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1 The Quasilinear Environment

This is the most extensively studied special class of environments where the Gibbard–Satterthwaite
theorem does not hold. In fact, the rest of this chapter assumes this environment most of the time.
In the quasilinear environment, an alternative x ∈ X is a vector of the form x = (k, t1, . . . , tn), where
k is an element of a set K, which is called the set of project choices or set of allocations. The set K

is usually assumed to be finite. The term ti ∈ R represents the monetary transfer to agent i. If ti > 0
then agent i will receive the money and if ti < 0 then agent i will pay the money. We assume that we
are dealing with a system in which the n agents have no external source of funding, i.e.,

∑n
i=1

ti ≤ 0.
This condition is known as the weak budget balance condition. The set of alternatives X is therefore

X =

{

(k, t1, . . . , tn) : k ∈ K; ti ∈ R ∀ i ∈ N ;
∑

i

ti ≤ 0

}

.

A social choice function in this quasilinear environment takes the form f(θ) = (k(θ), t1(θ), . . . , tn(θ))
where, for every θ ∈ Θ, we have k(θ) ∈ K and

∑

i ti(θ) ≤ 0. Note that here we are using the
symbol k both as an element of the set K and as a function going from Θ to K. It should be
clear from the context as to which of these two we are referring. For a direct revelation mechanism
D = ((Θi)i∈N , f(·)) in this environment, the agent i’s utility function takes the quasilinear form

ui(x, θi) = ui((k, t1, . . . , tn), θi) = vi(k, θi) + mi + ti

where mi is agent i’s initial endowment of the money and the function vi(·) is known as agent i’s
valuation function. Recall from our discussion of mechanism design environment (Section ??) that
the utility functions ui(·) are common knowledge. In the context of a quasilinear environment, this
implies that for any given type θi of any agent i, the social planner and every other agent j have
a way to know the function vi(., θi). In many cases, the set Θi of the direct revelation mechanism
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D = ((Θi)i∈N , f(·)) is actually the set of all feasible valuation functions vi of agent i. That is, each
possible function represents the possible types of agent i. Therefore, in such settings, reporting a type
is the same as reporting a valuation function.

Immediate examples of quasilinear environment include many of the previously discussed examples,
such as the first price and second price auctions (Example ??), the public project problem (Example
??), the network formation problem (Example ??), bilateral trade (Example ??), etc. In the quasilinear
environment, we can define two important properties of a social choice function, namely, allocative
efficiency and budget balance.

Definition 1.1 (Allocative Efficiency (AE)) We say that a social choice function f(·) = (k(·), t1(·), . . . , tn(·))
is allocatively efficient if for each θ ∈ Θ, k(θ) satisfies the following condition1

k(θ) ∈
arg max
k ∈ K

n
∑

i=1

vi(k, θi). (1)

Equivalently,
n

∑

i=1

vi(k(θ), θi) =
max

k ∈ K

n
∑

i=1

vi(k, θi).

The above definition implies that for every θ ∈ Θ, the allocation k(θ) will maximize the sum of the
values of the players. In other words, every allocation is a value maximizing allocation, or the objects
are allocated to the players who value the objects most. This is an extremely desirable property to
have for any social choice function. The above definition implicitly assumes that for any given θ, the
function

∑n
i=1

vi(., θi) : K → R attains a maximum over the set K.

Example 1 (Public Project Problem) Consider the public project problem with two agents N =
{1, 2}. Let the cost of the public project be 50 units of money. Let the type sets of the two players
be given by

Θ1 = Θ2 = {20, 60}.

Each agent either has a low willingness to pay, 20, or a high willingness to pay, 60. Let the set of
project choices be

K = {0, 1}

with 1 indicating that the project is taken up and 0 indicating that the project is dropped.
Assume that if k = 1, then the two agents will equally share the cost of the project by paying 25

each. If k = 0, the agents do not pay anything. A reasonable way of defining the valuation function
would be

vi(k, θi) = k(θi − 25).

This means, if k = 0, the agents derive zero value while if k = 1, the value derived is willingness to
pay minus 25.

Define the following allocation function:

k(θ1, θ2) = 0 if θ1 = θ2 = 20

= 1 otherwise.

1We will be using the symbol k
∗(·) for a function k(·) that satisfies Equation (1).
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This means, the project is taken up only when at least one of the agents has a high willingness to pay.
We can see that this function is allocatively efficient. This may be easily inferred from Table 1, which
shows the values derived by the agents for different type profiles. The second column gives the actual
value of k.

(θ1, θ2) k v1(k, θ1) v2(k, θ2) v1(k, θ1) v2(k, θ2)
when k = 0 when k = 0 when k = 1 when k = 1

(20, 20) 0 0 0 -5 -5

(20, 60) 1 0 0 -5 35

(60, 20) 1 0 0 35 -5

(60, 60) 1 0 0 35 35

Table 1: Values for different type profiles when vi(k, θi) = k(θi − 25)

Example 2 (A Non-Allocatively Efficient SCF) Let the v function be defined as under:

vi(k, θi) = kθi i = 1, 2.

With respect to the above function, the allocation function k defined in the previous example can be
seen to be not allocatively efficient. The values for different type profiles are shown in Table 2. If the
type profile is (20, 20), the allocation is k = 0 and the total value of allocation is 0. However, the total
value is 40 if the allocation were k = 1.

(θ1, θ2) k v1(k, θ1) v2(k, θ2) v1(k, θ1) v2(k, θ2)
when k = 0 when k = 0 when k = 1 when k = 1

(20, 20) 0 0 0 20 20

(20, 60) 1 0 0 20 60

(60, 20) 1 0 0 60 20

(60, 60) 1 0 0 60 60

Table 2: Values for different type profiles when vi(k, θi) = kθi

Definition 1.2 (Budget Balance (BB)) We say that a social choice function f(·) = (k(·), t1(·), . . . , tn(·))
is budget balanced if for each θ ∈ Θ, t1(θ), . . . , tn(θ) satisfy the following condition:

n
∑

i=1

ti(θ) = 0. (2)

Many authors prefer to call this property strong budget balance, and they refer to the property of
having

∑n
i=1

ti(θ) ≤ 0 as weak budget balance. In this monograph, we will use the term budget
balance to refer to strong budget balance.
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Budget balance ensures that the total receipts are equal to total payments. This means that the
system is a closed one, with no surplus and no deficit. The weak budget balance property means that
the total payments are greater than or equal to total receipts.

The following lemma establishes an important relationship of these two properties of an SCF with
the ex-post efficiency of the SCF.

Lemma 1.1 A social choice function f(·) = (k(·), t1(·), . . . , tn(·)) is ex-post efficient in quasilinear

environment if and only if it is allocatively efficient and budget balanced.

Proof: Let us assume that f(·) = (k(·), t1(·), . . . , tn(·)) is allocatively efficient and budget balanced.
This implies that for any θ ∈ Θ, we have

n
∑

i=1

ui(f(θ), θi) =

n
∑

i=1

vi(k(θ), θi) +

n
∑

i=1

ti(θ)

=
n

∑

i=1

vi(k(θ), θi) + 0

≥

n
∑

i=1

vi(k, θi) +

n
∑

i=1

ti; ∀ x = (k, t1, . . . , tn)

=

n
∑

i=1

ui(x, θi); ∀ (k, t1, . . . , tn) ∈ X.

That is if the SCF is allocatively efficient and budget balanced then for any type profile θ of the
agent, the outcome chosen by the social choice function will be such that it maximizes the total utility
derived by all the agents. This will automatically imply that the SCF is ex-post efficient.

To prove the other part, we will first show that if f(·) is not allocatively efficient, then, it cannot
be ex-post efficient and next we will show that if f(·) is not budget balanced then it cannot be ex-post
efficient. These two facts together will imply that if f(·) is ex-post efficient then it will have to be
allocatively efficient and budget balanced, thus completing the proof of the lemma.

To start with, let us assume that f(·) is not allocatively efficient. This means that ∃ θ ∈ Θ, and
k ∈ K such that

n
∑

i=1

vi(k, θi) >

n
∑

i=1

vi(k(θ), θi).

This implies that there exists at least one agent j for whom vj(k, θi) > vj(k(θ), θi). Now consider the
following alternative x

x =
(

k, (ti = ti(θ) + vi(k(θ), θi) − vi(k, θi))i6=j , tj = tj(θ)
)

.

It is easy to verify that ui(x, θi) = ui(f(θ), θi) ∀ i 6= j and uj(x, θi) > uj(f(θ), θi), implying that f(·)
is not ex-post efficient.

Next, we assume that f(·) is not budget balanced. This means that there exists at least one agent
j for whom tj(θ) < 0. Let us consider the following alternative x

x =
(

k, (ti = ti(θ))i6=j , tj = 0
)

.

It is easy to verify that for the above alternative x, we have ui(x, θi) = ui(f(θ), θi) ∀ i 6= j and
uj(x, θi) > uj(f(θ), θi) implying that f(·) is not ex-post efficient.

4



Q.E.D.

The next lemma summarizes another fact about social choice functions in quasilinear environment.

Lemma 1.2 All social choice functions in quasilinear environments are nondictatorial.

Proof: If possible, assume that a social choice function, f(·), is dictatorial in the quasilinear environ-
ment. This means that there exists an agent called the dictator, say d ∈ N , such that for each θ ∈ Θ,
we have

ud(f(θ), θd) ≥ ud(x, θd) ∀ x ∈ X.

However, because of the environment being quasilinear, we have ud(f(θ), θd) = vd(k(θ), θd) + td(θ).
Now consider the following alternative x ∈ X :

x =

{

(k(θ), (ti = ti(θ))i6=d, td = td(θ) −
∑n

i=1
ti(θ)) :

∑n
i=1

ti(θ) < 0
(k(θ), (ti = ti(θ))i6=d,j , td = td(θ) + ǫ, tj = tj(θ) − ǫ) :

∑n
i=1

ti(θ) = 0

where ǫ > 0 is any arbitrary number, and j is any agent other than d. It is easy to verify, for the above
outcome x, that we have ud(x, θd) > ud(f(θ), θd), which contradicts the fact that d is a dictator.

Q.E.D.

In view of Lemma 1.2, the social planner need not have to worry about the nondictatorial property of
the social choice function in quasilinear environments and he can simply look for whether there exists
any SCF that is both ex-post efficient and dominant strategy incentive compatible. Furthermore, in
the light of Lemma 1.1, we can say that the social planner can look for an SCF that is allocatively
efficient, budget balanced, and dominant strategy incentive compatible. Once again the question arises
whether there could exist social choice functions which satisfy all these three properties — AE, BB,
and DSIC. We explore this and other questions in the forthcoming sections.

2 Problems

1. Let f : Θ1 × . . . × Θn → X be a social choice function. If the utility functions are quasi-linear
of the form

ui(k
∗(θ), t1(θ), . . . , tn(θ), θi) = vi(k

∗(θ), θi) + ti(θ) + mi,

then show that f is ex-post efficient iff f is allocatively efficient and strictly budget balanced.

2. Show that no social choice function in the quasi-linear environment can be dictatorial.
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