part 1 and Part 2.

Proof of Part 1 : Suppose x1, x2 ∈ X. Let us define two lotteries σ1 and σ2 in the following way,
corresponding to x1 and x2, respectively.

x1 ∼ σ1 = [ u(x1) : x̄; 1 − u(x1) : x ]

x2 ∼ σ2 = [ u(x2) : x̄; 1 − u(x2) : x ]

We will show that u(x1) ≥ u(x2) ⇐⇒ x1 � x2. First we prove that u(x1) ≥ u(x2) =⇒ x1 � x2.
Suppose u(x1) > u(x2). Since x̄ ≻ x, then by monotonicity we can conclude that

x1 ∼ σ1 ≻ σ2 ∼ x2

Using transitivity, substitutability, and decomposability, we get x1 ≻ x2.

Suppose u(x1) = u(x2). Then σ1 and σ2 are identical lotteries which means

x1 ∼ σ1 ≡ σ2 ∼ x2

Transitivity now yields x1 ∼ x2. We have thus shown that

u(x1) ≥ u(x2) =⇒ x1 � x2

It remains to show that
x1 � x2 =⇒ u(x1) ≥ u(x2)

We show the above by proving the contrapositive:

u(x1) < u(x2) =⇒ x2 ≻ x1

Note that the contrapositive above can be written down by virtue of completeness. The above state-
ment has already been proved when we showed above that

u(x1) > u(x2) =⇒ x1 ≻ x2

All that we have to do is to swap x1 and x2 to get the implication for the current case.

Proof of Part 2 : First we define

u∗ = u([p1 : x1; p2 : x2; . . . ; pm : xm])
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By the definition of u, for each xj ∈ X, we have

xj ∼ [u(xj) : x̄; 1 − u(xj) : x]

Using substitutability, we can replace each xj (in the definition of u∗) by the corresponding lottery.
This yields

u∗ = u([p1 : [u(x1) : x̄; 1 − u(x1) : x] ; . . . ; pm : [u(xm)x̄; 1 − u(xm) : x]])

Note that the above ”nested” lottery only selects between the two outcomes x̄ and x. Using decom-
posability, we get

u∗ = u













m
∑

j=1

pju(xj)



 : x̄;



1 −

m
∑

j=1

pju(xj)



 : x









We can now use the definition of u to immediately obtain

u∗ =

m
∑

j=1

pju(xj)

This proves Part 2 of the theorem.

Note: In the above theorem, the range of the utility function is [0,1]. It would be useful to have a
utility function which is not confined to the range [0,1]. The following result extends utility functions
to a wide range of possibilities.

Result : Every positive linear transformation (affine transformation) of a utility function, that is a
transformation of the form,

U(x) = au(x) + b

where a and b are constants and a > 0, yields another utility function (in this case (U)) that satisfies
properties (1) and (2) of the above theorem.

The proof of the result is left as an exercise. An interesting consequence of the above result is that
some two player games which do not appear to be zero-sum are in fact zero-sum games, as seen by
the following examples.

Example: A Constant Sum Game

Consider the constant sum game shown in Figure 2. The constant sum here is equal to 1. By
subtracting this constant sum from the utilities of one of the players (say player 2), we end up with
the zero-sum game in Figure 3.

Example: A Non-Zero Sum Game

Consider the two player non-zero, non-constant sum game shown in Figure 4. Using affine trans-
formation g(x) = 1

2
(x − 17) on the utilities of player 1, we get a zero-sum game shown in Figure

5.
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1 A B

A 2, −1 5, −4

B −6, 7 −1, 2

Figure 2: A constant sum game

2
1 A B

A 2, −2 5, −5

B −6, 6 −1, 1

Figure 3: An equivalent zero-sum game

2
1 A B

A 27, −5 17, 0

B 19, −1 23, −3

Figure 4: A non-zero sum game

2
1 A B

A 5, −5 0, 0

B 1, −1 3, −3

Figure 5: An equivalent zero-sum game
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6 A Procedure for Computing Von Neumann-Morgenstern Utilities

Given a set of outcomes X, the theory of Von Neumann-Morgenstern utilities provides a way of
constructing cardinal utilities on those outcomes. The key observation is that cardinal utilities can
be constructed by asking the player concerned appropriate questions about lotteries. We explain this
with an example (a simplified version of the one appearing in chapter 9 of [2]).

Suppose X = {x1, x2, x3} and assume without loss of generality that the player in question has
the following preference ordering: x1 ≻ x2 ≻ x3. We start by assigning numbers to the most preferred
outcome x1 and least preferred outcome x3 in an arbitrary way, respecting only the fact that x1 gets a
larger number than x3. Suppose we choose the numbers 200 and 100 respectively (u(x1 = 200;u(x3) =
100). We now try to fix a number for x2. For this, we ask questions such as the following: would you
prefer x2 with probability 1 or a lottery that gives you x1 with probability 1

2
and x3 with probability

1

2
. If the player prefers the certain event x2 to lottery, the implication is that x2 ranks higher than

the midpoint between x1 and x3, which means x2 must be assigned a number greater than 150. This
situation is pictorially depicted in Figure 6.

150 xx 4 1

100 200

here2x

Figure 6: Scenario 1

A possible next question to the player would be: Do you prefer x2 for certain or the outcome x1

with probability 0.75 and the outcome x3 with probability 0.25 ? If the player prefers the lottery, then
the situation will be depicted in Figure 7.

150

x

xx 4

2

1

100 200

175

here

Figure 7: Scenario 2

After a logical sequence of such questions, we would eventually find a lottery such that player 1 is
indifferent between x2 and perhaps the lottery [0.7 : x1; 0.3 : x3]. This means we assign the number
170 to x2 as shown in Figure 8.

150 xx 4 1

100 200

170

x2

Figure 8: Final assignment

The existence of a unique such solution is guaranteed by Von Neumann - Morgenstern utility
theory as long as our exploration is within the axiomatic framework.
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7 Utilities and Money

It is tempting to interpret utilities in monetary terms. However, it is not always appropriate to
represent utilities by money. There are many reasons for this. First, utility of an individual is
not necessarily related to quantity of money. A simple example would be the utility derived by a
desperately needy person through a certain amount of money (say Rs. 100) derived through the same
amount of money by a rich person. Secondly, money may not always be involved in every transaction
that we undertake. An example would be kidney exchange or barter transaction.

8 To Probe Further

As already stated, the material of this chapter has been culled out of the treatment that appears in [3],
[2], and [4]. The reader must consult these references for more insights. The treatment [4] is rigorous
and comprehensive. An exhaustive account appears in the original classic work of von Neumann and
Morgenstern [1].

9 Problems

1. Complete the proof of Lemma 1. (Proof is available in [3])

2. Complete the proof of the result that affine transformations of a utility function do not affect
properties 1 and 2 of the von Neumann and Morgenstern utilities.

3. Straffin [2] describes a simple graphical way of investigating whether or not a given two player
non-zerosum game is equivalent to a zero-sum game. This involves plotting of the utilities of
player 1 and player 2 on the X-Y plane. Try to work this out.
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