
Game Theory

Lecture Notes By

Y. Narahari

Department of Computer Science and Automation

Indian Institute of Science

Bangalore, India

August 2012

Chapter 6: Mixed Strategies and Mixed Strategy Nash Equilibrium

Note: This is a only a draft version, so there could be flaws. If you find any errors, please do send email to

hari@csa.iisc.ernet.in. A more thorough version would be available soon in this space.

In this chapter, we introduce randomized strategies or mixed strategies and define a mixed strategy Nash

equilibrium. We state and prove a crucial theorem that provides an extremely useful necessary and sufficient

condition for a mixed strategy profile to be a Nash equilibrium. We provide several examples to get an

intuitive understanding of this important notion.

1 Randomized Strategies or Mixed Strategies

Consider a strategic form game: Γ = 〈N, (Si), (ui)〉. The elements of Si are called pure strategies of
player i (i = 1, . . . , n). If player i chooses a strategy in Si according to a probability distribution, we
have a mixed strategy or a randomized strategy. In the discussion that follows, we assume that Si is
a finite for each i = 1, 2, . . . , n.

Definition 1 (Mixed Strategy) . Given a player i with Si as the set of pure strategies, a mixed
strategy σi of player i is a probability distribution over Si. That is, σi : Si → [0, 1] assigns to each
pure strategy si ∈ Si, a probability σi(si) such that

∑

si∈Si

σi(si) = 1.

A pure strategy of a player, say si ∈ Si, can be considered as a mixed strategy that assigns probability
1 to si and probability 0 to all other strategies of player i. Such a mixed strategy is called a degenerate
mixed strategy and is denoted by e(si) or simply by si.

If Si = {si1, si2, . . . , sim}, then clearly, the set of all mixed strategies of player i is the set of all
probability distributions on the set Si. In other words, it is the simplex:

∆(Si) =







(σi1, . . . , σim) ∈ R
m : σij ≥ 0 for j = 1, . . . ,m and

m
∑

j=1

σij = 1







.
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The above simplex is called the mixed extension of Si. Using the mixed extensions of strategy sets,
we would like to define a mixed extension of the pure strategy game Γ = 〈N, (Si), (ui)〉. Let us denote
the mixed extension of Γ by

ΓME = 〈N, (∆(Si)), (Ui)〉.

Note that, for i = 1, 2, . . . , n,
Ui : ×i∈N∆(Si) → R.

Given σi ∈ ∆(Si) for i = 1, . . . , n, a natural way of defining and computing Ui(σ1, . . . , σn) as follows.
First, we make the standard assumption that the randomizations of individual players are mutually in-
dependent. This implies that given a profile (σ1, . . . , σn), the random variables σ1, . . . , σn are mutually
independent. Therefore the probability of a pure strategy profile (s1, . . . , sn) is given by

σ(s1, . . . , sn) =
∏

i∈N

σi(si).

The payoff functions Ui are defined as

Ui(σ1, . . . , σn) =
∑

(s1,...,sn)∈S

σ(s1, . . . , sn) ui(s1, . . . , sn).

In the sequel, when there is no confusion, we will write ui instead of Ui. For example, instead of
writing Ui(σ1, . . . , σn), we will simply write ui(σ1, . . . , σn).

1.1 Example: Mixed Strategies in the BOS Problem

Recall the BOS game discussed in Chapters 3 and 5, having the following payoff matrix:

2
1 A B

A 2,1 0,0

B 0,0 1,2

Suppose (σ1, σ2) is a mixed strategy profile. This means that σ1 is a probability distribution on
S1 = {A,B}, and σ2 is a probability distribution on S2 = {A,B}. Let us represent

σ1 = (σ1(A), σ1(B))

σ2 = (σ2(A), σ2(B)).

We have
S = S1 × S2 = {(A,A), (A,B), (B,A), (B,B)}.

We will now compute the payoff functions u1 and u2. Note that, for i = 1, 2,

ui(σ1, σ2) =
∑

(s1,s2)∈S

σ(s1, s2) ui(s1, s2).

The function u1 can be computed as

u1(σ1, σ2) = σ1(A)σ2(A)u1(A,A) + σ1(A)σ2(B)u1(A,B)

+σ1(B)σ2(A)u1(B,A) + σ1(B)σ2(B)u1(B,B)

= 2σ1(A)σ2(A) + σ1(B)σ2(B)

= 2σ1(A)σ2(A) + (1 − σ1(A))(1 − σ2(A))

= 1 + 3σ1(A)σ2(A) − σ1(A) − σ2(A).
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Similarly, we can show that

u2(σ1, σ2) = 2 + 3σ1(A)σ2(A) − 2σ1(A) − 2σ2(A).

Suppose σ1 =
(

2
3 , 1

3

)

and σ2 =
(

1
3 , 2

3

)

. Then it is easy to see that

u1(σ1, σ2) =
2

3
; u2(σ1, σ2) =

2

3
.

2 Mixed Strategy Nash Equilibrium

We now define the notion of a mixed strategy Nash equilibrium, which is a natural extension of the
notion of pure strategy Nash equilibrium.

Definition 2 (Mixed Strategy Nash Equilibrium) . Given a strategic form game Γ = 〈N, (Si), (ui)〉,
a mixed strategy profile (σ∗

1 , . . . , σ
∗
n) is called a Nash equilibrium if ∀i ∈ N ,

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) ∀σi ∈ ∆(Si).

Define the best response functions Bi(.) as follows.

Bi(σ−i) = {σi ∈ ∆(Si) : ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) ∀σ′

i ∈ ∆(Si)}.

Then, clearly, a mixed strategy profile (σ∗
1 , . . . , σ

∗
n) is a Nash equilibrium iff

σ∗
i ∈ Bi(σ

∗
−i) ∀i = 1, 2, . . . , n.

2.1 Mixed Strategy Nash Equilibria for the BOS Game

Given the BOS game, suppose (σ1, σ2) is a mixed strategy profile. We have already shown that

u1(σ1, σ2) = 1 + 3σ1(A)σ2(A) − σ1(A) − σ2(A)

u2(σ1, σ2) = 2 + 3σ1(A)σ2(A) − 2σ1(A) − 2σ2(A).

Let (σ∗
1 , σ

∗
2) be a mixed strategy equilibrium. Then

u1(σ
∗
1 , σ

∗
2) ≥ u1(σ1, σ

∗
2) ∀σ1 ∈ ∆(S1)

u2(σ
∗
1 , σ

∗
2) ≥ u2(σ

∗
1 , σ2) ∀σ2 ∈ ∆(S2).

The above two equations are equivalent to:

3σ∗
1(A)σ∗

2(A) − σ∗
1(A) ≥ 3σ1(A)σ∗

2(A) − σ1(A)

3σ∗
1(A)σ∗

2(A) − 2σ∗
2(A) ≥ 3σ∗

1(A)σ2(A) − 2σ2(A).

The last two equations are equivalent to:

σ∗
1(A){3σ∗

2(A) − 1} ≥ σ1(A){3σ∗
2(A) − 1} ∀σ1 ∈ ∆(S1) (1)

σ∗
2(A){3σ∗

1(A) − 2} ≥ σ2(A){3σ∗
1(A) − 2} ∀σ2 ∈ ∆(S2). (2)

There are three possible cases.
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• Case 1: 3σ∗
2(A) > 1. This leads to the pure strategy Nash equilibrium (A,A).

• Case 2: 3σ∗
2(A) < 1. This leads to the pure strategy Nash equilibrium (B,B).

• Case 3: 3σ∗
2(A) = 1. This leads to the mixed strategy profile:

σ∗
1(A) =

2

3
; σ∗

1(B) =
1

3
; σ∗

2(A) =
1

3
; σ∗

2(B) =
2

3
.

We will show later on that this is indeed a mixed strategy Nash equilibrium using a necessary
and sufficient condition for a mixed strategy profile to be a Nash equilibrium.

3 Some Results on Mixed Strategies

3.1 Convex Combination

Given numbers y1, y2, . . . , yn, a convex combination of these numbers is a weighted sum of the form
λ1y1 + λ2y2 + · · · + λnyn, where

0 ≤ λi ≤ 1 for i = 1, 2, . . . , n;

n
∑

i=1

λi = 1

We shall now prove some interesting properties and results about mixed strategies.

3.2 Result 1

Given a mixed strategy game Γ = 〈N, (∆(Si)), (ui)〉, then, for any i ∈ N ,

ui(σi, σ−i) =
∑

si∈Si

σi(si)ui(si, σ−i)

The implication of this result is that the payoff for any player under a mixed strategy can be computed
as a convex combination of the payoffs obtained with the player playing pure strategies with the rest
of the players playing σ−i.
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Proof of Result 1

Note that

ui(σi, σ−i) =
∑

(s1,...,sn)∈S





∏

j∈N

σj(sj)



 ui(si, s−i)

=
∑

s1∈S1

∑

s2∈S2

· · ·
∑

sn∈Sn





∏

j∈N

σj(sj)



 ui(si, s−i)

=
∑

si∈Si

∑

s−i∈S−i





∏

j 6=i

σj(sj)



 σi(si)ui(si, s−i)

=
∑

si∈Si

σi(si)







∑

s−i∈S−i





∏

j 6=i

σj(sj)



 ui(si, s−i)







=
∑

si∈Si

ui(si, σ−i)

3.3 Result 2

Given a mixed strategy game Γ = 〈N, (∆(Si)), (ui)〉, then, for any i ∈ N ,

ui(σi, σ−i) =
∑

s−i∈S−i





∏

j 6=i

σj(sj)



 ui(σi, σ−i)

Proof of Result 2

The result is proved using a series of steps as shown.

ui(σi, σ−i) =
∑

si∈Si
∀i∈N





∏

j∈N

σj(sj)



 ui(si, s−i)

=
∑

s−i∈S−i





∏

j 6=i

σj(sj)





∑

si∈Si

σi(si)ui(si, s−i)

=
∑

s−i∈S−i





∏

j 6=i

σj(sj)



 ui(σi, s−i)
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3.4 An Example and Some Observations on Convex Combinations

We motivate a few important observations about convex combinations in the context of mixed strate-
gies with a simple example. Consider a game with

N = {1, 2}

S1 = {x1, x2, x3, x4, x5}

u1(σ1, σ2) =
∑

s1∈S1

σ1(s1)u1(s1, σ2)

= σ1(x1)u1(x1, σ2)

+ σ1(x2)u1(x2, σ2) + σ1(x3)u1(x3, σ2)

+ σ1(x4)u1(x4, σ2) + σ1(x5)u1(x5, σ2)

Let u1(x1, σ2) = 5; u1(x2, σ2) = u1(x3, σ2) = 10; u1(x4, σ2) = u1(x5, σ2) = 20. First note that
maximum value of the convex combination = 20 and this maximum value is attained when σ1(x4) =
1 or σ1(x5) = 1 or in general when σ1(x4) + σ1(x5) = 1. That is, when σ1(x1) + σ1(x2) + σ1(x3) = 0,
or equivalently, when σ1(x1) = σ1(x2) = σ1(x3) = 0. Also, note that

max
σ1∈∆(s1)

u1(σ1, σ2) = 20

max
σ1∈∆(s1)

u1(σ1, σ2) = max
s1∈S

u1(s1, σ2)

Let ρ ∈ {σ1 ∈ ∆(s1) : u1(σ1, σ2) ≥ u1(σ
′

1, σ2) ∀σ
′

1 ∈ ∆(s1)}.

⇐⇒ ρ(x4) + ρ(x5) = 1

⇐⇒ ρ(x1) + ρ(x2) + ρ(x3) = 0

⇐⇒ ρ(x1) = ρ(x2) = ρ(x3) = 0

⇐⇒ ρ(y) = 0 ∀y /∈
argmax

s1 ∈ S1 u1(s1, σ2)

The above example motivates the following important result.

3.5 Result 3

Given 〈N1(∆(Si), (ui)〉 for any σ ∈
×

i ∈ N ∆(Si) and for any player i ∈ N ,

max
σi∈∆(Si)

ui(σi, σ−i) = max
si∈Si

ui(si, σ−i)

Furthermore

ρi ∈
argmax

σi ∈ ∆(Si) ui(σi, σ−i)

iff

ρi(x) = 0 ∀x /∈
argmax

si ∈ Si ui(si, σ−i)
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Proof of Result 3

The first step is to express ui(σi, σ−i) as a convex combination:

ui(σi, σ−i) =
∑

si∈Si

σi(si)ui(si, σ−i)

The maximum value of a convex combination of values is simply the maximum of values. Hence

max
σi∈∆(Si)

ui(σi, σ−i) = max
si∈Si

ui(si, σ−i)

A mixed strategy ρi ∈ ∆(Si) will attain this maximum value iff

∑

xinX

ρi(x) = 1 where X =
argmax

si ∈ Si ui(si, σ−i)

⇐⇒ ρi(x) = 0 ∀x /∈
argmax

si ∈ Si ui(si, σ−i)

4 A Necessary and Sufficient Condition for Nash Equilibrium

We now prove an extremely useful characterization for a mixed strategy Nash equilibrium profile.
First we define the notion of support of a mixed strategy.

Definition 3 (Support of a Mixed Strategy) . Let σi be any mixed strategy of a player i. The
support of σi, denoted by δ(σi), is the set of all pure strategies which have non-zero probabilities under
σi, that is:

δ(σi) = {si ∈ Si : σi(si) > 0}

Definition 4 (Support of a Mixed Strategy Profile) . Let σ = (σ1, . . . , σn) be a mixed strategy
profile with δ(σi) as the support of σi for i = 1, . . . , n. Then the support δ(σ) of the profile σ is the
Cartesian product of the individual supports, that is δ(σ1) × . . . δ(σn).

4.1 NASC for a Mixed Strategy Nash Equilibrium

The mixed strategy profile (σ∗
1 , . . . , σ

∗
n) is a mixed strategy Nash equilibrium iff

1. ui(si, σ
∗
−i) is the same ∀si ∈ δ(σ∗

i )

2. ui(si, σ
∗
−i) ≥ ui(s

′

i, σ
∗
−i) ∀si ∈ δ(σ∗

i ) ∀s
′

i /∈ δ(σ∗
i ) (that is, the payoff of the player i for each pure

strategy having positive probability is the same and is at least the payoff for each pure strategy
having zero probability).

This theorem has a great deal of significance in many contexts, including computation of Nash equi-
libria. We now prove this theorem.
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Proof of Necessity

Given that (σ∗
1 , . . . , σ

∗
n) is a Nash equilibrium. We have to show that the profile will satisfy the two

conditions above. It is clear from the definition of Nash equilibrium that

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) ∀σi ∈ ∆(Si)

This implies that
ui(σ

∗
i , σ

∗
−i) = max

σi∈∆(Si

)ui(σi, σ
∗
−i)

Using Result 3, we can now write that

ui(σ
∗
i , σ

∗
−i) = max

si∈Si

ui(si, σ
∗
−i)

This immediately implies that

∑

si∈Si

σ∗
i (si)ui(si, σ

∗
−i) = max

si∈Si

ui(si, σ
∗
−i)

This in turn leads to
∑

si∈δ(σ∗
i

σ∗
i (si)ui(si, σ

∗
−i) = max

si∈Si

ui(si, σ
∗
−i)

Since σ∗
i (si) = 0 ∀si /∈ δ(σi), we have

ui(si, σ
∗
−i) = max

si∈Si

ui(si, σ
∗
−i)∀si ∈ δ(σ∗

i )

While deriving the above, we have used the standard property of a convex combination that, if
π1 + . . . + πn = 1 and π1x1 + . . . + πnxn = max(x1 + . . . + xn), then,

x1 = x2 = . . . = xn = max(x1, . . . , xn) ⇒ ui(si, σ
∗
−i) = ui(σ

∗
i , σ

∗
−i) ∀si ∈ δ(σ∗

i )

Since ui(si, σ
∗
−i) = ui(σ

∗
i , σ

∗
−i) ∀si ∈ δ(σ∗

i ), it is clear that

ui(si, σ
∗
−i) ≥ ui(s

′

i, σ
∗
−i) ∀s

′

i /∈ δ(σ∗
i ) and ∀si ∈ δ(σ∗

i )

This proves the necessity.

Proof of Sufficiency

We are given that

1. ui(si, σ
∗
−i) has the same value, say, wi, for all si ∈ δ(σ∗

i ) ∀i ∈ N

2. ui(si, σ
∗
−i) ≥ ui(s

′

i, σ
∗
−i),∀si ∈ δ(σ∗

i ) ∀s
′

i /∈ δ(σ∗
i ) ∀i ∈ N .
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Then, we have to show that u(σ∗
i , . . . , (σ

∗
n) is a Nash equilibrium. Consider

ui(si, σ
∗
−i) =

∑

si∈Si

σ∗
i (si)ui(si, σ

∗
−i)

=
∑

si∈δ(σ∗
i
)

σ∗
i (si)ui(si, σ

∗
−i) since σ∗

i (si) = 0 ∀si /∈ δ(σ∗
i )

=
∑

si∈δ(σ∗
i
)

σ∗
i (si).wi

= wi

=
∑

si∈Si

σi(si)wi ∀σi ∈ ∆(Si)

≥
∑

si∈Si

σi(si)ui(si, σ
∗
i )

since wi = ui(si, σ
∗
−i) ∀si ∈ δ(σ∗

i ) and ui(si, σ
∗
−i) ≥ ui(s

−1
i , σ∗

−i) ∀s
′

i /∈ δ(σ∗
i ) = ui(σi, σ

∗
−i) where

σi ∈ ∆(σ∗
i ). Therefore, (σ∗

1 , . . . , σ
∗
n) is a Nash equilibrium.

4.2 Implications of the Necessary and Sufficient Conditions

The NASC above has the following implications.

1. In a mixed strategy Nash equilibrium, each player gets the same payoff (as in Nash equilibrium)
by playing any pure strategy having positive probability in his Nash equilibrium strategy.

2. The above implies that the player can be indifferent about which of the pure strategies (with
positive probability) he/she will play.

3. To verify whether or not a mixed strategy profile is a Nash equilibrium, it is enough to consider
the effects of only pure strategy deviations.

4. Another important implication is described in the following result.

A Result on Degenerate Mixed Strategies

Given si ∈ Si, let e(si) denote the degenerate mixed strategy that assigns probability 1 to si and
probability 0 to elements of Si other than si. The pure strategy profile (s∗i , . . . , s

∗
n) is a Nash equilibrium

of the game (N, (Si), (ui)) iff the mixed strategy profile (e(s∗1), . . . , e(s
∗
n)) is a mixed strategy Nash

equilibrium of the game (N, (∆(Si)), (ui)).
The proof of this proceeds as follows. First we prove the sufficiency. Let (e(s∗i ), . . . , e(s

∗
n)) be a

mixed strategy Nash equilibrium.

⇒ ui(e(s
∗
i ), e(s

∗
−i)) ≥ ui(σi, e(s

∗
−i)) ∀σi ∈ ∆(Si)

⇒ ui(s
∗
i , s

∗
−i) ≥ ui(σi, s

∗
−i) ∀σi ∈ ∆(Si)

⇒ ui(s
∗
i , s

∗
−i) ≥ ui(e(si), s

∗
−i) ∀σi ∈ Si

⇒ ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) ∀si ∈ Si

⇒ (s∗1, . . . , s
∗
n) is a pure strategy Nash equilibrium
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The above proves sufficiency. The necessity is proved as follows. Given that (s∗1, . . . , s
∗
n) is a pure

strategy Nash equilibrium

⇒ ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) ∀si ∈ Si ∀i ∈ N

⇒ ui(e(s
∗
i ), e(s

∗
−i)) ≥ ui(si, e(s

∗
−i)) ∀si ∈ Si ∀i ∈ N

⇒ ui(e(s
∗
i ), e(s

∗
−i)) = max

si∈Si

ui(si, e(s
∗
−i)) ∀i ∈ N

⇒ ui(e(s
∗
i ), e(s

∗
−i)) = max

σi∈∆(Si)
ui(σi, e(s

∗
−i)) ∀i ∈ Nusing a previous result

⇒ ui(e(s
∗
i ), e(s

∗
−i)) ≥ ui(σi, e(s

∗
−i)) ∀σi ∈ N∆(Si) ∀i ∈ N

⇒ (e(s∗1), . . . , e(s
∗
n)) is a mixed strategy Nash equilibrium

The implication of this result is that to identify the pure strategy equilibria of the game (N, (∆(Si)), (ui)),
it is enough to look at the pure strategy game (N, (Si), (ui)).

5 Examples to Illustrate Necessary and Sufficient Conditions

5.1 The BOS Game

We recall again the BOS game with the payoff matrix:

2
1 A B

A 2,1 0,0

B 0,0 1,2

We have seen that
u1(σ1, σ2) = 1 + 3σ1(A)σ2(A) − σ1(A) − σ2(A)

u2(σ1, σ2) = 2 + 3σ1(A)σ2(A) − 2σ1(A) − 2σ2(A)

First we verify that (A,A) is a Nash equilibrium. Surely it satisfies the NASC of the theorem.

σ∗
1(A) = 1; σ∗

1(B) = 0; σ∗
2(A) = 1; σ∗

2(B) = 0

u1(A,σ∗
2) = 2; u1(B,σ∗

2) = 0

Condition (1) is trivially true and condition (2) is true because

u1(A,σ∗
2) > u1(B,σ∗

2)

These conditions are similarly satisfied for player 2 also. Hence (A,A) is a Nash equilibrium. Similarly,
(B,B) is also a NE.

Now, let us look at the candidate Nash equilibrium: ((2
3 , 1

3), (1
3 , 2

3)). We have:

σ∗
1(A) =

2

3
σ∗

1(B) =
1

3

σ∗
2(A) =

1

3
σ∗

2(B) =
2

3
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Player 1 : Let us check condition (1).

u1(A,σ∗
2(A) =

1

3
(2) +

2

3
(0) =

2

3

u1(B,σ∗
2(A) =

1

3
(0) +

2

3
(1) =

2

3

Condition (2) is trivially satisfied since δ(σ∗
1) = {A,B}, the entire set.

Player 2 : Let us check condition (1).

u2(σ
∗
1 , A) = 2

3(1) = 2
3

u2(σ
∗
1 , B) = 2

3

}

Condition (2) is trivially satisfied as before.
Let us investigate if there are any other Nash equilibria. The equilibrium (A,A) corresponds to the

support {A} × {A}. The equilibrium (B,B) corresponds to the support {B} × {B}. The equilibrium
((2

3 , 1
3), (1

3 , 2
3)) corresponds to the support {A,B} × {A,B}.

• There is no Nash equilibrium with support {A} × {A,B}. If player 1 plays A, then player 2 has
to play only A, which leads to the NE (A,A). There is no way player will play B.

• Similarly, there is no Nash equilibrium with supports

{B} × {A,B}

{A,B} × {A}

{A,B} × {B}

{B} × {A}

{A} × {B}

• Let us see if there is any other Nash equilibrium with support {A,B} × {A,B}. To see this, let
(σ∗

1 , σ
∗
2) defined by

σ∗
1(A) = x σ∗

1(B) = 1 − x

σ∗
2(A) = y σ∗

2(B) = 1 − y

be a Nash equilibrium such that neither x 6= o, x 6= 1, y 6= o and y 6= 1(0 < x < 1; 0 < y < 1).
Then by condition (1) of the theorem, we have:

u1(A,σ∗
2) = u1(B,σ∗

2)

u2(σ
∗
1 , A) = u2(σ

∗
1 , B)

This implies 2y = 1− y and x = 2(1− x). This in turn implies y = 1
3 ; x = 2

3 . This leads to the
NE

σ∗
1 =

(

2

3
,
1

3

)

; σ∗
2 =

(

1

3
,
2

3

)
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5.2 Example 2: Coordination Game

Let us consider a variant of the coordination game with the payoff matrix:

2
1 A B

A 10,10 0,0

B 0,0 1,1

In one interpretation of this game, the two players are students studying in a college and option A
corresponds to staying in college and option B corresponds to going to a movie. We have already seen
that (A,A) and (B,B) are pure strategy Nash equilibria. These correspond to the supports {A}×{A}
and {B}×{B}, respectively. It can be shown that the supports {A}×{B}; {B}×{A}; {A}×{A,B};
{B}×{A,B}; {A,B}×{A}; {A,B}×{B} do not lead to any Nash equilibrium. we now investigate if
there exists a Nash equilibrium with the support {A,B}×{A,B}. Let σ∗

1 = (x, 1−x); σ∗
2 = (y, 1−y)

with x 6= 0, x 6= 1, y 6= 0, y 6= 1 be a Nash equilibrium. Then condition (2) is trivially satisfied (since
the support in each case is the entire strategy set). Let us check condition (1) which leads to:

u1(A,σ∗
2) = u1(B,σ∗

2)

u2(σ
∗
1 , A) = u2(σ

∗
1 , B)

The above equations are equivalent to

10y = 1 − y

10x = 1 − x

This leads to: y = 1
11 ; x = 1

11 . This means the mixed strategy profile (σ∗
1 = ( 1

11 , 10
11)), σ∗

2) = ( 1
11 , 10

11 )
is also a Nash equilibrium. This indeed explains why students could be found going to a movie with
a high probability rather than studying in the college! It is interesting that though staying in college
gives more pay off, the friends are more likely meet in a movie if this is the equilibrium that is selected.
Note that the players have no real preference over the probabilities that they play their strategies with.
What actually determines these probabilities is the Nash equilibrium consideration namely the need
to make the other player indifferent over his strategies. This has prompted many game theorists to
question the usefulness of mixed strategy Nash equilibria. There are mainly two concerns.

1. Concern 1: If players have a choice of pure strategies that give them the same payoff as an
equilibrium mixed strategy, why should they randomize at all? The explanation is that the
players do not randomize but choose the pure strategy that they play based on some private
information.

2. Concern 2: If players randomize, they must randomize with exact values of the probabilities as
even small changes in these probabilities can disturb the Nash equilibrium.

6 To Probe Further

The material discussed in this chapter draws upon mainly from the the books by Myerson [1] and
Osborne and Rubinstein [2]. Many of the problems below are also taken from the above books.
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In this chapter, we have made an implicit assumption that the strategy sets are all finite and
mixed strategies have been defined for only such games. However, mixed strategies can be naturally
extended to infinite strategy sets by defining probability distributions over those sets.

The celebrated result by John Nash states that every finite strategic form game (that is with
finite number of players and finite strategy sets) will surely have at least one mixed strategy Nash
equilibrium. We will be proving the result in Chapter 9.

Computation of Nash equilibria is an issue of intense interest. We will be covering that in Chapter
10.

7 Problems

1. Let S be any finite set with n elements. Show that the set ∆(S), the set of all probability
distributions over S, is a convex set.

2. Given a normal form game (N, (∆(Si)), (ui)), show for any two mixed strategies, σi
∗, σi that

ui(σi
∗, σ−i) > ui(σi, σ−i) ∀ σ−i ∈ ∆(S−i)

if and only if
ui(σi

∗, s−i) > ui(σi, s−i) ∀ s−i ∈ S−i

3. Show that any strictly dominant strategy in the game (N,∆(Si), (ui)) must be a pure strategy.

4. Find the mixed strategy Nash equilibria for the matching pennies game:

H T

H 1, -1 -1, 1

T -1, 1 1, -1

5. Find the mixed strategy Nash equilibria for the rock-paper-scissors game:

3
1 Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1
Paper 1,−1 0, 0 −1, 1
Scissors −1, 1 1,−1 0, 0

6. Find the mixed strategy Nash equilibria for the following game.

H T

H 1, 1 0, 1

T 1, 0 0, 0

7. Find the mixed strategy Nash equilibria for the following game.

A B

A 6, 2 0, 0

B 0, 0 2, 6
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If all these numbers are multiplied by 2, will the equilibria change?

8. Consider any arbitrary two player game of the following type (with a,b,c,d any arbitrary real
number):

A B

A a,a b,c

B c,b d,d

It is known that the game has a strongly dominant strategy equilibrium. Now prove or disprove:
The above strongly dominant strategy equilibrium is the only possible mixed strategy equilibrium
of the game.

9. There are two sellers 1 and 2 and there are there buyers A, B, and C.

• A can only buy from seller 1.

• C can only buy from seller 2.

• B can buy from either seller 1 or seller 2.

• Each buyer has a budget (maximum willingness to pay) of 1 and wishes to buy one item.

• The sellers have enough items to sell.

• Each seller announces a price as a real number in the range [0, 1]. Let s1 and s2 be the
prices announced by sellers 1 and 2, respectively..

• Naturally, buyer A will buy an item from seller 1 at price s1 and buyer C will buy an item
from seller 2 at price s2.

• In the case of buyer B, if s1 ≤ s2, then he will buy an item from seller 1, otherwise he will
buy from seller 2.

We have shown in Chapter 5 that the above game does not have pure strategy Nash equilibrium.
Does this game have a mixed strategy Nash equilibrium?

10. Consider an n player game with Si = {1, 2} ∀i. The payoff is

ui(s1, . . . , sn) = si

∏

j 6=i

(1 − δ(si, sj))

where δ is the kronecker δ given by

δ(si, sj) = 1 if si = sj

= 0 otherwise

If player i uses a mixed strategy in which pure strategy 1 is chosen with probability pi, prove
that (p1, p2, . . . pn) defines an equilibrium point iff

∏

j 6=i

(1 − pj) = 2
∏

j 6=i

pj ∀i ∈ N

Deduce that a mixed strategy equilibrium is given by

pi =
1

1 + 2
1

n−1

∀i ∈ N

and that for n = 2, 3 this is the only equilibrium points.
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11. ( A war of attrition) Two players are involved in a dispute over an object. The value of the
object to player i is vi > 0. Time is modeled as a continuous variable that starts at 0 and runs
indefinitely. Each player chooses when to concede the object to the other player; if the first
player to concede does so at time t, the other player obtains the object at that time. If both
players concede simultaneously, the object is split equally between them, player i receiving a
payoff of vi/2. Time is valuable: until the first concession each player loses one unit of payoff
per unit time. Formulate this situation as a strategic game and show that in all Nash equilibria,
one of the players concedes immediately.

12. (A location game) Each of n people chooses whether or not to become a political candidate, and if
so which position to take. There is a continuum of citizens, each of whom has a favorite position;
the distribution of favorite positions is given by a density function f on [0, 1] with f(x) > 0 for all
x ∈ [0, 1]. A candidate attracts the votes of those citizens whose favorite positions are closer to
his position than to the position-of any other candidate; if k candidates choose the same position
then each receives the fraction 1/k of the votes that the the position attracts. The winner of
the competition is the candidate who receives the most votes. Each person prefers to be the
unique winning candidate than to tie for the first place, prefers to tie for the first place than to
stay out of the competition, and prefers to stay out of the competition than to enter and lose.
Formulate this situation as a strategic game, find the set of Nash equilibria when n = 2, and
show that there is no Nash equilibrium when n = 2, and show that there is no Nash equilibrium
when n = 3.

13. (An exchange game) Each of two players receives a ticket on which there is a number in some
finite subset S of the interval [0, 1]. The number on a player’s ticket is the size of a prize that
he may receive. The two prizes are identically and independently distributed, with distribution
functionF . Each player is asked independently and simultaneously whether he wants to exchange
his prize for the other player’s prize. If both players agree then the prizes are exchanged;
otherwise each player receives his own prize. Each player’s objective is to maximize his expected
payoff. Model this situation as a Bayesian game and show that in any Nash equilibrium the
highest prize that either player is willing to exchange is the smallest possible prize.

14. (Guess the average) Each of n people announces a number in the set {1, ...,K}. A prize of $1 is
split equally between all the people whose number is closest to 2

3 of the average number. Show
that the game has a unique mixed strategy Nash equilibrium, in which each player’s strategy is
pure.

15. (An investment race) Two investors are involved in a competition with a prize of $1. Each
investor can spend any amount in the interval [0, 1]. The winner is the investor who spends the
most; in the event of a tie each investor receives $0.50. Formulate this situation as a strategic
game and find its mixed strategy Nash equilibria. (Note that the player’s payoff functions are
discontinuous, so that Glicksberg’s result does not apply; nevertheless the game has a mixed
strategy Nash equilibrium.)

16. Each of n people announces a number in the set {1, 2, . . . ,m}. A prize of Rs 10000 is split
equally between all the people whose number is closest to 2

3 of the average number. Show that
the game has a unique mixed strategy Nash equilibrium, in which each player’s strategy is pure.

17. Consider a single player game with N = {1} and S1 = [0, 1] (compact). Define the utility
function as a discontinuous map:
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u1(s1) = s1 if 0 ≤ s1 < 1
= 0 if s1 = 1

Show that the above game does not have a mixed strategy equilibrium.

18. Consider again a single player game with N = {1} but with S1 = [0, 1] (not compact). Define
the utility function as a continuous map:

u1(s1) = s1 ∀s1 ∈ [0, 1]

Show that this game also does not have a mixed strategy equilibrium.

19. Write down the necessary and sufficient conditions for a mixed strategy Nash equilibrium and
using those, compute all mixed strategy Nash equilibria of the following problem:

A B

A 20, 0 0, 10

B 0, 90 20, 0
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