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Two player zerosum games, also called matrix games, are interesting in many ways and their analysis is

tractable due to their simplicity. Von Neumann and Morgenstern showed that linear programming can be

used to solve these games. In this chapter, we provide an overview of well known results for matrix games and

prove the key results.

A two person zerosum game is of the form 〈{1, 2}, S1, S2, u1,−u1〉. Note that when a player tries to
maximize her payoff, she is also simultaneously minimizing payoff of the other player. For this reason,
these games are also called strictly competitive games. Player 1 is usually called the row player and
player 2 is called the column player .

Let S1 = {s11, s12, . . . , s1m} and S2 = {s21, s22, . . . , s2n}. Without any confusion, we will assume
from now on that S1 = {1, 2, . . . ,m} and S2 = {1, 2, . . . , n}. Since the payoffs in a finite two person
zerosum game can be completely described by a single matrix, namely the matrix that represents
u1(i, j) ∀i ∀j, such a game is aptly called a matrix game.

Since the payoffs of one player are just the negative of the payoffs of the other player, these games
can be represented by a matrix with m rows and n columns. For this reason, these games are also
called matrix games.

1 Examples of Matrix Games

Example 1: Matching Pennies

Consider the standard matching pennies game, whose payoff matrix is given by the following payoff
matrix, assuming that strategy 1 corresponds to heads and strategy 2 corresponds to tails:

2
1 1 2

1 1,−1 −1,+1

2 −1, +1 1, −1
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The above payoff matrix can also be specified by a simpler matrix A where aij = u1(i, j) represents
the payoff for player 1 (row player) when the row player plays strategy i and the column player plays
strategy j. The resulting matrix will be:

A =

[

1 −1
−1 1

]

Example 2: Rock-Paper-Scissors

We have already seen in Chapter 3 the rock-paper-scissors game where there are two players and each
player has three possible strategies: 1 (rock); 2 (paper); and 3 (scissors). This is a matrix game with
the following matrix:

A =





0 −1 1
1 0 −1

−1 1 0





Example 3: Product Prediction Game

Assume that there are two strictly competitive companies 1 and 2 capable of producing one of three
products at a time, call the products A, B, and C. A company can only produce one product at a time
and the payoff to the company depends on the products being produced by the two companies. In
all outcomes of this game, one company gets profit while the other company makes an equal amount
of loss. Assuming A, B, and C as strategies 1, 2, and 3, respectively, we have S1 = S2 = {1, 2, 3}.
Suppose the payoff matrix for player 1 is given by

A =





1 2 1
0 −1 2

−1 0 −2





The companies have to decide simultaneously which product to produce. This leads to a matrix game.
We would be interested in predicting which products the two companies will produce.

Example 4: Constant Sum Game

An immediate generalization of a zerosum game is a constant sum game: ({1, 2}, S1 , S2, u1, u2) such
that u1(s1, s2) + u2(s1, s2) = C, ∀s1 ∈ S1; s2 ∈ S2 where C is a known constant. Constant sum games
can always be transformed into a zerosum game using a straightforward transformation (subtract the
constant from each payoff of the row player, for example) and are equivalent to zerosum games.

2 Saddle Points

In the case of the product prediction game, it is easy to see that the profile (1, 1) is a pure strategy
Nash equilibrium. In fact, this is the only pure strategy Nash equilibrium for this game. Clearly,
strategy 1 is a best response strategy for the row player if the column player is playing strategy 1 and
vice-versa. Also, we make the following important observations:

• By playing strategy 1, the row player can assure herself a payoff of at least 1. By playing strategy
1, the column player can assure himself that the row player will get a payoff of at most 1.
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• If the row player gets a payoff of less than 1, then the row player could have done better by
playing strategy 1. If the row player gets a payoff of greater than 1, then the column player
could have done better by playing strategy 1.

• The payoff 1 obtained by player 1 in the above outcome is simultaneously a minimum in its row
and a maximum in its column.

Such points are called saddle points of the matrix and correspond to pure strategy Nash equilibria of
the game.

Saddle Point of a Matrix

Given a matrix A = [aij ], the element aij is called a saddle point of A if

aij ≤ ail ∀l = 1, . . . , n

aij ≥ akj ∀k = 1, . . . ,m

That is, the element aij is simultaneously a minimum in its row and a maximum in its column.

If (i, j) is a saddle point of a given matrix game, then the payoff that the row player gets in the saddle
point is called the value of the game.

Proposition: For a matrix game with payoff matrix A, aij is a saddle point if and only if the outcome
(i, j) is a pure strategy Nash equilibrium.

Proof: Let aij be a saddle point.

⇔ aij is a row minimum and aij is a column maximum

⇔ −aij is a row maximum and +aij is a column maximum

⇔ The column player is playing a best response w.r.t. strategy i of the row player and the row
player is playing a best response with respect to strategy j of the column player.

⇔ (i, j) is a Nash equilibrium.

Thus saddle points and pure strategy Nash equilibria are one and the same. The following theorem
gives a necessary and sufficient condition for the existence of a pure strategy Nash equilibrium or
saddle point.

Theorem: In a matrix A = [aij ], let

uR = max
i

min
j

aij

uC = min
j

max
i

aij

Then the matrix A has a saddle point if and only if uR = uC .
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The proof of the above is left as an exercise. The following proposition gives a useful property of
saddle points.

Proposition: If in a matrix A, the elements aij and ahk are both saddle points, then aik and ahj are
also saddle points. Also, any two saddle points in the game will have the same value.

Examples: Saddle Points

For the matching pennies game,

A =

[

1 −1
−1 1

]

The maxmin and minmax values are given by

uR = max
i

min
j

aij = max{−1,−1} = −1

uC = min
j

max
i

aij = min{+1,+1} = +1

Thus the game does not have a saddle point.

For the rock-paper-scissors game,

A =





0 −1 1
1 0 −1

−1 1 0





The maxmin and minmax values are given by

uR = max
i

min
j

aij = max{−1,−1,−1} = −1

uC = min
j

max
i

aij = min{+1,+1,+1} = +1

This game again does not have a saddle point.

For the product prediction game, we have

A =





1 2 1
0 −1 2

−1 0 −2





uR = max
i

min
j

aij = max{1,−1,−2} = 1

uC = min
j

max
i

aij = min{1, 2, 2} = 1

Therefore uR = uC and a11 is a saddle point. In fact, this is the only saddle point for this game.

As another example, let us look at a matrix game with the following matrix:

A =





5 3 5 3
2 1 −1 −2
4 3 5 3




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uR = max
i

min
j

aij = max{3,−2, 3} = 3

uC = min
j

max
i

aij = min{5, 3, 5, 3} = 3

The above example has four saddle points, namely (1, 2), (1, 4), (3, 2), and (3, 4). Note that all of them
have the same value.

3 Mixed Strategies in Matrix Games

After studying pure strategy Nash equilibria in games, we now turn to mixed strategy Nash equilibria.
Let x = (x1, x2, . . . , xn) and y = (y1, . . . , ym) be the mixed strategies of the row player and the column
player respectively. Note that aij is the payoff of the row player (player 1) when the row player chooses
row i and column player chooses column j with probability 1. The corresponding payoff for the column
player is −aij. The expected payoff to the row player with the above mixed strategies x and y is given
by:

= u1(x, y)

=

m
∑

i=1

n
∑

j=1

aijxiyj

= xAy where x = (x1, . . . , xm); y = (y1, . . . , yn)T ;A = [aij ]

The expected payoff to column player = −xAy. When the row player plays x, she assures herself of
an expected payoff

min
y∈∆(S2)

xAy

The row player should therefore look for a mixed strategy x that maximizes the above. That is, an x

such that
max

x∈∆(S1)
min

y∈∆(S2)
xAy

In other words, an optimal strategy for the row player is to do maxminimization. Note that the row
player chooses a mixed strategy that is best for her on the assumption that whatever she does, the
column player will choose an action that will hurt her (row player) as much as possible. This is a a
direct consequence of rationality and the fact that the payoff for each player is the negative of the
other player’s payoff.

Similarly, when the column player plays y, he assures himself of a payoff

= min
x∈∆(S1)

−xAy

= − max
x∈∆(S1)

xAy

That is, he assures himself of losing no more than

max
x∈∆(S1)

xAy

The column player’s optimal strategy should be to minimize this loss:

min
y∈∆(S2)

max
x∈∆(S1)

xAy

This is called minmaximization.
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3.1 An Important Lemma

This lemma asserts that when the row player plays x, among the most effective strategies y of the
column player, there is always at least one pure strategy. Symbolically,

min
y∈∆(S2)

xAy = min
j

m
∑

i=1

aijxi

This can be proved as follows. For a given j, the summation

m
∑

i=1

aijxi

gives the payoff to the row player when she plays x = (x1, . . . , xm) and the column player player the
pure strategy yj . That is,

m
∑

i=1

aijxi = u1(x, yj)

Therefore

min
j

m
∑

i=1

aijxi

gives the minimum payoff that the row player gets when she plays x and when the column player plays
only pure strategies. Since a pure strategy is a special case of mixed strategies, we have

min
j

m
∑

i=1

aijxi ≥ min
y∈∆(S2)

xAy (1)

On the other hand,

xAy =
n
∑

j=1

yj

(

m
∑

i=1

aijxi

)

≥

n
∑

j=1

yj

(

min
j

m
∑

i=1

aijxi

)

= min
j

m
∑

i=1

aijxi since
n
∑

j=1

yj = 1

Therefore, we have:

xAy ≥ min
j

m
∑

i=1

aijxi ∀y ∈ ∆(S2); ∀x ∈ ∆(S1)

This implies that

min
y∈∆(S2)

xAy ≥ min
j

m
∑

i=1

aijxi (2)

From (1) and (2), we have,

min
y∈∆(S2)

xAy = min
j

m
∑

i=1

aijxi
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Similarly, it can be shown that

max
x∈∆(S1)

xAy = max
i

n
∑

j=1

aijyj

From the above lemma, we can describe the optimization problems of the row player and column
players as follows.

3.2 Row Player’s Optimization Problem (Maxminimization)

The optimization problem facing the row player can be expressed as

maximize min
j

m
∑

i=1

aijxi

subject to

m
∑

i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . ,m

Call the above problem P1. Note that this problem is equivalent to

max
x∈∆(S1)

min
y∈∆(S2)

xAy

3.3 Column Player’s Optimization Problem (Minmaximization)

The optimization problem facing the column player can be expressed as

minimize max
i

n
∑

j=1

aijyj

subject to

n
∑

j=1

yj = 1

yj ≥ 0 j = 1, . . . , n

Call the above problem P2. Note that this is equivalent to

min
y∈∆(S2)

max
x∈∆(S1)

xAy

The following proposition shows that the problems P1 and P2 are equivalent to appropriate linear
programs.
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Proposition: The following problems are equivalent.

Maximize minj

m
∑

i=1

aijxi

subject to
m
∑

i=1

xi = 1 P1

xi ≥ 0 i = 1, . . . ,m

Maximize z

subject to

z −
m
∑

i=1

aijxi ≤ 0 j = 1, . . . , n

m
∑

i=1

xi = 1 LP1

xi ≥ 0 i = 1, . . . ,m

Proof: Note that P1 is a maximization problem and therefore by looking at the constraints

z −

m
∑

i=1

aijxi ≤ 0 j = 1, 2, . . . , n

any optimal solution z∗ will satisfy the equality in the above constraint. That is,

z∗ =
m
∑

i=1

aijx
∗

i for some j ∈ {1, . . . , n}

Let j∗ be one such value of j. Then

z∗ =

m
∑

i=1

aij∗x
∗

i

Because z∗ is a feasible solution of LP1, we have

m
∑

i=1

aij∗x
∗

i ≤
m
∑

i=1

aijx
∗

i ∀j = 1, . . . , n

This means
m
∑

i=1

aij∗x
∗

i = min
j

m
∑

i=1

aijx
∗

i

If not, we have

z∗ <

m
∑

i=1

aijxi ∀j = 1, 2, . . . , n
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If this happens, we can find a feasible solution ẑ such that ẑ > z∗. Such a ẑ is precisely the one for
which equality will hold. But since z∗ is a maximal value, the existence of ẑ > z∗ is a contradiction!

Thus the following two linear programs describe the optimization problems facing the row player
and the column player.

Row Player’s Linear Program (LP1)

maximize z

subject to

z −

m
∑

i=1

aijxi ≤ 0 j = 1, . . . , n

∑

xi = 1 xi ≥ 0 ∀i

Column Player’s Linear Program (LP2)

minimize w

subject to

w −

n
∑

j=1

aijxi ≥ 0 i = 1, . . . ,m

∑

yj = 1 yj ≥ 0 ∀j = 1, . . . , n

Example: Rock-Paper-Scissors Game

For the rock-paper-scissors game, recall the matrix of payoffs of row player:

A =





0 −1 1
1 0 −1

−1 1 0





The problem P1 would be:

maximize min {x2 − x3, −x1 + x3, x1 − x2}

subject to
x1 + x2 + x3 = 1

x1 ≥ 0; x2 ≥ 0; x3 ≥ 0

The above problem is equivalent to the linear program (LP 1):

maximize z

subject to
z ≤ x2 − x3

z ≤ −x1 + x3

z ≤ x1 − x2

x1 + x2 + x3 = 1
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x1 ≥ 0; x2 ≥ 0; x3 ≥ 0

Corresponding to the column player, the problem P2 would be:

minimize max {−y2 + y3, y1 − y3, −y1 + y2}

subject to
y1 + y2 + y3 = 1

y1 ≥ 0; y2 ≥ 0; y3 ≥ 0

The above problem is equivalent to the linear program (LP 2):

minimize w

subject to
w ≥ −y2 + y3

w ≥ y1 − y3

w ≤ −y1 + y2

y1 + y2 + y3 = 1

y1 ≥ 0; y2 ≥ 0; y3 ≥ 0

4 Minimax Theorem

This result is one of the important landmarks in the initial decades of game theory. This result was
proved by von Neumann in 1928 using the Brouwer’s fixed point theorem. Later, he and Morgenstern
provided an elegant proof of this theorem using linear programming duality. The key implication of
the minimax theorem is the existence of a mixed strategy Nash equilibrium in any matrix game.

Theorem: For every (m × n) matrix A, there is a stochastic row vector x∗ = (x∗

1, . . . , x
∗

m) and a
stochastic column vector y∗ = (y∗1 , . . . , y

∗

n)T such that

min
y∈∆(S2)

x∗Ay = max
x∈∆(S1)

xAy∗

Proof: Given a matrix A, we have derived linear programs LP 1, LP 2. LP 1 represents the optimal
strategy of the row player while LP 2 represents the optimal strategy of the column player. First we
make the observation that the linear program LP 2 is the dual of the linear program LP 1. We now
invoke the strong duality theorem which states: If an LP has an optimal solution, then its dual also
has an optimal solution; moreover the optimal value of the dual is the same as the optimal value of
the original (primal) LP . See the appendix for a quick primer on LP duality.

To apply the strong duality theorem in the current context, we first observe that the problem P1

has an optimal solution by the very nature of the problem. Since LP 1 is equivalent to the problem P1,
the immediate implication is that LP 1 has an optimal solution. Thus we have two linear programs
LP 1 and LP 2 which are duals of each other and LP 1 has an optimal solution. Then by the strong
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duality theorem, LP 2 also has an optimal solution and the optimal value of LP 2 is the same as the
optimal value of LP 1.

Let z∗, x∗

1, . . . , x
∗

m be an optimal solution of LP 1. Then, we have

z∗ =

m
∑

i=1

aij∗x
∗

i for some j∗ ∈ {1, . . . , n}

By the feasibility of the optimal solution in LP 1, we have

m
∑

i=1

aij∗x
∗

i ≤

m
∑

i=1

aijx
∗

i for j = 1, . . . , n

This implies that

m
∑

i=1

aij∗x
∗

i = min
j

m
∑

i=1

aijx
∗

i

= min
y∈∆(S2)

x∗Ay (by the lemma)

Thus
z∗ = min

y∈∆(S2)
x∗Ay

Similarly, let w∗, y∗1 , . . . , y
∗

n be an optimal solution of LP 2. Then

w∗ =

n
∑

j=1

ai∗jy
∗

j for some j∗ ∈ {1, . . . ,m}

By the feasibility of the optimal solution in LP 2, we have

m
∑

j=1

ai∗jy
∗

j ≥

n
∑

j=1

aijy
∗

j for j = 1, 2, . . . ,m

⇒
n
∑

j=1

ai∗jy
∗

j = max
i

n
∑

j=1

aijy
∗

j

= max
x∈∆(S1)

xAy∗ (by Lemma)

Therefore
w∗ = max

x∈∆(S1)
xAy∗

By the strong duality theorem, the optimal values of the primal and the dual are the same and
therefore z∗ = w∗. This means

min
y∈∆(S2)

x∗Ay = max
x∈∆(S1)

xAy∗

This proves the minimax theorem.
We now show that the mixed strategy profile (x∗, y∗) is in fact a mixed strategy Nash equilibrium

of the matrix game with matrix A. For this, consider

x∗Ay∗ ≥ min
y∈∆(S2)

x∗Ay
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= max
x∈∆(S1)

xAy∗

≥ xAy∗ ∀x ∈ ∆(S1)

That is, x∗Ay∗ ≥ xAy∗ ∀x ∈ ∆(S1). This implies

u1(x
∗, y∗) ≥ u1(x, y∗) ∀x ∈ ∆(S1)

Further

x∗Ay∗ ≤ max
x∈∆(S1)

xAy∗

= min
x∈∆(S2)

x∗Ay

≥ x∗Ay ∀y ∈ ∆(S2)

That is, x∗Ay∗ ≤ x∗Ay ∀y ∈ ∆(S2). This implies

u2(x
∗, y∗) ≥ u2(x

∗, y) ∀y ∈ ∆(S2)

Thus (x∗, y∗) is a mixed strategy Nash equilibrium or a randomized saddle point. This means the
minimax theorem guarantees the existence of a mixed strategy Nash equilibrium for any matrix game.

Example: Rock-Paper-Scissors

For the rock-paper-scissors game, it is easy to see that the linear programs LP 1 and LP 2 are duals of
each other. Moreover, the optimal solution of LP 1 can be seen to be

x∗

1 =
1

3
; x∗

2 =
1

3
; x∗

3 =
1

3
; z∗ = 0

The optimal solution of LP 2 can be seen to be

y∗1 =
1

3
; y∗2 =

1

3
; y∗3 =

1

3
; w∗ = 0

4.1 A Necessary and Sufficient Condition for a Nash Equilibrium

We now discuss a key theorem that provides necessary and sufficient conditions for a mixed strategy
profile to be a Nash equilibrium in matrix games.

Theorem: Given a two player zerosum game

({1, 2}, S1, S2, u1,−u1)

a mixed strategy profile (x∗, y∗) is a Nash equilibrium if and only if

x∗ ∈
argmax

x ∈ ∆(S1)
min

y∈∆(S2)
xAy

and

y∗ ∈
argmin

y ∈ ∆(S2)
max

x∈∆(S1)
xAy
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Furthermore

u1(x
∗, y∗) = −u2(x

∗, y∗)
= max

x∈∆(S1)
min

y∈∆(S2)
xAy

= min
y∈∆(S2)

max
x∈∆(S1)

xAy

Proof: First we prove the necessity. Suppose (x∗, y∗) is a Nash equilibrium. Then

u1(x
∗, y∗) ≥ u1(x, y∗) ∀x ∈ ∆(S1)

⇒ u1(x
∗, y∗) = max

x∈∆(S1)
u1(x, y∗) (3)

Also, note that
u1(x, y∗) ≥ min

y∈∆(S2)
u1(x, y) ∀x ∈ ∆(S1)

⇒ max
x∈∆(S1)

u1(x, y∗) ≥ max
x∈∆(S1)

{

min
y∈∆(S2)

u1(x, y)

}

(4)

since f(x) ≥ g(x) ∀x ⇒ maxx f(x) ≥ maxx g(x). From (3) and (4), we have

u1(x
∗, y∗) ≥ max

x∈∆(S1)
min

y∈∆(S2)
u1(x, y) (5)

On similar lines, using u1(x
∗, y∗) = −u2(x

∗, y∗),, we can show that

u1(x
∗, y∗) ≤ min

y∈∆(S2)
max

x∈∆(S1)
u1(x, y) (6)

We have

u1(x
∗, y∗) = −u2(x

∗, y∗)
= −{ max

y∈∆(S2)
u2(x

∗, y)}

= min
y∈∆(S2)

{−u2(x
∗, y)}

= min
y∈∆(S2)

u1(x
∗, y)

u1(x
∗, y∗) = min

y∈∆(S2)
u1(x

∗, y)

We know that

max
x∈∆(S1)

min
y∈∆(S2)

u1(x, y) ≥ min
y∈∆(S2)

u1(x
∗, y)

= u1(x
∗, y∗) by (5)

Similarly we know that

min
y∈∆(S2)

max
x∈∆(S1)

u1(x, y) ≥ max
x∈∆(S1)

u1(x, y∗)

= u1(x
∗, y∗)
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(3) and (6) imply that
u1(x

∗, y∗) = max
x∈∆(S1)

min
y∈∆(S2)

u1(x, y)

(4) and (7) imply that
u1(x

∗, y∗) = min
y∈∆(S2)

max
x∈∆(S1)

u1(x, y)

From the above two expressions, we have

x∗ ∈
argmax

x ∈ ∆(S1)
min

y∈∆(S2)
u1(x, y)

y∗ ∈
argmin

y ∈ ∆(S2)
max

x∈∆(S1)
u1(x, y)

This completes the necessity part of the proof. To prove the sufficiency, we are given that (8) and
(9) are satisfied and we have to show that (x∗, y∗) is a Nash equilibrium. This is left as an exercise.
The crucial fact which is required for proving sufficiency is the existence of a mixed strategy Nash
equilibrium, which is guaranteed by the minimax theorem.

5 Appendix: A Quick Primer on LP Duality

First we consider an example of an LP in canonical form:

minimize 6x1 + 8x2 − 10x3

subject to

3x1 + x2 − x3 ≥ 4
5x1 + 2x2 − 7x3 ≥ 7

x1, x2, x3 ≥ 0

The dual of this is the LP is given by

maximize 4w1 + 7w2

subject to

3w1 + 5w2 ≤ 6
w1 + 2w2 ≤ 8

−w1 − 7w2 ≤ −10
w1, w2 ≥ 0

In general, given

c = [c1 . . . cn] x = [x1 · · · x
n]T

A = [aij]m×n b = [b1 · · · bm]T

w = [w1 · · ·wm]

the primal LP in canonical form is:
minimize cx

subject to Ax ≥ b

x ≥ 0.
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The dual of the above primal is given by

maximize wb

subject to wA ≤ c

w ≥ 0.

A primal LP in standard form is
minimize cx

subject to Ax = b

x ≥ 0.

The dual of the above primal is:

maximize wb

subject to wA ≤ c

w unrestricted

If we consider a maximization problem, then corresponding to the primal:

maximize cx

subject to Ax ≤ b

x ≥ 0.

we have the dual given by
maximize wb

subject to wA ≥ c

w ≥ 0

It is a simple matter to show that the dual of the dual of a (primal) problem is the original (primal)
problem itself. We now state a few important results concerning duality, which are relevant to the
current context.

• Weak Duality Theorem: If the primal is a maximization problem, then the value of any
feasible primal solution is greater than or equal to the value of any feasible dual solution. If the
primal is a minimization problem, then the value of any feasible primal solution is less than or
equal to the value of any feasible dual solution.

• If x0 is a feasible primal solution and w0 is a feasible dual solution, and cx0 = w0b, then x0 is
an optimal solution of the primal problem and w0 is an optimal solution of the dual problem.

• Strong Duality Theorem: Between a primal and its dual, if one of them has an optimal
solution then the other also has an optimal solution and the values of the optimal solutions are
the same. Note that this is the key result which was used in proving the minimax theorem.

• Fundamental Theorem of Duality: Given a primal and its dual, exactly one of the following
statements is true.

1. Both possess optimal solution x∗ and w∗ with cx∗ = w∗b.

2. One problem has unbounded objective value in which case the other must be infeasible.

3. Both problems are infeasible.
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Problems

1. Given a matrix A = [aij ], define
uR = max

i
min

j
aij

uC = min
j

max
i

aij

Show that A has a saddle point if and only if uR = uC .

2. In a matrix A = [aij], if two elements aij and ahk are saddle points, then show that aik and ahj

are also saddle points.

3. Consider the following game.

A =

[

a b

c d

]

Derive the conditions on the values of a, b, c, d for which the game is guaranteed to have a saddle
point. Also, compute all mixed strategy Nash equilibria for the game.

4. Given a two player zero sum game with 3 pure strategies for each player, which numbers among
{0, 1, . . . , 9} cannot be the total number of pure strategy Nash equilibria for the game? Justify
your answer.

5. (Jones [1]). Construct a two player zero sum game with S1 = {A,B,C}, S2 = {X,Y,Z} with
value = 1

2 and such that the set of optimal strategies for the row player is exactly the set

{

(α, 1 − α, 0);
3

8
≤ α ≤

5

8

}

6. (Osborne and Rubinstein [2]). Let G be a two player zero sum game that has a pure strategy
Nash equilibrium.

(a) Show that if some of the player 1’s payoffs in G are increased in such a way that the resulting
game G′ is strictly competitive then G′ has no equilibrium in which player 1 is worse off
than she was in an equilibrium of G. (Note that G′ may have no equilibrium at all.)

(b) Show that the game that results if player 1 is prohibited from using one of her actions
in G does not have an equilibrium in which player 1’s payoffs is higher than it is in an
equilibrium of G.

(c) Give examples to show that neither of the above properties necessarily holds for a game
that is not strictly competitive.

7. (Osborne and Rubinstein [2]). Army A has a single plane with which it can strike one of three
possible targets. Army B has one anti-aircraft gun that can be assigned to one of the targets.
The value of target k is vk, with v1 > v2 > v3 > 0. Army A can destroy a target only if the
target is undefended and A attacks it. Army A wishes to maximize the expected value of the
damage and army B wishes to minimize it. Formulate the situation as a (strictly competitive)
strategic game and find its mixed strategy Nash equilibria.

8. For the following two player zero sum game, write down the primal and dual LPs and compute
all Nash equilibria.
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A B

A 2, -2 3,-3

B 4,-4 1, -1

9. For the following two player zero sum game, write down the primal and dual LPs and compute
all Nash equilibria.

A B C

A 2, -2 3,-3 1,-1

B 4,-4 1, -1 2,-2

C 4,-4 1, -1 3,-3

10. For the following matrix game, formulate an appropriate LP and compute all mixed strategy
equilibria.

A =









0 1
1
2 0

−1
2 1

0 0









11. Show that the following holds for any two player game.

max
x∈∆(s1)

min
y∈∆(s2)

xAy ≤ min
y∈∆(s2)

max
x∈∆(s1)

xAy

12. Show that the payoffs in Nash equilibrium of a symmetric matrix game ( matrix game with
symmetric payoff matrix) will be equal to zero for each player.

13. Complete the sufficiency part of the theorem that provides a necessary and sufficient condition
for a mixed strategy profile (x∗, y∗) to be a Nash equilibrium in a matrix game.

To Probe Further

Two person zerosum games provide, perhaps, the simplest class of games which were studied during
the initial years of game theory. John von Neumann is credited with the minimax theorem, which
he proved in 1928 [3] by invoking the Brouwer’s fixed point theorem. The classic book by Neumann
and Morgenstern [4] contained a detailed exposition of matrix games, including the LP duality based
approach to the minimax theorem.

The book by Myerson [5] and the book on linear programming by Chavatal [6] have inspired the
exposition in this chapter. Other books which can be consulted are the ones by Osborne [7], by
Rapoport [8], and by Straffin [9].
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