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We have so far studied strategic form games with complete information. We will now study games with

incomplete information, which are crucial to the theory of mechanism design. In particular, we study Bayesian

games and introduce different equilibrium notions in Bayesian games such as Bayesian Nash equilibrium.

1 Games with Incomplete Information

A game with incomplete information is one in which, at the first point in time when the players
can begin to plan their moves in the game, some players have private information about the game
that other players do not know. In contrast, in complete information games, there is no such private
information, and all information is publicly known to everybody. Clearly, incomplete information
games are more realistic, more practical.

The initial private information that a player has, just before making a move in the game, is called
the type of the player. For example, in an auction involving a single indivisible item, each player
would have a valuation for the item, and typically the player himself would know this valuation
deterministically while the other players may only have a guess about how much this player values
the item.

John Harsanyi (Joint Nobel Prize winner in Economic Sciences in 1994 with John Nash and Rein-
hard Selten) proposed in 1968, Bayesian form games to represent games with incomplete information.

Definition 1 (Bayesian Game) . A Bayesian game Γ is defined as a tuple Γ = 〈N, (Θi), (Si), (pi), (ui)〉
where

• N = {1, 2, . . . , n} is a set of players.

• Θi is the set of types of player i where i = 1, 2, . . . , n.

• Si is the set of actions or pure strategies of player i where i = 1, 2, . . . , n.
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• The probability function pi is a function from Θi into ∆(Θ−i), the set of probability distributions
over Θ−i. That is, for any possible type θi ∈ Θi, pi specifies a probability distribution pi(.|θi)
over the set Θ−i representing what player i would believe about the types of the other players if
his own type were θi;

• The payoff function ui : Θ × S → R is such that, for any profile of actions and any profile of
types (θ, s) ∈ Θ × S, ui(θ, s) specifies the payoff that player i would get, in some von Neumann
– Morgenstern utility scale, if the players’ actual types were all as in θ and the players all chose
their actions according to s.

The notation for Bayesian games is described in Table 1.

N A set of players, {1, 2, . . . , n}

Θi Set of types of player i

Si Set of actions or pure strategies of player i

Θ Set of all type profiles = Θ1 × Θ2 × . . . × Θn

θ θ = (θ1, . . . , θn) ∈ Θ; a type profile

Θ−i Set of type profiles of agents except i = Θ1 × . . . Θi−1 × Θi+1 × . . . × Θn

θ−i θ−i ∈ Θ−i; a profile of types of agents except i

S Set of all action profiles = S1 × S2 × . . . × Sn

pi A probability (belief) function of player i

A function from Θi into ∆(Θ−i)

ui Utility function of player i; ui : Θ × S → R

Table 1: Notation for a Bayesian game

When we study a Bayesian game, we assume that

1. Each player i knows the entire structure of the game as defined above.

2. Each player knows his own type θi ∈ Θi.

3. The above facts are common knowledge among all the players in N .

4. The exact type of a player is not known deterministically to the other players who however
have a probabilistic guess of what this type is. The belief functions pi describe these conditional
probabilities. Note that the belief functions pi are also common knowledge among the players.

The phrases actions and strategies are used differently in the Bayesian game context. A strategy
for a player i in Bayesian games is defined as a mapping from Θi to Si. A strategy si of a player i,
therefore, specifies a pure action for each type of player i; si(θi) for a given θi ∈ Θi would specify the
pure action that player i would play if his type were θi. The notation si(.) is used to refer to the pure
action of player i corresponding to an arbitrary type from his type set.

Definition 2 (Consistency of Beliefs) . We say beliefs (pi)i∈N in a Bayesian game are consistent
if there is some common prior distribution over the set of type profiles Θ such that each player’s
beliefs given his type are just the conditional probability distributions that can be computed from the
prior distribution by the Bayes’ formula.
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If the game is finite, beliefs are consistent if there exists some probability distribution P ∈ ∆(Θ) such
that

pi(θ−i|θi) =
P (θi, θ−i)

∑

t−i∈Θ−i

P (θi, t−i)

∀θi ∈ Θi; ∀θ−i ∈ Θ−i; ∀i ∈ N.

Consistency simplifies the definition of the model. The common prior on Θ determines all the prob-
ability functions. In a consistent model, differences in beliefs among players can be explained by
differences in information whereas inconsistent beliefs involve differences of opinion that cannot be
derived from any differences in observation and must be simply assumed a priori.

2 Examples of Bayesian Games

2.1 A Two Player Bargaining Game

This example is taken from the book by Myerson [1]. There are two players, player 1 and player 2.
Player 1 is the seller of some object, and player 2 is a potential buyer. Each player knows what the
object is worth to himself but thinks that its value to the other player may be any integer from 1 to
100 with probability 1

100 . Assume that each player will simultaneously announce a bid between 0 and
100 for trading the object. If the buyer’s bid is greater than or equal to the seller’s bid they will trade
the object at a price equal to the average of their bids; otherwise no trade occurs. For this game:

N = {1, 2}

Θ1 = Θ2 = {1, 2, . . . , 100}

S1 = S2 = {0, 1, 2, . . . , 100}

pi(θ−i|θi) =
1

100
∀i ∈ N ∀(θi, θ−i) ∈ Θ

u1(θ1, θ2, s1, s2) =
s1 + s2

2
− θ1 if s2 ≥ s1

= 0 if s2 < s1

u2(θ1, θ2, s1, s2) = θ2 −
s1 + s2

2
if s2 ≥ s1

= 0 if s2 < s1.

Note that the type of the seller indicates the willingness to sell (minimum price at which the seller is
prepared to sell the item), and the type of the buyer indicates the willingness to pay (maximum price
the buyer is prepared to pay for the item). Also, note that the beliefs are consistent with the prior:

P (θ1, θ2) =
1

10000
∀θ1 ∈ Θ1 ∀θ2 ∈ Θ2

where
Θ1 × Θ2 = {1, . . . , 100} × {1, . . . , 100}.
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2.2 A Sealed Bid Auction

Consider a seller who wishes to sell an indivisible item through an auction. Let there be two prospec-
tive buyers who bid for this item. The buyers have their individual valuations for this item. These
valuations could be considered as the types of the buyers. Here the game consists of the two bidders,
namely the buyers, so N = {1, 2}. The two bidders submit bids, say s1 and s2 for the item. Let us
say that the one who bids higher is awarded the item with a tie resolved in favor of bidder 1. The
winner determination function therefore is:

f1(s1, s2) = 1 if s1 ≥ s2

= 0 if s1 < s2

f2(s1, s2) = 1 if s1 < s2

= 0 if s1 ≥ s2.

Assume that the valuation set for each buyer is the real interval [0, 1] and also that the strategy set
for each buyer is again [0, 1]. This means Θ1 = Θ2 = [0, 1] and S1 = S2 = [0, 1]. If we assume that
each player believes that the other player’s valuation is chosen according to an independent uniform
distribution, then note that

pi([x, y]|θi) = y − x ∀ 0 ≤ x ≤ y ≤ 1; i = 1, 2.

In a first price auction, the winner will pay what is bid by her, and therefore the utility function of
the players is given by

ui(θ1, θ2, s1, s2) = fi(s1, s2)(θi − si); i = 1, 2.

This completes the definition of the Bayesian game underlying a first price auction involving two
bidders. One can similarly develop the Bayesian game for the second price sealed bid auction.

2.3 Bayesian Games with Infinite Type Sets

It is often easier to analyze examples with infinite type sets than those with large finite type sets. The
only notational complication is that, in the infinite case, the probability distributions pi(.|θi) must be
defined on all measurable subsets of Θ−i instead of just individual elements of Θ−i. For example, if
R−i is a subset of Θ−i, we define pi(R−i|θi) as the subjective probability that player i would assign
to the event that the profile of others’ types is in R−i, if his own type were θi

Example: Bargaining Game with Continuous Types

Consider the bargaining game as above but with real intervals as type sets. For example, Θ1 = Θ2 =
S1 = S2 = [0, 100]. For each player i and each θi ∈ Θi, let pi(.|θi) be the uniform distribution over
[0,100]. Then for any two numbers x and y such that 0 ≤ x ≤ y ≤ 100, the probability that any type
θi of player i would assign to the event that the other player’s type is between x and y is:

pi([x, y]|θi) =
y − x

100
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3 Type Agent Representation and the Selten Game

This is a representation of Bayesian games that enables a Bayesian game to be transformed to a
strategic form game (with complete information). Given a Bayesian game

Γ = 〈N, (Θi), (Si), (pi), (ui)〉

the Selten game is an equivalent strategic form game

Γs = 〈N s, (Ss
j ), (Uj)〉.

The idea used in formulating a Selten game is to have type agents. Each player in the original Bayesian
game is now replaced with a number of type agents; in fact, a player is replaced by exactly as many
type agents as the number of types in the type set of that player. We can safely assume that the type
sets of the players are mutually disjoint. The set of players in the Selten game is given by:

N s =
⋃

i∈N

Θi.

Note that each type agent of a particular player can play precisely the same actions as the player
himself. This means that for every θi ∈ Θi,

Ss
θi

= Si.

The payoff function Uθi
for each θi ∈ Θi is the conditionally expected utility to player i in the

Bayesian game given that θi is his actual type. It is a mapping with the following domain and
co-domain:

Uθi
:

×

i ∈ N

×

θi ∈ Θi

Si → R.

We will explain the way Uθi
is derived using an example. This example is developed, based on the

illustration in the book by Myerson [1].

3.1 Selten Game for a Bayesian Pricing Game

Consider two firms, company 1 and company 2. Company 1 produces a product x1 whereas company
2 produces either product x2 or product y2. The product x2 is somewhat similar to product x1 while
the product y2 is a different line of product. The product to be produced by company 2 is a closely
guarded secret, so it can be taken as private information of company 2. We thus have N = {1, 2},
Θ1 = {x1}, and Θ2 = {x2, y2}. Each firm has to choose a price for the product it produces, and this
is the strategic decision to be taken by the company. Company 1 has the choice of choosing a low
price a1 or a high price b1 whereas company 2 has the choice of choosing a low price a2 or a high price
b2. We therefore have S1 = {a1, b1} and S2 = {a2, b2}. The type of company 1 is common knowledge
since Θ1 is a singleton. Therefore, the belief probabilities of company 2 about company 1 are given by
p2(x1|x2) = 1 and p2(x1|y2) = 1. Let us assume the belief probabilities of company 1 about company
2 to be p1(x2|x1) = 0.6 and p1(y2|x1) = 0.4. To complete the definition of the Bayesian game, we
now have to specify the utility functions. Let the utility functions for the two possible type profiles
θ1 = x1, θ2 = x2 and θ1 = x1, θ2 = y2 be given as in Tables 2 and 3.

This completes the description of the Bayesian game. We now derive the equivalent Selten game:

〈N s, (Sθi
) θi∈Θi

i∈N

, (Uθi
) θi∈Θi

i∈N

〉.
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2
1 a2 b2

a1 1,2 0, 1

b1 0,4 1, 3

Table 2: u1 and u2 for θ1 = x1; θ2 = x2

2
1 a2 b2

a1 1,3 0, 4

b1 0,1 1, 2

Table 3: u1 and u2 for θ1 = x1; θ2 = y2

We have

N s = Θ1 ∪ Θ2 = {x1, x2, y2}

Sx1
= S1 = {a1, b1}

Sx2
= Sy2

= S2 = {a2, b2}.

Note that
Uθi

: S1 × S2 × S2 → R ∀θi ∈ Θi,∀i ∈ N

S1 × S2 × S2 = {(a1, a2, a2), (a1, a2, b2), (a1, b2, a2), (a1, b2, b2), (b1, a2, a2),

(b1, a2, b2), (b1, b2, a2), (b1, b2, b2)}.

The above set gives the set of all strategy profiles of all the type agents. A typical strategy profile can
be represented as (sx1

, sx2
, sy2

). This could also be represented as (s1(.), s2(.)) where the strategy s1

is a mapping from Θ1 to S1, and the strategy s2 is a mapping from Θ2 to S2. In general, for an n

player Bayesian game, a pure strategy profile is of the form

((sθ1
)θ1∈Θ1

, (sθ2
)θ2∈Θ2

, . . . , (sθn
)θn∈Θn

).

Another way to write this would be (s1(.), s2(.), . . . , sn(.)), where si is a mapping from Θi to Si

for i = 1, 2, . . . , n. The payoffs for type agents (in the Selten game) are obtained as conditional
expectations over the type profiles of the rest of the agents. For example, let us compute the payoff
Ux1

(a1, a2, a2), which is the expected payoff obtained by type agent x1 (belonging to player 1 ) when
this type agent plays action a1 and the type agents x2 and y2 of player 2 play the actions a2 and
a2 respectively. In this case, the type of player 1 is known, but the type of player could be x2 or y2

with probabilities given by the belief function p1(.|x1). The following conditional expectation gives
the required payoff.

Ux1
(a1, a2, a2) = p1(x2|x1)u1(x1, x2, a1, a2)

+p1(y2|x1)u1(x1, y2, a1, a2)

= (0.6)(1) + (0.4)(1)

= 0.6 + 0.4

= 1.
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Similarly, the payoff Ux1
(a1, a2, b2) can be computed as follows.

Ux1
(a1, a2, b2) = p1(x2|x1)u1(x1, x2, a1, a2)

+p1(y2|x1)u1(x1, y2, a1, b2)

= (0.6)(1) + (0.4)(0)

= 0.6.

It can be similarly shown that

Ux1
(b1, a2, a2) = 0

Ux1
(b1, a2, b2) = 0.4

Ux2
(a1, a2, b2) = 2

Ux2
(a1, b2, b2) = 1

Uy2
(a1, a2, b2) = 4

Uy2
(a1, a2, a2) = 3.

(1)

From the above, we see that

Ux1
(a1, a2, b2) > Ux1

(b1, a2, b2)

Ux2
(a1, a2, b2) > Ux2

(a1, b2, b2)

Uy2
(a1, a2, b2) > Uy2

(a1, a2, a2).

(2)

From this, we can conclude that the action profile (a1, a2, b2) is a Nash equilibrium of the type agent
representation.

3.2 Payoff Computation in Selten Game

From now on, when there is no confusion, we will use u instead of U . In general, given: (1) a Bayesian
game Γ = 〈N, (Θi), (Si), (pi), (ui)〉, (2) its equivalent Selten game Γs = 〈N s, (Sθi

), (Uθi
)〉, and (3) an

action profile in the type agent representation of the form

((sθ1
)θ1∈Θ1

, (sθ2
)θ2∈Θ2

, . . . , (sθn
)θn∈Θn

),

the payoffs uθi
for θi ∈ Θi (i ∈ N) are computed as follows.

uθi
(sθi

, s−θi
) =

∑

t−i∈Θ−i

pi(t−i|θi)ui(θi, t−i, sθi
, st−i

)

where st−i
is the strategy profile corresponding to the type agents in t−i. A concise way of writing the

above would be:
uθi

(sθi
, s−θi

) = Eθ−i
[ui(θi, θ−i, sθi

, sθ−i
)].

The notation uθi
refers to the utility of player i conditioned on the type being equal to θi. We will

be using this notation frequently in this section. With this setup, we now look into the notion of an
equilibrium in Bayesian games.
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3.3 Equilibria in Bayesian Games

Definition 3 . [Pure Strategy Bayesian Nash Equilibrium]. A pure strategy Bayesian Nash equilib-
rium in a Bayesian game

Γ = 〈N, (Θi), (Si), (pi), (ui)〉

can be defined in a natural way as a pure strategy Nash equilibrium of the equivalent Selten game.
That is, a profile of type agent strategies

s∗ = ((s∗θ1
)θ1∈Θ1

, (s∗θ2
)θ2∈Θ2

, . . . , (s∗θn
)θn∈Θn

)

is said to be a pure strategy Bayesian Nash equilibrium of Γ if ∀i ∈ N , ∀θi ∈ Θi,

uθi
(s∗θi

, s∗−θi
) ≥ uθi

(si, s
∗
−θi

) ∀si ∈ Si.

Alternatively, a strategy profile (s∗1(.), s
∗
2(.), . . . , s

∗
n(.)) is said to be a Bayesian Nash equilibrium if

uθi
(s∗i (θi), s

∗
−i(θ−i)) ≥ uθi

(si, s
∗
−i(θ−i)) ∀si ∈ Si ∀θi ∈ Θi ∀θ−i ∈ Θ−i ∀i ∈ N.

3.4 Example 1: Bayesian Pricing Game

Consider the Bayesian pricing game being discussed. We make the following observations.

• When θ2 = x2, the strategy b2 is strongly dominated by a2. Thus player 2 chooses a2 when
θ2 = x2.

• When θ2 = y2, the strategy a2 is strongly dominated by b2 and therefore player 2 chooses b2

when θ2 = y2.

• When the action profiles are (a1, a2) or (b1, b2), player 1 has payoff 1 regardless of the type of
player 2. In all other profiles, payoff of player 1 is zero.

• Since p1(x2|x1) = 0.6 and p1(y2|x1) = 0.4, player 1 thinks that the type x2 of player 2 is more
likely than type y2.

The above arguments show that the unique pure strategy Bayesian Nash equilibrium in the above
example is given by:

(s∗x1
= a1, s

∗
x2

= a2, s
∗
y2

= b2)

thus validating what we have already shown. Note that the equilibrium strategy for company 1 is
always to price the product low whereas for company 2, the equilibrium strategy is to price it low if
it produces x2 and to price it high if it produces y2.

The above example also illustrates the danger of analyzing each matrix separately. If it is common
knowledge that player 2’s type is x2, then the unique Nash equilibrium is (a1, a2). If it is common
knowledge that player 2 has type y2, then we get (b1, b2) as the unique Nash equilibrium. However,
in a Bayesian game, the type of player 2 is not common knowledge, and hence the above prediction
based on analyzing the matrices separately would be wrong.
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3.5 Example 2: First Price Sealed Bid Auction

Consider an auctioneer or a seller and two potential buyers as in Example 2.23. Here each buyer
submits a sealed bid, si ≥ 0 (i = 1, 2). The sealed bids are looked at, and the buyer with the higher
bid is declared the winner. If there is a tie, buyer 1 is declared the winner. The winning buyer pays
to the seller an amount equal to his bid. The losing bidder does not pay anything.

Let us make the following assumptions:

1. θ1, θ2 are independently drawn from the uniform distribution on [0, 1].

2. The sealed bid of buyer i takes the form si(θi) = αiθi, where αi ∈ [0, 1]. This assumption implies
that player i bids a fraction αi of his value; this is a reasonable assumption that implies a linear
relationship between the bid and the value.

Buyer 1’s problem is now to bid in a way to maximize his expected payoff:

max
s1≥0

(θ1 − s1)P{s2(θ2) ≤ s1}.

Since the bid of player 2 is s2(θ2) = α2θ2 and θ2 ∈ [0, 1], the maximum bid of buyer 2 is α2. Buyer 1
knows this and therefore s1 ∈ [0, α2]. Also,

P{s2(θ2) ≤ s1} = P{α2θ2 ≤ s1}

= P{θ2 ≤
s1

α2
}

=
s1

α2
(since θ2 is uniform over [0, 1]).

Thus buyer 1’s problem is:

max
s1∈[0,α2]

(θ1 − s1)
s1

α2
.

The solution to this problem is

s1(θ1) =

{

1
2θ1 if 1

2θ1 ≤ α2

α2 if 1
2θ1 > α2.

e can show on similar lines that

s2(θ2) =

{

1
2θ2 if 1

2θ2 ≤ α1

α1 if 1
2θ2 > α1.

Let α1 = α2 = 1
2 . Then we get

s1(θ1) =
θ1

2
∀ θ1 ∈ Θ1 = [0, 1]

s2(θ2) =
θ2

2
∀ θ2 ∈ Θ2 = [0, 1].

Note that if s2(θ2) = θ2

2 , the best response of buyer 1 is s1(θ1) = θ1

2 and vice-versa. Hence the profile
(

θ1

2 , θ2

2

)

is a Bayesian Nash equilibrium.
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3.6 Dominant Strategy Equilibria

The dominant strategy equilibria of Bayesian games can again be defined using the Selten game
representation.

Definition 4 (Strongly Dominant Strategy Equilibrium) . Given a Bayesian game

Γ = 〈N, (Θi), (Si), (pi), (ui)〉

a profile of type agent strategies (s∗1(.), s
∗
2(.), . . . , s

∗
n(.)) is said to be a strongly dominant strategy equi-

librium if
uθi

(s∗i (θi), s−i(θ−i)) > uθi
(si, s−i(θ−i))

∀si ∈ Si \ {s
∗
i (θi)}, ∀s−i(θ−i) ∈ S−i, ∀θi ∈ Θi, ∀θ−i ∈ Θ−i, ∀i ∈ N.

Definition 5 (Weakly Dominant Strategy Equilibrium) . A profile of type agent strategies
(s∗1(.), s

∗
2(.), . . . , s

∗
n(.)) is said to be a weakly dominant strategy equilibrium if

uθi
(s∗i (θi), s−i(θ−i)) ≥ uθi

(si, s−i(θ−i))

∀si ∈ Si, ∀s−i(θ−i) ∈ S−i, ∀θi ∈ Θi, ∀θ−i ∈ Θ−i, ∀i ∈ N

and strict inequality satisfied for at least one si ∈ Si.

Definition 6 (Very Weakly Dominant Strategy Equilibrium) . A profile of type agent strate-
gies (s∗1(.), s

∗
2(.), . . . , s

∗
n(.)) is said to be a very weakly dominant strategy equilibrium if

uθi
(s∗i (θi), s−i(θ−i)) ≥ uθi

(si, s−i(θ−i))

∀si ∈ Si, ∀s−i(θ−i) ∈ S−i, ∀θi ∈ Θi, ∀θ−i ∈ Θ−i, ∀i ∈ N

The notion of dominant strategy equilibrium is independent of the belief functions, and this is
what makes it a very powerful notion and a very strong property. The notion of a weakly domi-
nant strategy equilibrium is used extensively in mechanism design theory to define dominant strategy
implementation. Often very weakly dominant strategy equilibrium is used in these settings.

3.7 Example: Weakly Dominant Strategy Equilibrium of Second Price Auction

We have shown above that the first price sealed bid auction has a Bayesian Nash equilibrium. Now we
consider the second price sealed bid auction with two bidders and show that it has a weakly dominant
strategy equilibrium. Let us say buyer 2 announces his bid as θ̂2. There are two cases.

1. θ1 ≥ θ̂2.

2. θ1 < θ̂2.
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Case 1: θ1 ≥ θ̂2

Let θ̂1 be the announcement of buyer 1. Here there are two cases.

• If θ̂1 ≥ θ̂2, then the payoff for buyer 1 is θ1 − θ̂2 ≥ 0.

• If θ̂1 < θ̂2, then the payoff for buyer 1 is 0.

• Thus in this case, the maximum payoff possible is θ1 − θ̂2 ≥ 0.

If θ̂1 = θ1 (that is, buyer 1 announces his true valuation), then payoff for buyer 1 is θ1 − θ̂2, which
happens to be the maximum possible payoff as shown above. Thus announcing θ1 is a best response
to buyer 1 whatever the announcement of buyer 2.

Case 2: θ1 < θ̂2

Here again there are two cases: θ̂1 ≥ θ̂2 and θ̂1 < θ̂2.

• If θ̂1 > θ̂2, then the payoff for buyer 1 is θ1 − θ̂2, which is negative.

• If θ̂1 < θ̂2, then buyer 1 does not win and payoff for him is zero.

• Thus in this case, the maximum payoff possible is 0.

If θ̂1 = θ1, payoff for buyer 1 is 0. By announcing θ̂1 = θ1, his true valuation, buyer 1 gets zero payoff,
which in this case is a best response.

We can now make the following observations about this example.

• Bidding his true valuation is optimal for buyer 1 regardless of what buyer 2 announces.

• Similarly bidding his true valuation is optimal for buyer 2 whatever the announcement of buyer
1.

• This means truth revelation is a weakly dominant strategy for each player, and (θ1, θ2) is a
weakly dominant strategy equilibrium.

4 To Probe Further

The material discussed in this chapter is mainly drawn from the the book by Myerson [1]. John
Harsanyi wrote a series of three classic papers introducing, formalizing, and elaborating upon Bayesian
games. These papers [2, 3, 4] appeared in 1967 and 1968.

5 Problems

1. (An exchange game) Each of two players receives a ticket on which there is a number in some
finite subset S of the interval [0, 1]. The number on a player’s ticket is the size of a prize that
he may receive. The two prizes are identically and independently distributed, with distribution
functionF . Each player is asked independently and simultaneously whether he wants to exchange
his prize for the other player’s prize. If both players agree then the prizes are exchanged;
otherwise each player receives his own prize. Each player’s objective is to maximize his expected
payoff. Model this situation as a Bayesian game and show that in any Nash equilibrium the
highest prize that either player is willing to exchange is the smallest possible prize.
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2. Consider the following strategic situation. Two opposed armies are poised to seize an island.
Each army’s general can choose either ”attack” or ”not attack”. In addition, each army is either
”strong” or ”weak” with equal probability (the draws for each army are independent), and an
army’s type is known only to its general. Payoffs are as follows: The island is worth M if
captured. An army can capture the island either by attacking when its opponent does not or by
attacking when its rival does if it is strong and its rival is weak. If two armies of equal strength
both attack, neither captures the island. An army also has a ”cost” of fighting, which is s if it
is strong and w if it is weak, where s < w. There is no cost of attacking if its rival does not.
Identify all pure strategy Bayesian Nash equilibria of this game.
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