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In this chapter, we introduce the all important notion of pure strategy Nash equilibrium. We provide several

examples to illustrate this notion. We show that pure strategy Nash equilibrium may not exist in many cases

while in many other cases, there could exist multiple Nash equilibria. We also show that the payoffs that

players get in a Nash equilibrium may not be socially optimal.

1 Nash Equilibrium

Dominant strategy equilibria (strongly dominant, weakly dominant, very weakly dominant), if they
exist, are very desirable but rarely do they exist because the conditions to be satisfied are too demand-
ing. A dominant strategy equilibrium requires that each player’s choice be a best response against all
possible choices of all the other players. If we only insist that each player’s choice is a best response
against the best response strategies of the other players, we get the notion of Nash equilibrium. This
solution concept is named after John Nash, one of the most celebrated game theorists of our times. In
this section, we introduce and discuss the notion of pure strategy Nash equilibrium. In the following
section, we discuss the notion of mixed strategy Nash equilibrium.

Definition 1 (Pure Strategy Nash Equilibrium.) Given a strategic form game Γ = 〈N, (Si), (ui)〉,
the strategy profile s∗ = (s∗1, s

∗
2, . . . , s

∗
n) is said to be a pure strategy Nash equilibrium of Γ if,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ Si, ∀i = 1, 2, . . . , n.

That is, each player’s Nash equilibrium strategy is a best response to the Nash equilibrium strategies
of the other players.

Definition 2 (Best Response Correspondence.) Given a game Γ = 〈N, (Si), (ui)〉, the best re-

sponse correspondence for player i is the mapping Bi : S−i → 2Si defined by

Bi(s−i) = {si ∈ Si : ui(si, s−i) ≥ ui(s
′
i, s−i) ∀s′i ∈ Si}.
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That is, given a profile s−i of strategies of the other players, Bi(s−i) gives the set of all best response
strategies of player i.

It can be seen that the strategy profile (s∗1, . . . , s
∗
n) is a Nash equilibrium iff,

s∗i ∈ Bi(s
∗
−i), ∀i = 1, . . . , n.

Given a strategic form game Γ = 〈N, (Si), (ui)〉, a strongly (weakly) (very weakly) dominant strategy
equilibrium (s∗1, . . . s

∗
n) is also a Nash equilibrium. This can be shown in a straightforward way (see

problem 1 at the end of the chapter). The intuitive explanation for this is as follows. In a dominant
strategy equilibrium, the equilibrium strategy of each player is a best response irrespective of the
strategies of the rest of the players. In a pure strategy Nash equilibrium, the equilibrium strategy of
each player is a best response against the Nash equilibrium strategies of the rest of the players. Thus,
the Nash equilibrium is a much weaker version of a dominant strategy equilibrium. It is also fairly
obvious to note that a Nash equilibrium need not be a dominant strategy equilibrium.

2 Examples of Pure Strategy Nash Equilibrium

2.1 The BOS Game

Recall the two player BOS game with the following payoff matrix:

2
1 A B

A 2,1 0, 0

B 0,0 1,2

There are two Nash equilibria here, namely (A,A) and (B,B). The profile (A,A) is a Nash equilibrium
because

u1(M,M) > u1(F,M)

u2(M,M) > u2(M,F )

The profile (F,F ) is a Nash equilibrium because

u1(F,F ) > u1(M,F )

u2(F,F ) > u2(F,M)

The best response sets are given by:

B1(M) = {M}; B1(F ) = {F}; B2(M) = {M}; B2(F ) = {F}

Since M ∈ B1(M) and M ∈ B2(M), (M,M) is a Nash equilibrium. Similarly since F ∈ B1(F ) and
F ∈ B2(F ), (F,F ) is a Nash equilibrium. The profile (M,F ) is not a Nash equilibrium since

M 6∈ B1(F ); F 6∈ B2(M)
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2.2 Prisoner’s Dilemma

We consider the prisoner’s dilemma problem which has the following payoff matrix:

2
1 NC C

NC −2, −2 −10, −1

C −1, −10 −5, −5

Note that (C,C) is the unique Nash equilibrium here. To see why, we have to just look at the best
response sets:

B1(C) = {C}; B1(NC) = {C}; B2(C) = {C}; B2(NC) = {C}

Since s∗i ∈ B1(s
∗
2) and s∗2 ∈ B2(s

∗
1) for a Nash equilibrium, the only possible Nash equilibrium here is

(C,C). In fact as already seen, this is a strongly dominant strategy equilibrium.

2.3 Tragedy of the the Commons

Recall that N = {1, 2, . . . , n} is a set of farmers and the strategy sets are S1 = S2 = · · · = Sn = {0, 1}.
A 1 corresponds to keeping a sheep, and a 0 corresponds to not keeping a sheep. Keeping a sheep
gives a benefit of 1. However, when a sheep is kept, damage to the environment is 5. This damage is
equally shared by all the farmers. Note that for i = 1, 2, . . . , n

ui(s1, . . . , sn) = si −
5

n

n
∑

j=1

sj =

(

n − 5

n

)

si −
5

n

∑

j 6=i

sj

When n < 5, we have shown in the previous chapter that (0, 0, . . . , 0) is a strongly dominant
strategy equilibrium. That is, there is no incentive for any farmer to keep a sheep. When n > 5, we
have shown that (1, 1, . . . , 1) is a strongly dominant strategy equilibrium. That is, keeping a sheep is
a strongly dominant strategy for each farmer. Let us look at the case n = 5. Here,

ui(0, s−i) = −
5

n

∑

j 6=i

sj

ui(1, s−i) = −
5

n

∑

j 6=i

sj

Thus
ui(0, s−i) = ui(1, s−i), ∀s−i ∈ S−i

This implies
Bi(s−i) = {0, 1} ∀s−i ∈ S−i

It can be seen that all the strategy profiles are Nash Equilibria here. Also note that they are neither
weakly dominant nor strongly dominant strategy equilibria.

If the Government decides to impose a pollution tax of 5 units for each sheep kept, we have

ui(s1, . . . , sn) = si − 5si −
5

n

n
∑

j=1

sj = −4si −
5

n
si −

5

n

∑

j 6=i

sj
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Here

ui(0, s−i) = −
5

n

∑

j 6=i

sj

ui(1, s−i) = −4 −
5

n
−

5

n

∑

j 6=i

sj

∴ Bi(s−i) = {0} ∀i ∈ N

(1)

This means whatever the value of n, (0, 0, . . . , 0) is a strongly dominant strategy equilibrium.

2.4 Bandwidth Sharing Problem

Recall the bandwidth sharing game discussed in [1] and also presented in Chapter 3. We compute
a Nash equilibrium for this game in the following way. Let xi be the amount of flow that player i

(i = 1, 2, . . . , n) wishes to transmit on the channel and assume that

∑

i∈N

xi < 1.

Consider player i and define:

t =
∑

j 6=i

xj.

The payoff for the player i is equal to
xi(1 − t − xi).

In order to maximize the above payoff, we have to choose

x∗
i = arg max

xi∈[0,1]
xi(1 − t − xi)

=
1 − t

2

=
1 −

∑

j 6=i x
∗
j

2
.

If this has to be satisfied for all i ∈ N , then we end up with n simultaneous equations

x∗
i =

1 −
∑

j 6=i x
∗
j

2
i = 1, 2, . . . , n.

A Nash equilibrium of this game is any solution to the above n simultaneous equations. It can be
shown that the above set of simultaneous equations has the unique solution:

x∗
i =

1

1 + n
i = 1, 2, . . . , n.

The profile (x∗
1, . . . , x

∗
n) is thus a Nash equilibrium. The payoff for player i in the above Nash equilib-

rium

=

(

1

n + 1

)(

1

n + 1

)

.
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Therefore the total payoff to all players combined

=
n

(n + 1)2
.

As shown below, the above is not a very happy situation. Consider the following non-equilibrium
profile

(

1

2n
,

1

2n
, . . . ,

1

2n

)

.

This profile gives each player a payoff

=
1

2n

(

1 −
n

2n

)

=
1

4n
.

Therefore the total payoff to all the players

=
1

4
>

n

(n + 1)2
.

Thus a non-equilibrium payoff
(

1
2n

, 1
2n

, . . . , 1
2n

)

provides more payoff than a Nash equilibrium payoff.
In general, like in the prisoner’s dilemma problem, the equilibrium payoffs may not be the best possible
outcome for the players individually and also collectively. This is a property that Nash equilibrium
payoffs often suffer from and illustrates the conflict between individual and social good.

2.5 Duopoly Pricing Game

Recall the pricing game discussed in Chapter 3. There are two companies 1 and 2 that wish to
maximize their profits by choosing their prices p1 and p2. The utilities of the two companies are:

u1(p1, p2) = (p1 − c) x1(p1, p2)

u2(p1, p2) = (p2 − c) x2(p1, p2).

Note that u1(c, c) = 0 and u2(c, c) = 0. Also, it can be easily noted that

u1(c, c) ≥ u1(p1, c) ∀p1 ∈ S1

u2(c, c) ≥ u2(c, p2) ∀p2 ∈ S2.

Therefore the strategy profile (c, c) is a pure strategy Nash equilibrium. The implication of this result
is that in the equilibrium, the companies set their prices equal to the marginal cost. The intuition
behind this result is to imagine what would happen if both the companies set equal prices above
marginal cost. Then the two companies would get half the market at a higher than marginal cost
price. However, by lowering prices just slightly, a firm could capture the whole market, so both firms
are tempted to lower prices as much as they can. It would not make sense to price below marginal
cost, because the firm would make a loss. Therefore, both firms will lower prices until they reach the
marginal cost limit.
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2.6 Braess Paradox Game

Here we consider the Braess paradox game which we discussed in Chapters 3 and 4. First consider
that there is no link from A to B. Suppose (s1, . . . , sn) is any strategy profile such that

nA(s1, . . . , sn) = nB(s1, . . . , sn) = 500

That is, of the 1000 vehicles, exactly 500 take the route via A while the rest of the 500 vehicles take
the route via B. Clearly, for such a strategy profile, ui(s1, s2, . . . , sn) = −35 for all vehicles i ∈ N .
Suppose vehicle i deviates from si with the rest of the vehicles retaining their strategies. The utility
of vehicle i now becomes −25 − 501

50 which is less than 35. In fact, because of the unilateral deviation
by vehicle i, the utility of all the 499 vehicles which were following the same route as vehicle i will
now be better off whereas vehicle i and the rest of the 500 vehicles will be worse off. Thus all strategy
profiles satisfying the above condition will be pure strategy Nash equilibria.

2.7 Games without Pure Strategy Nash Equilibria

Recall the matching pennies game discussed in Chapter 3 and the payoff matrix for this game:

2
1 A B

A 1, −1 −1, 1

B −1, 1 1, −1

It is easy to see that this game does not have a pure strategy Nash equilibrium. This shows that
there is no guarantee that a pure strategy Nash equilibrium will exist. In Chapter 9, we will state
sufficient conditions under which a given strategic form game is guaranteed to have a pure strategy
Nash equilibrium. In the next chapter (chapter 6), we will show that this game has a mixed strategy
Nash equilibrium.

Another game that does not have a pure strategy Nash equilibrium is the rock-paper-scissors game.
This game also has a mixed strategy Nash equilibrium.

We will now study another example that does not have a pure strategy Nash equilibrium. It turns
out that this game does not even have a mixed strategy Nash equilibrium.

2.8 Procurement Exchange Game

Recall the above example discussed in citeTARDOS07 and presented in Chapter 3. We will show that
this game does not have a pure strategy Nash equilibrium. First, we explore whether the strategy
profile (1, s2) is a Nash equilibrium for any s2 ∈ [0, 1]. Note that

u1(1, s2) = 2 if s2 = 1

= 1 if s2 < 1

u2(1, s2) = 1 if s2 = 1

= 2s2 if s2 < 1.

It is easy to observe that u2(1, s2) has a value 2s2 for 0 ≤ s2 < 1. Therefore u2(1, s2) increases when
s2 increases from 0, until s2 reaches 1 when it suddenly drops to 1. Thus it is clear that a profile
of the form (1, s2) cannot be a Nash equilibrium for any s2 ∈ [0, 1]. Similarly, no profile of the form
(s1, 1) can be a Nash equilibrium for any s1 ∈ [0, 1].
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We now explore if there exists any Nash equilibrium (s∗1, s
∗
2), with s∗1, s

∗
2 ∈ [0, 1). There are two

cases here.

• Case 1: If s∗1 ≤ 1
2 , then the best response for player 2 would be to bid s2 = 1 since that would

fetch him the maximum payoff. However bidding s2 = 1 is not an option here since the range of
values for s2 is [0, 1).

• Case 2: If s∗1 > 1
2 , there are two cases: (1) s∗1 ≤ s∗2 (2) s∗1 > s∗2. Suppose s∗1 ≤ s∗2. Then

u1(s
∗
1, s

∗
2) = 2s∗1

u2(s
∗
1, s

∗
2) = s∗2.

Choose s2 such that 1
2 < s2 < s∗1. Then

u2(s
∗
1, s2) = 2s2

> s∗2 since 2s2 > 1 and s∗2 < 1

= u2(s
∗
1, s

∗
2).

Thus we can improve upon (s∗1, s
∗
2) and hence (s∗1, s

∗
2) is not a Nash equilibrium.

Now, suppose, s∗1 > s∗2. Then

u1(s
∗
1, s

∗
2) = s∗1

u2(s
∗
1, s

∗
2) = 2s∗2.

Now let us choose s1 such that 1 > s1 > s∗1. Then

u1(s1, s
∗
2) = s1 > s∗1 = u1(s

∗
1, s

∗
2).

Thus we can always improve upon (s∗1, s
∗
2). Therefore this game does not have a pure strategy

Nash equilibrium.

3 Interpretations of Nash Equilibrium

Nash equilibrium is one of the most extensively discussed and debated topics in game theory. Many
interpretations have been provided. Note that a Nash equilibrium is a profile of strategies of the n

players, such that each player’s choice is the player’s best response given that the rest of the players
play their Nash equilibrium strategies. By deviating from a Nash equilibrium strategy, a player will not
be better off given that the other players stick to their Nash equilibrium strategies. In the following,
we provide several interpretations put forward by game theorists.

A popular interpretation views a Nash equilibrium as a prescription. An adviser or a consultant
to the n players would essentially prescribe a Nash equilibrium strategy profile to the players. If the
adviser recommends strategies that do not constitute a Nash equilibrium, then some players would find
that it would be better for them to do differently than advised. If the adviser prescribes strategies that
do constitute a Nash equilibrium, then the players are not unhappy because playing the equilibrium
strategy is best under the assumption that the other players will play their equilibrium strategies.

Thus a logical, rational, adviser would recommend a Nash equilibrium profile to the players. There
is a caveat however: A Nash equilibrium is an insurance against only unilateral deviations (that is,
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only one player at a time deviating from the equilibrium strategy). Two or more players deviating
might result in players improving their payoffs compared to their equilibrium payoffs. For example, in
the prisoner’s dilemma problem, (C,C) is a Nash equilibrium. If both the players decide to deviate,
then the resulting profile is (NC,NC), which is better for both the players. Note that (NC,NC) is
not a Nash equilibrium.

Another popular interpretation of Nash equilibrium is that of prediction. If the players are rational
and intelligent, then a Nash equilibrium is a good prediction for the game. For example, a systematic
elimination of strongly dominated strategies will lead to a reduced form that will include a Nash
equilibrium. Often, iterated elimination of strongly dominated strategies leads to a unique prediction
which would be invariably a Nash equilibrium.

An appealing interpretation of Nash equilibrium is that of self-enforcing agreement . A Nash equi-
librium can be viewed as an implicit or explicit agreement between the players. Once this agreement
is reached, it does not need any external means of enforcement because it is in the self-interest of each
player to follow this agreement if the others do. In a non-cooperative game, agreements cannot be
enforced, hence, Nash equilibrium agreements are the only ones sustainable.

A natural, easily understood interpretation for Nash equilibrium has to do with Evolution and

Steady-State. A Nash equilibrium is a potential stable point of a dynamic adjustment process in
which players adjust their behavior to that of other players in the game, constantly searching for
strategy choices that will give them the best results. This interpretation has been used to explain
biological evolution. In this interpretation, Nash equilibrium is the outcome that results over time
when a game is played repeatedly. A Nash equilibrium is like a stable social convention that people
are happy to maintain forever.

Common knowledge was usually a standard assumption in determining conditions leading to a
Nash equilibrium. More recently, it has been shown that the common knowledge assumption may not
be required; instead, mutual knowledge is adequate. Suppose that each player is rational, knows his
own payoff function, and knows the strategy choices of the others; then the strategy choices of the
players will constitute a Nash equilibrium.

3.1 Existence of Multiple Nash Equilibria

We have seen several examples of strategic form games where multiple Nash equilibria exist. If a game
has multiple Nash equilibria, then a fundamental question to ask is which of these would be imple-
mented by the players? This question has been addressed by numerous game theorists, in particular,
Thomas Schelling, who proposed the focal point effect. According to Schelling, anything that tends to
focus the player’s attention on one equilibrium may make them all expect it and hence fulfill it, like a
self-fulfilling prophecy. Such a Nash equilibrium, which has some property that distinguishes it from
all other equilibria is called a focal equilibrium or a Schelling Point .

As an example, consider the BOS game that we discussed in Example ??. Recall the payoff matrix
of this game:

2
1 A B

A 2,1 0,0

B 0,0 1,2

Here (A,A) and (B,B) are both Nash equilibria. If there is a special interest (or hype) created about
product A, then (A,A) may become the focal equilibrium. On the other hand, if there is a marketing
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blitz on product B, then (B,B) may become the focal equilibrium.

To Probe Further

The material discussed in this chapter draws upon mainly from the the books by Myerson [2] and
Osborne and Rubinstein [3]. The paper by Tardos and Vazirani [1] is a fine introduction to concepts
in game theory. In fact, we have taken many examples from their paper.

The books by Osborne [4], Straffin [5], and Binmore [6] contain very interesting discussion on Nash
equilibrium.

As is well known, the notion of Nash equilibrium was proposed by John Nash as part of his doctoral
work which was published in [7, 8]. Holt and Roth [9] have recently published an insightful perspective
on the notion of Nash equilibrium.

4 Problems

1. Show in a strategic form game that any strongly (weakly) (very weakly) dominant strategy
equilibrium is also a pure strategy Nash equilibrium.

2. Assume that two merchants A and B have the option of selling any one of three products X, Y,
and Z. If A decides to sell X and B decides to sell X, then A makes a profit of 100 and B makes
a loss of 100. We represent this as UA(X,X) = 100 and UB(X,X) = −100. With this notation,
following is the list of all utilities:

UA(X,X) = 100 UB(X,X) = −100
UA(X,Y ) = 100 UB(X,Y ) = 100
UA(X,Z) = 100 UB(X,Z) = −50
UA(Y,X) = −100 UB(Y,X) = −100
UA(Y, Y ) = −100 UB(Y, Y ) = 100
UA(Y,Z) = −50 UB(Y,Z) = −50
UA(Z,X) = 50 UB(Z,X) = −50
UA(Z, Y ) = −50 UB(Z, Y ) = 100
UA(Z,Z) = 100 UB(Z,Z) = 100

Compute all the Nash equilibria for this problem. How many of these are dominant strategy
equilibria?

3. Find the pure strategy Nash equilibria in the following games discussed in Chapter 3: coordina-
tion game; hawk-dove; cold war; ISP routing; pollution control; and cournot model.

4. Find the pure strategy Nash equilibrium of the following game.

X Y Z

A 6, 6 8, 20 0, 8

B 10, 0 5, 5 2, 8

C 8, 0 20, 0 4, 4

5. Find the pure strategy Nash equilibria for the following two player game.
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A B C D

A 5, 2 2, 6 1, 4 0, 4

B 0, 0 3, 2 2, 1 1, 1

C 7,0 2, 2 1, 5 5, 1

D 9, 5 1, 3 0, 2 4, 8

6. Find the pure strategy Nash equilibrium of the following game.

X Y Z

A 6, 6 8, 20 0, 8

B 10, 0 5, 5 2, 8

C 8, 0 20, 0 4, 4

7. An m × m matrix is called a latin square if each row and each column is a permutation of
(1, . . . ,m). Compute pure strategy Nash equilibria, if they exist, of a two person game for which
a latin square is the payoff matrix. Generalize the result.

8. In the tragedy of the commons example with n = 5 and no pollution tax, all profiles have
been shown to be pure strategy Nash equilibria. Are these also very weakly dominant strategy
equilibria?

9. In the Braess paradox game without the link from A to B, we have derived certain Nash equilibria
(namely strategy profiles where 500 vehicles follow route A and the other 500 vehicles follow
route B). Are these the only Nash equilibria. Also, in the extended game with a link from A
to B, are there equilibria other than the profile corresponding to all vehicles following the route
AB?

10. Give examples of two player pure strategy games for the following situations

(a) The game has a unique Nash equilibrium which is not a weakly dominant strategy equilib-
rium

(b) The game has a unique Nash equilibrium which is a weakly dominant strategy equilibrium
but not a strongly dominant strategy equilibrium

(c) The game has one strongly dominant or one weakly dominant strategy equilibrium and a
second one which is only a Nash equilibrium

11. First Price Auction. Assume two bidders with valuations v1 and v2 for an object. Their bids
are in multiples of some unit (that is, discrete). The bidden with higher bid wins the auction
and pays the amount that he has bid. If both bid the same amount, one of them gets the object
with equal probability 1

2 . In this game, compute a pure strategy Nash equilibrium of the game.

12. Compute a Nash equilibrium for the two person game with

S1 = {0, 1} S2 = {3, 4}

u1(x, y) = −u2(x, y) = |x − y| ∀(x, y) ∈ [0, 1] × [3, 4]
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13. Consider the game (N, (Si), (ui)) when N = {1, . . . , n} and Si = {1, . . . , 1n} ∀i ∈ N .

u1(si, . . . , sn) = aik > 0 if s1 = · · · = sn = k

= 0 otherwise

Show that the only pure strategy profiles which are not equilibrium points are those with exactly
(n − 1) of the si equal.
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