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Computing Nash equilibria is one of the fundamental computational problems in game theory. In fact, this is

one of the extensively investigated problems in theoretical computer science in recent times. In this chapter,

we will provide some insights into this problem. In the next chapter, we look into the computational

complexity of this problem.

1 Supports and Nash Equilibria

1.1 Support of a Mixed Strategy Profile

Consider the game Γ = 〈N, (∆(Si)), (ui))〉. Given a mixed strategy σi of player i, recall that the
support of σi, denoted by δ(sigmai) is defined as the set of all pure strategies of player i which have
a non-zero probability in σi:

δ(σi) = {si ∈ Si : δ(si) > 0}

Given a mixed strategy profile σ = (σ1, . . . , σn), the support of σ is defined in a natural way as the
Cartesian product of all the individual supports:

δ(σ1, . . . , σn) = δ(σ1) × . . . × δ(σn)

This is the set of all pure strategy profiles that would have positive probability if the players chose
their strategies according to σ. This is denoted by δ(σ). We make the important observation that
every Nash equilibrium is associated with a support. For a finite game, we have a finite number of
supports and each support can be investigated for possible Nash equilibria.
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1.2 Example: BOS Game

Consider the following version of the BOS game:

2
1 A B

A 3, 1 0, 0

B 0, 0 1, 3

For the above game, the set of all possible supports is given by: {A} × {A}, {A} × {B}, {B} × {A},
{B} × {B}, {A} × {A,B}, {B} × {A,B}, {A,B} × {A}, {A,B} × {B}, {A,B} × {A,B}.

For this game, we have already seen that (A,A) and (B,B) are pure strategy Nash equilibria. These
correspond to the supports {A} × {A} and {B} × {B}, respectively. We now compute a third equi-
librium which in this case has the support {A,B} × {A,B}. To do this, we use the necessary and
sufficient condition that we proved in the Chapter 6: A mixed strategy profile is a Nash equilibrium
is a Nash equilibrium if and only if:

1. for each player i, all pure strategies having positive probabilities in player i’s equilibrium strategy
will give the player the same payoff

2. for each player, the above payoff will be greater than or equal to the payoff the player would get
with any other pure strategies.

If (σ∗
1 , σ

∗
2) is a Nash equilibrium with support {A,B} × {A,B}, this would then mean that

u1(A,σ∗
2) = u1(B,σ∗

2)
u2(σ

∗
1 , A) = u2(σ

∗
1 , B)

Note that

u1(A,σ∗
2) = 3σ∗

2(A)
u1(B,σ∗

2) = σ∗
2(B)

u2(σ
∗
1 , A) = σ∗

1(A)
u2(σ

∗
1 , B) = 3σ∗

1(B)

We therefore have

3σ∗
2(A) = σ∗

2(B)
σ∗

1(A) = 3σ∗
1(B)

Since σ∗
1(A) + σ∗

1(B) = σ∗
2(A) + σ∗

2(B) = 1, we get

σ∗
1 =

(

3

4
,
1

4

)

and σ∗
2 =

(

1

4
,
3

4

)

Note that the above strategy profile trivially satisfies condition (2) above and therefore the profile is
a Nash equilibrium. We now generalize the above process of finding a Nash equilibrium.
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2 A General Algorithm for Finding Nash Equilibria of Finite Strate-

gic Form Games

The first observation we make is that although there are infinitely many (in fact uncountably so)
mixed strategy profiles, there are only finitely many subsets of S1 × S2 × . . . Sn that can be supports
of Nash equilibria. Note that the number of supports of a mixed strategy of a player i is precisely

= number of non-empty subsets of Si = 2|Si| − 1

Therefore the total number of supports of mixed strategy profiles would be

(2|S1| − 1) × (2|S2| − 1) . . . × (2|Sn| − 1)

One can sequentially consider one support at a time and search for Nash equilibria with that support.
In doing this, the following characterization of Nash equilibrium will be extremely useful: Given a
game 〈N,∆(Si), (ui)〉, the mixed strategy profile (σi, . . . , σn) is a Nash equilibrium iff ∀i ∈ N ,

(1) ui(si, σ−i) is the same for all si ∈ δ(σi)

(2) ui(si, σ−i) ≥ ui(s
′
i, σ−i) ∀si ∈ δ(σi) ∀s′i ∈ δ(σi).

2.1 Equations to be Solved

Let Xi ⊂ Si be a non-empty subset of Si which will represent our current guess as to which strategies
of player i have positive probability in Nash equilibrium. That is, our current guess of a support for
Nash equilibrium is X1 ×X2 × . . .×Xn. If there exists a Nash equilibrium σ with this support, then,
by the above result, there must exist numbers w1, . . . , wn (where wi = ui(si, σ−i) for i = 1, 2, . . . , n
and mixed strategies σ1, . . . , σn such that

wi ==
∑

s
−i∈S

−i





∏

j 6=i

σj(sj)



 ui(si, s−i) ∀si ∈ Xi ∀i ∈ N (1)

The above condition asserts that each player i must get the same payoff, denoted by wi, by choosing
any of the pure strategies having positive probability in the mixed strategy σi.

wi ≥
∑

s
−i∈S

−i





∏

j 6=i

σj(sj)



 ui(si, s−i) ∀si ∈ Si \ Xi ∀i ∈ N (2)

The above condition ensures that the pure strategies in Xi are no worse than pure strategies in Si\Xi.

σi(xi) > 0 ∀xi ∈ Xi ∀i ∈ N (3)

The condition above states that the probability of all pure strategies of a player in the support of the
mixed strategy must be greater than zero.

σi(si) = 0 ∀si ∈ Si \ Xi ∀i ∈ N (4)

3



The above condition asserts that the probability of all pure strategies of a player not in the support
of the mixed strategy must be zero.

∑

xi∈Si

σi(xi) = 1 ∀i ∈ N (5)

The above ensures that each σi is a probability distribution over Si.
We need to find w1, w2, . . . , wn and σ1(s1)∀s1 ∈ S1, σ2(s2)∀s2 ∈ S2; . . ., and σn(sn)∀sn ∈ Sn, such

that the above equations (1) – (5) are satisfied. Then (σ1, . . . , σn) is a Nash equilibrium and wi is the
expected payoff to player i in that Nash equilibrium. On the other hand, if there is no solution that
satisfies (1)–(5), then there is no equilibrium with support X1 × . . . × Xn. The number of unknowns
in the above is n + |S1| + · · · + |Sn|, where n corresponds to the variables w1, w2, . . . , wn while |Si|
corresponds to the variables σi(si), si ∈ Si.

(1) leads to |X1| + |X2| + · · · + |Xn| equations.

(2) leads to |S1 \ X1| + · · · + |Sn \ Xn| equations.

(3) leads to |X1| + · · · + |Xn| equations

(4) leads to |S1 \ X1| + · · · + |Sn \ Xn| equations.

(5) leads to n equations.

Thus we have a total of
n + 2

∑

i∈N

|Si|

equations. For example, if we have 2 players with 3 strategies each, we will have 14 equations. We
make the following observations:

• Note from (1) and (2) that the equations are in general non-linear because of the term

Πj 6=iσj(xj)

• If there are only two players, then we will have only linear equations. The number of these
equations will be 2 + 2|S1| + 2|S2|.

• The number above will be the number of equations for each support. The maximum number of
supports to be examined is:

Πi∈N

(

2|Si| − 1
)

• So even for a two player game, the number of equations to be solved can explode.

• If the number of players exceeds 2, then not only do we have a huge number of equations, we
also have to deal with non-linearity.

• For two player games, the resulting equations are said to constitute so called linear complemen-

tarity problem (LCP).
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2.2 Linear Complementarity Problem

A linear complementarity problem (LCP) is a general problem that unifies linear programming,
quadratic programming, and bimatrix games. Complementary pivot algorithm is a popular algorithm
for solving LCPs. This algorithm has been generalized to yield efficient algorithms for

• Computing Brouwer and Kakutani fixed points

• Computing economic equilibria

• solving systems of nonlinear equations

• solving non-linear programming problems

Let M be a given square matrix of order n and q an n-dimensional column vector of real numbers.
In an LCP, there is no objective function to be optimized. The problem is to find w = (w1, · · · , wn)T

and z = (z1, · · · , zn)T , satisfying:

w − Mz = q

w ≥ 0
z ≥ 0

wizi = 0 ∀i

An example of an LCP would be:

n = 2; M =

[

2 1
1 2

]

; q =

[

−5
−6

]

Find w1, w2, z1, z2 satisfying

w1 − 2z1 − z2 = −5
w2 − z1 − 2z2 = −6
w1, w2, z1, z2 ≥ 0
w1z1 = w2z2 = 0

It is to be noted that:

• Solving an LP can be cast as solving an LCP

• Necessary conditions for optimality of quadratic programming problems lead to LCPs

• Computing Nash equilibria in bimatrix games (two person non-zero sum games) leads to LCP.

For more details about LCPs, the excellent book by Katta Murthy [1] may be consulted.

2.3 Non-Linear Complementarity Problem

For i = 1, . . . , n, let fi(z) be a real valued function on R
n. Let f(z) = (f1(z), . . . , fn(z)). The

problem of finding z ∈ R satisfying

z ≥ 0

f(z) ≥ 0

zifi(z) = 0 fn j = 1, . . . , n

is known as a non-linear complementarity problem (NLCP). Computing Nash equilibria for strategic
form games with three or more players leads to NLCP problems. Obviously, NLCP problems are much
harder to solve than LCPs.

5



3 An Example for Computing Nash Equilibrium

This highly illustrative example is taken from Myerson’s book [2]. This is a two player game with
payoff matrix as shown.

2
1 L M R

T 7,2 2,7 3,6

B 2,7 7,2 4,5

S1 = {T,B} S2 = {L,M,R}

A support for this game is of the form X1 × X2 where X1 ⊆ S1, X2 ⊆ S2, X1 6= φ, X2 6= φ. Number
of such supports is equal to (22 − 1)(23 − 1), which is 21. The possible supports are
{T} × {L}, {T} × {M}, {T} × {R}, {T} × {L,M}, {T} × {L,R}, {T} × {M,R}, {T} × {L,M,R},
{B} × {L}, {B} × {M}, {B} × {R}, {B} × {L,M}, {B} × {L,R}, {B} × {M,R}, {B} × {L,M,R},
{T,B} × {L}, {T,B} × {M}, {T,B} × {R}, {T,B} × {L,M}, {T,B} × {L,R}, {T,B} × {M,R},
{T,B} × {L,M,R}. Our analysis proceeds as follows.

• Let us look for a Nash equilibrium in which player 1 plays pure strategy T . Player 2’s best
response for this is the pure strategy M . Note that player 2 cannot choose any other non-
pure strategy also. If player 2 plays M , player 1’s best response is B. Thus there is no Nash
equilibrium in which player 1 plays pure strategy T and this rules out the first 7 supports.

• Now let us look for a Nash equilibrium in which player 1 plays pure strategy B. If player 1
chooses B, player 2 would choose L. Player 1’s best response to L is T . This immediately
implies that there is no Nash equilibrium in which player 1 plays pure strategy B. Thus the
second set of 7 supports can be ruled out.

• As a consequence of the above two facts, in any Nash equilibrium, player 1 must randomize
between T and B with positive probabilities for both T and B.

• Let us see what happens if player 2 chooses a pure strategy. If player 2 chooses L, player 1
chooses T ; If player 2 chooses M , 1 chooses B; If player 2 chooses R, player 1 chooses B. Thus
when player 2 plays a pure strategy, the best response of player 1 is also a pure strategy. However
we have seen that in any Nash equilibrium, player 1 has to give positive probability to both the
strategies T and B. Therefore, there is no Nash equilibrium in which player 2 plays a pure
strategy and supports {T,B} × {L}, {T,B} × {M}, {T,B} × {R} can be dropped from the
potential list of Nash equilibria.

• The summary so far is: (a) The game does not have any pure strategy Nash equilibria (b) The
game does not have any Nash equilibria in which a player plays only a pure strategy (a) This
leaves only the following supports for further exploration

1. {T,B} × {L,M,R}

2. {T,B} × {M,R}

3. {T,B} × {L,M}

4. {T,B} × {L,R}
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Candidate Support 1: {T,B} × {L,M,R}

Player 1 must get the same payoff from T and B. This leads to

w1 = 7σ2(L) + 2σ2(M) + 3σ2(R) (6)

w1 = 2σ2(L) + 7σ2(M) + 4σ2(R) (7)

Similarly, player 2 must get the same payoff from each of L,M,R:

w2 = 2σ1(T ) + 7σ1(B) (8)

w2 = 7σ1(T ) + 2σ1(B) (9)

w2 = 6σ1(T ) + 5σ1(B) (10)

In addition, we have

σ1(T ) + σ1(B) = 1 (11)

σ2(L) + σ2(M) + σ2(R) = 1 (12)

we have 7 equations in 7 unknowns. However,

(8), (9), (10) ⇒ σ1(T ) = σ1(B) =
1

2

whereas

(9), (10), (11) ⇒ σ1(T ) =
3

4
; σ1(B) =

1

4

Thus this system of equations does not even have a solution and surely will not lead to a Nash
equilibrium profile.

Candidate Support 2: {T,B} × {M,R}

Here we get the equations

w1 = 2σ2(M) + 3σ2(R)

w1 = 7σ2(M) + 4σ2(R)

w2 = 7σ1(T ) + 2σ1(B)

w2 = 6σ1(T ) + 5σ1(B)

σ1(T ) + σ1(B) = 1

σ2(L) + σ2(M) + σ2(R) = 1

σ2(L) = 0

The solution is

σ1(T ) =
3

4
; σ1(B) =

1

4

σ2(M) = −
1

4
; σ2(R) =

5

4

but the solution leads to negative numbers and thus is not valid.
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Candidate Support 3: {T,B} × {L,M}

We get the equations

w1 = 7σ2(L) + 2σ2(M)

w1 = 2σ2(L) + 7σ2(M)

w2 = 2σ1(T ) + 7σ1(B)

w2 = 7σ1(T ) + 2σ1(B)

σ1(T ) + σ1(B) = 1

σ2(L) + σ2(M) = 1

σ2(R) = 0

These equations have a unique solution.

σ1(T ) = σ1(B) =
1

2

σ2(L) = σ2(M) =
1

2
σ2(R) = 0

w1 = w2 = 4.5

Before we can declare this as a Nash equilibrium, we need to do one more check. Note that σ2(R) = 0.
So we have to check whether player 2 actually prefers L and M over R. We have to check what payoff
player 2 would get when he plays R against player 1 playing σ1.

u2(σ1, R) = σ1(T )u2(T,R) + σ1(B)u2(B,R)

=
1

2
× 6 +

1

2
× 5

= 5.5

> 4.5

This means player 2 would not be willing to choose σ2 when player 1 plays σ1; player 2 would prefer
to play pure strategy R instead. Thus this solution is also not a Nash equilibrium.

Candidate Support 4: {T,B} × {L,R}

The equations here are:

w1 = 7σ2(L) + 3σ2(R)

w1 = 2σ2(L) + 4σ2(R)

w2 = 2σ1(T ) + 7σ1(B)

w2 = 6σ1(T ) + 5σ1(B)

σ1(T ) + σ1(B) = 1

σ2(L) + σ2(R) + σ2(M) = 1

σ2(M) = 0

σ1(T ), σ1(B), σ2(L), σ2(R) ≥ 0

w2 ≥ σ1(T )u2(T,M) + σ2(B)u2(B,M)
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The unique solution of the above system of linear complementary equations is

σ1(T ) =
1

3
σ1(B) =

2

3

σ2(L) =
1

6
σ2(M) = 0 σ2(R) =

5

6

w1 =
8

3
w2 =

16

3

Moreover,

u2(σ1,M) = 7(
1

3
) + 2(

2

3
) =

11

3
≤

16

3

This is certainly a Nash equilibrium. Thus the mixed profile
((

1

3
,
2

3

)

,

(

1

6
, 0,

5

6

))

is the unique mixed strategy Nash equilibrium of the given game. Note that

u2(σ1,M) = σ1(T )u2(T,M) + σ1(B)u2(B,M) =
11

3

u2(σ1, L) = u2(σ1, R) =
16

3

4 Algorithms for Computing Nash Equilibrium

For the past five decades, game theorists and more recently theoretical computer scientists have
sought to develop efficient algorithms for computing Nash equilibria of finite games. One of the early
breakthroughs was the complementary pivot algorithm developed by Lemke and Howson [3] in 1964
for bimatrix games (that is, two player non-zero sum games). This was immediately followed by
Mangasarian’s algorithm [4] for bimatrix games. Scarf [5], in 1967, developed an algorithm for the
case of three or more players. Rosenmuller [6] generalized the Lemke-Howson algorithm in 1971 to the
case of games with three or more players. In the same year, Wilson [7] proposed a new algorithm for
computing equilibria of games with three or more players. All of these algorithms have a worst case
running time that is exponential in the size of the strategy sets and number of players.

McKelvey and McLennan wrote in 1996 an excellent survey paper on equilibrium computation
algorithms [8]. Katta Murty treats the complementarity problems in a comprehensive way in his book
[1]. During the decade of 2000 - 2009, there was intense renewed activity on developing more efficient
algorithms. Notable efforts include the works of Govindan and Wilson [9] who used a global Newton
method; Porter, Nudelman, and Shoham [10]; and Sandholm, Gilpin, and Conitzer [11]. The well
known journal Economic Theory published a special issue on computation of Nash equilibria in finite
games edited by von Stengel in 20120 [12]. This special issue summarizes the current state-of-the-
art on this problem by leading researchers. The edited volume by Nisan, Roughgarden, Tardos, and
Vazirani [13] also has survey articles on this problem.

4.1 Software Tools

Surprisingly, there are not many software tools available for computational game theory. The most
notable is the tool GAMBIT [14] which is powerful, user-friendly, and freely downloadable. This tool
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is useful for finite non-cooperative games (both extensive form and strategic form). The tool GAMUT

[15] is also quite useful and freely downloadable. At the Indian Institute of Science, the tool NECTAR

(Nash Equilibrium CompuTation Algorithms and Resources) [16] has been developed over the years
and is available on request.

5 Problems

1. Find the mixed strategy Nash equilibria for the following game.

H T

H 1, 1 0, 1

T 1, 0 0, 0

2. Find the mixed strategy Nash equilibria for the following game.

A B

A 6, 2 0, 0

B 0, 0 2, 6

If all these numbers are multiplied by 2, will the equilibria change?

3. Find the set of all mixed strategy Nash equilibria for the following two player game.

A B

A 20, 0 0, 10

B 0, 90 20, 0

4. Find all mixed strategy equilibria for the following game

A B C

A -3, -3 -1, 0 4, 0

B 0, 0 2, 2 3, 1

C 0,0 2, 4 3, 3

5. (Myerson). Find all mixed strategy equilibria for the following two player game

x2 y2 z2

x1 0, 0 5, 4 4, 5

y1 4, 5 0, 0 5, 4

z1 5, 4 4, 5 0, 0

6. (Fudenberg and Tirole). Show that the following two player game has a unique mixed strategy
Nash equilibrium.
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L M R

U 1, -2 -2, 1 0, 0

M -2, 1 1, -2 0, 0

D 0,0 0, 0 1, 1

7. Show that the pure strategy profile (a2, b2) is the unique mixed strategy Nash equilibrium of the
following game.

2
1 b1 b2 b3 b4

a1 0,7 2,5 7,0 0,1
a2 5,2 3,3 5,2 0,1
a3 7,0 2,5 0,7 0,1
a4 0,0 0,−2 0,0 10,−1

8. Let G1 = (N,S1, S2, u1, u2) and G2 = (N1, S1, S2, v1, v2) be two strategic form games with
N = {1, 2}. Let

v1 = a1u1 + b1Jv2 = a2u2 + b2J

where a1, a2 ∈ (0,∞), b1, b2 ∈ R, and J : X1 × S2 → R is the constant function on S1 × S2 with
value 1. Show that G1 and G2 have the same set of Nash equilibria.

9. Consider the following game

2
1 LL L M R

U 100, 2 −100, 1 0,0 −100, −100
D −100, −100 100, 49 1,0 100,2

What are the Nash equilibria of this game.

10. Compute all Nash equilibria for the following game for each a ∈ (1,∞)

2

A a, 0 1, 2 − a

B 1, 1 0,0

11. (Myerson). For the following three player game in strategic form, find all mixed strategy equi-
libria. Note that A1 = {x1, y1}, A2 = {x2, y2}, A3 = {x3, y3}.

A2 and A3

A1 x3 y3

x2 y2 x2 y2

x1 0, 0, 0 6, 5, 4 4, 6, 5 0, 0, 0

y1 5, 4, 6 0, 0, 0 0, 0, 0 0, 0, 0

11



12. Consider the following game where the numbers a, b, c, d, k1, k2 are strictly positive real numbers.

H1 H2

P1 a,−k1a b,−k1b

P2 c,−k2c d,−k2d

For the above two player non-zero sum game, write down the necessary and sufficient conditions
for mixed strategy Nash equilibrium and compute all mixed strategy Nash equilibria.

13. Consider a 3 person game with S1 = S2 = S3 = {1, 2, 3, 4}. If u(x, y, z) = x + y + z + 4i for each
i = 1, 2, 3, show that the game has a unique Nash equilibrium.

14. Suppose

u1(x, y, z) = 10 if x = y = z

= 0 otherwise

Describe all pure Nash equilibria and show that mixed Nash equilibria lead to smaller payoffs
than pure Nash equilibria.

15. Consider an n player game with Si = {1, 2} ∀i. The payoff is

ui(s1, . . . , sn) = si

∏

j 6=i

(1 − δ(si, sj))

where δ is the kronecker δ given by

δ(si, sj) = 1 if si = sj

= 0 otherwise

If player i uses a mixed strategy in which pure strategy 1 is chosen with probability pi, prove
that (p1, p2, . . . pn) defines an equilibrium point iff

∏

j 6=i

(1 − pj) = 2
∏

j 6=i

pj ∀i ∈ N

Deduce that a mixed strategy equilibrium is given by

pi =
1

1 + 2
1

n−1

∀i ∈ N

and that for n = 2, 3 this is the only equilibrium points.
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