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1 The Gibbard–Satterthwaite Impossibility Theorem

We have seen in the last section that dominant strategy incentive compatibility is an extremely de-
sirable property of social choice functions. However the DSIC property, being a strong one, precludes
certain other desirable properties to be satisfied. In this section, we discuss the Gibbard–Satterthwaite
impossibility theorem (G–S theorem, for short), which shows that the DSIC property will force an
SCF to be dictatorial if the utility environment is an unrestricted one. In fact, in the process, even
ex-post efficiency will have to be sacrificed. One can say that the G–S theorem has shaped the course
of research in mechanism design during the 1970s and beyond, and is therefore a landmark result in
mechanism design theory. The G–S theorem is credited independently to Gibbard in 1973 [1] and
Satterthwaite in 1975 [2]. The G–S theorem is a brilliant reinterpretation of the famous Arrow’s im-
possibility theorem (which we discuss in the next section). We start our discussion of the G–S theorem
with a motivating example.

Example 1 (Supplier Selection Problem) We have seen this example earlier (Example 2.29). We
have N = {1, 2}, X = {x, y, z}, Θ1 = {a1}, and Θ2 = {a2, b2}. Consider the following utility functions
(note that these are different from the ones considered in Example 2.29):

u1(x, a1) = 100; u1(y, a1) = 50; u1(z, a1) = 0

u2(x, a2) = 0; u2(y, a2) = 50; u2(z, a2) = 100

u2(x, b2) = 30; u2(y, b2) = 60; u2(z, b2) = 20.

We observe for this example that the DSIC and BIC notions are identical since the type of player 1 is
common knowledge and hence player 1 always reports the true type (since the type set is a singleton).
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Consider the social choice function f given by f(a1, a2) = x; f(a1, b2) = x. It can be seen that this
SCF is ex-post efficient.

To investigate DSIC, suppose the type of player 2 is a2. If player 2 reports his true type, then the
outcome is x. If he misreports his type as b2, then also the outcome is x. Hence there is no incentive
for player 2 to misreport. A similar situation presents itself when the type of player 2 is b2. Thus f
is DSIC.

In both the type profiles, the outcome happens to be the most favorable one for player 1, that is,
x. Therefore, player 1 is a dictator and f is dictatorial. Thus the above function is ex-post efficient
and DSIC but dictatorial.

Now, let us consider a different SCF h defined by h(a1, a2) = y;h(a1, b2) = x. Following similar
arguments as above, h can be shown to be ex-post efficient and nondictatorial but not DSIC. Table
1 lists all the nine possible social choice functions in this scenario and the combination of properties
each function satisfies.

i fi(a1, a2) fi(a1, b2) EPE DSIC NON-DICT

1 x x
√ √ ×

2 x y
√ × √

3 x z × × √

4 y x
√ × √

5 y y
√ √ √

6 y z × × √

7 z x
√ √ √

8 z y
√ √ ×

9 z z × √ √

Table 1: Social choice functions and properties satisfied by them

Note that the situation is quite desirable with the following SCFs.

f5(a1, a2) = y; f5(a1, b2) = y

f7(a1, a2) = z; f7(a1, b2) = x.

The reason is these functions are ex-post efficient, DSIC, and also nondictatorial. Unfortunately how-
ever, such desirable situations do not occur in general. In the present case, the desirable situations do
occur because of certain reasons that will become clear soon. In a general setting, ex-post efficiency,
DSIC, and nondictatorial properties can never be satisfied simultaneously. In fact, even DSIC and non-
dictatorial properties cannot coexist. This is the implication of the powerful Gibbard–Satterthwaite
theorem.

1.1 The G–S Theorem

We will build up some notation before presenting the theorem. We have already seen that the prefer-
ence of an agent i, over the outcome set X, when its type is θi can be described by means of a utility
function ui(·, θi) : X → R, which assigns a real number to each element in X. A utility function
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ui(·, θi) always induces a unique preference relation % on X which can be described in the following
manner

x % y ⇔ ui(x, θi) ≥ ui(y, θi).

The above preference relation is often called a rational preference relation and it is formally defined
as follows.

Definition 1 (Rational Preference Relation) We say that a relation % on the set X is called a
rational preference relation if it possesses the following three properties:

1. Reflexivity: ∀ x ∈ X, we have x % x.

2. Completeness: ∀ x, y ∈ X, we have that x % y or y % x (or both).

3. Transitivity: ∀ x, y, z ∈ X, if x % y and y % z, then x % z.

The following proposition establishes the relationship between these two ways of expressing the pref-
erences of an agent i over the set X.

Proposition 1

1. If a preference relation % on X is induced by some utility function ui(·, θi), then it will be a
rational preference relation.

2. For every preference relation % on X, there may not exist a utility function that induces it.
However, when the set X is finite, given any preference relation, there will exist a utility function
that induces it.

3. For a given preference relation % on X, there might be several utility functions that induce it.
Indeed, if the utility function ui(·, θi) induces % , then u′

i(x, θi) = f(ui(x, θi)) is another utility
function that will also induce % , where f : R → R is a strictly increasing function.

Strict Total Preference Relations

We now define a special class of rational preference relations that satisfy the antisymmetry property
also.

Definition 2 (Strict-total Preference Relation) We say that a rational preference relation % is
strict-total if it possesses the antisymmetry property, in addition to reflexivity, completeness, and
transitivity. By antisymmetry, we mean that, for any x, y ∈ X such that x 6= y, we have either x % y
or y % x, but not both.

The strict-total preference relation is also known as a linear order relation because it satisfies the
properties of the usual greater than or equal to relationship on the real line. Let us denote the set
of all rational preference relations and strict-total preference relations on the set X by R and P,
respectively. It is easy to see that P ⊂ R.
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Ordinal Preference Relations

In a mechanism design problem, for agent i, the preference over the set X is described in the form of
a utility function ui : X ×Θi → R. That is, for every possible type θi ∈ Θi of agent i, we can define a
utility function ui(·, θi) over the set X. Let this utility function induce a rational preference relation
% i (θi) over X. The set Ri = {% : % = % i (θi) for some θi ∈ Θi} is known as the set of ordinal
preference relations for agent i. It is easy to see that Ri ⊂ R ∀ i ∈ N .

With all the above notions in place, we are now in a position to state the G–S theorem.

Theorem 1 (Gibbard–Satterthwaite Impossibility Theorem) Consider a social choice func-
tion f : Θ → X. Suppose that

1. The outcome set X is finite and contains at least three elements,

2. Ri = P ∀ i ∈ N ,

3. f(·) is an onto mapping, that is, the image of SCF f(·) is the set X.

Then the social choice function f(·) is dominant strategy incentive compatible iff it is dictatorial.

For a proof of this theorem, the reader is referred to Proposition 23.C.3 of the book by Mas-Colell,
Whinston, and Green [3]. We only provide a brief outline of the proof. To prove the necessity, we
assume that the social choice function f(·) is dictatorial and it is shown that f(·) is DSIC. This can
be shown in a fairly straightforward way. The proof of the sufficiency part of the theorem starts with
the assumption that f(·) is DSIC and proceeds in three steps:

1. It is shown using the second condition of the theorem (Ri = P ∀ i ∈ N) that f(·) is monotonic.

2. Next using conditions (2) and (3) of the theorem, it is shown that monotonicity implies ex-post
efficiency.

3. Finally, it is shown that a SCF f(·) that is monotonic and ex-post efficient is necessarily dicta-
torial.

Figure 1 shows a pictorial representation of the G–S theorem. The figure depicts two classes F1 and
F2 of social choice functions. The class F1 is the set of all SCFs that satisfy conditions (1) and (2) of
the theorem while the class F2 is the set of all SCFs that satisfy conditions (1) and (3) of the theorem.
The class GS is the set of all SCFs in the intersection of F1 and F2 which are DSIC. The functions in
the class GS have to be necessarily dictatorial.

1.2 Implications of the G–S Theorem

One way to get around the impossible situation described by the G–S Theorem is to hope that at least
one of the conditions (1), (2), and (3) of the theorem does not hold. We discuss each one of these
below.

• Condition (1) asserts that |X| ≥ 3. This condition is violated only if |X| = 1 or |X| = 2. The
case |X| = 1 corresponds to a trivial situation and is not of interest. The case |X| = 2 is more
interesting but is of only limited interest. A public project problem where only a go or no-go
decision is involved and no payments by agents are involved corresponds to this situation.
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Figure 1: An illustration of the Gibbard–Satterthwaite Theorem

• Condition (2) asserts that Ri = P ∀ i ∈ N . This means that the preferences of each agent cover
the entire space of strict total preference relations on X. That is, each agent has an extremely
rich set of preferences. If we are able to somehow restrict the preferences, we can hope to violate
this condition. One can immediately note that this condition was violated in the motivating
example (Example 1, the supplier selection problem). The celebrated class of VCG mechanisms
has been derived by restricting the preferences to the quasilinear domain. This will be discussed
in good detail in a later section.

• Condition (3) asserts that f is an onto function. Note that this condition also was violated in
Example 1. This provides one more route for getting around the G–S Theorem.

Another way of escaping from the jaws of the G–S Theorem is to settle for a weaker form of incentive
compatibility than DSIC. We have already discussed Bayesian incentive compatibility (BIC) which
only guarantees that reporting true types is a best response for each agent whenever all other agents
also report their true types. Following this route leads us to Bayesian incentive compatible mechanisms.
These are discussed in good detail in a future section.

The G–S Theorem is an influential result that defined the course of mechanism design research in
the 1970s and 1980s. As already stated, the theorem happens to be an ingenious reinterpretation, in
the context of mechanism design, of the celebrated Arrow’s impossibility theorem, which is discussed
next.
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2 Proof of GS Theorem

Lower Contour Sets

Given an outcome x ∈ X, and agent i ∈ N and a type of agent i, θi ∈ Θi, the lower contour set
Li(x, θi) is defined as

Li(x, θi) = {y ∈ X : ui(x, θi) ≥ ui(y, θi)}
The lower contour set consists of all outcomes which produce equal or less utility than ui(x, θi).

Weak Preference Reversal Property

Recall the necessary and sufficient condition for DSIC of a social choice function

f(.) : ui(f, (θi, θ−i), θi) ≥ ui(f, (θ̂i, θ−i), θi) ∀ θi ∈ Θi, ∀ θ̂i ∈ Θi, ∀ θ−i ∈ Θ−i, ∀ i ∈ N

Consider an agent i ∈ N and let θ
′

i, θ
′′

i ∈ Θi be any two possible types function f(.) is DSIC.
Then the above necessary and sufficient condition yields the following two inequalities:

ui(f(θ
′

i, θ−i), θ
′

i) ≥ ui(f(θi

′′

, θ−i), θ
′

i) ∀ θ−i ∈ Θ−i

ui(f(θ
′′

i , θ−i), θ
′′

i ) ≥ ui(f(θi

′

, θ−i), θ
′′

i ) ∀ θ−i ∈ Θ−i

clearly, the preference ranking of the outcomes f(θ
′

i, θ−i) and f(θ
′′

i , θ−i) weakly reverses when the type
changes from θ

′

i to θ
′′

i .
On the other hand, if a social choice function f(.) is such that the above weak preference reversal

property holds for all θ−i ∈ Θ−i and for all possible pairs θ
′

i, θ
′′

−i ∈ Θi, it can be shown that f(.)
is DSIC. Thus DSIC can also be characterized as being equivalent to the weak preference reversal
property. In terms of lower contour sets, the above observations can be summarized as the following
proposition.

Proposition : A social choice function f : X → Θ is DSIC iff ∀ i ∈ N, ∀ θ−i ∈ Θ−i and all pairs
θ
′

i, θ
′′

−i ∈ Θi, the following equalities are satisfied.

f(θ
′′

i , θ−i) ∈ Li(f(θ
′

i, θ−i), θ
′

i) and f(θ
′

i, θ−i) ∈ Li(f(θ
′′

i , θ−i), θ
′′

i )

Monotonicity

Monotonicity is an important property of a social choice function and plays a crucial role in mechanism
design theory. Suppose θ ∈ Θ and f(θ) = x ∈ X. Let the type profile θ change to θ

′ ∈ Θ and assume
that in the new type profile θ

′

, no agent i finds that some alternative which was weakly worse than x
under type θi becomes strictly preferred to x. Then monotonicity of f(.) means that x must continue
to be the social choice in θ

′

, that is f(θ
′

) = x. This is formalized in the following definition.
Definition: A social choice function f : Θ → X is monotonic if ∀ θ ∈ Θ, ∀ θ

′ ∈ Θ(θ
′ 6= θ),

Li(f(θ), θ−i),⊂ Li(f(θ), θ
′

−i) ∀ i ∈ N =⇒ f(θ
′

−i) = f(θ)
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Proof of Gibbard Satterthwaite Theorem

The proof is simple in one direction: Suppose all the conditions (1) − (3) are satisfied and f(.) is
dictatorial, it can be shown easily that f(.) is DSIC. This is left as an exercise.

In the other direction, we are given that conditions (1) − (3) are satisfied and f(.) is DSIC. We
have to show that f(.) is dictatorial. The proof of this proceeds in three steps. We have followed
closely the proof given by Mascolell, Whinston, and Green MASCOLELL95]

Step 1 : Showing that f(.) is Monotonic

We are given that f(.) is DSIC. Consider two profiles θ and θ
′

such that

Li(f(θ), θi),⊂ Li(f(θ), θ
′

i) ∀ i ∈ N

Consider the outcome f(θ
′

1
, θ2, . . . , θn). Then by the weak preference reversal property, we have

f(θ
′

1, θ2, . . . , θn) ∈ L1(f(θ), θ1)

By the assumption we have made, we have

f(θ
′

1, θ2, . . . , θn) ∈ L1(f(θ), θ
′

1)

By the weak preference reversal property, we again have

f(θ1, θ2, . . . , θn) ∈ L1(f(θ
′

1, θ2, . . . , θn), θ
′

1)

Since Ri = P ∀i ∈ N, no two alternatives can be indifferent in the preference relation τ/1(θ
′

1
).

therefore it must be that
f(θ

′

1, θ2, . . . , θn) = f(θ)

On similar lines, it can be shown that

f(θ
′

1, θ
′

2, θ3 . . . , θn) = f(θ)

Extending the above argument iteratively we get what we need for monotonicity of f(.):

f(θ
′

1, θ
′

2, . . . , θ
′

n) = f(θ)

Step 2 : Showing that f(.) is Ex-Post Efficient

Here we show that f(.) is ex-post efficient if Ri = P ∀ i ∈ N, f(Θ) = X, and f is monotonic. We
prove this by contradiction. Suppose f(.) is not ex-post efficient. Then ∋ a type profile θ ∈ Θ and an
outcome y ∈ X such that

ui(y, θi) > ui(f(θ), θi) ∀ i ∈ N

The above involves only strict inequality because no two alternatives can be indifferent for any agent
as Ri = P ∀ i ∈ N .

Since f(Θ) = X, there exists a type profile θ
′ ∈ Θ such that f(θ

′

) = y. Choose θ
′′ ∈ Θ such that

∀ i ∈ N ,

ui(y, θ
′′

i ) > ui(f(θ), θ
′′

i ) > ui(z, θ
′′

i ) ∀ z 6= f(θ), y
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The above choice is certainly possible since all preferences in P are allowed. We now invoke
monotonicity and note that

Li(y, θ
′

1) ⊂ Li(y, θ
′′

i ) ∀ i ∈ N ⇒ f(θ
′′

i ) = y

However, since Li(f(θ), θi) ⊂ Li(f(θ), θ
′′

i ) ∀ i ∈ N, monotonicity again implies that

f(θ
′′

i ) = f(θ)

The above is contradiction, since y 6= f(θ). This in turn implies that f must be ex-post efficient.

Step 3 : Showing that f(.) is Dictatorial

We are given that f(.) is DISC and EPE and we are supposed to show that f(.) is dictatorial. This
result can be obtained as a Corollary of the Arrow’s impossibility result (see next section). We direct
the reader to chapter 21 of the book by Mascolell, Whinston, and Green [MASCOLELL95].

Some Notes and Observations

• It may be noted that the finiteness of X is not required for GS Theorem. However, if X is not
finite, the assumption about agents being expected utility maximizers may not be compatible
with the condition Ri = P ∀ i ∈ N [MASCOLELL95]. If X is not finite, the GS Theorem will
still hold Ri for each ∀ i ∈ N is the set of all continuous preferences on X [MASCOLELL95].

• If |X| = 2, the GS theorem is not true. We have already seen this earlier in this section while
discussing the example.

• When Ri = P ∀ i ∈ N , it may be noted that any ex-post efficient social choice function must
have f(Θ) = X.

• The GS theorem holds even if the assumption (2) is relaxed to

P ⊂ Ri ∀ i ∈ N

• We define f : Θ → X as dictatorial on Y ⊂ X if there exists an agent d ∈ N such that ∀ θ ∈ Θ,

ud(f(θ), θd) ≥ ud(y, θd) ∀ y ∈ Y

The GS theorem holds good under the following special setting also: suppose X is finite, |f(Θ)| ≥
3, and P ⊂ Ri ∀ i ∈ N . then f(.) is DISC iff f(.) is dictatorial on f(Θ).

3 Arrow’s Impossibility Theorem

This famous impossibility theorem is due to Kenneth Arrow (1951), Nobel laureate in Economic
Sciences in 1972. This result has shaped the discipline of social choice theory in many significant
ways.
Before discussing this result, we first set up some relevant notation. Consider a set of agents N =
{1, 2, . . . , n} and a set of outcomes X. Let %i be a rational preference relation of agent i (i ∈ N).
Subscript i in %i indicates that the relation corresponds to agent i. For example, %i could be induced
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by ui(., θi) where θi is a certain type of agent i. Each agent is thus naturally associated with a set Ri

of rational preference relations derived from the utility functions ui(., θi) where θi ∈ Θi.
Given a rational preference relation %i, let us denote by ≻i the relation defined by

(x, y) ∈ ≻i iff (x, y) ∈ %i and (y, x) /∈ %i .

The relation ≻i is said to be the strict total preference relation derived from %i. Note that ≻i = %i

if %i itself is a strict total preference relation. Given an outcome set X, a strict total preference
relation can be simply represented as an ordered tuple of elements of X. Given %i, let us denote by
∼i the relation defined by

(x, y) ∈ ∼i iff (x, y) ∈ %i and (y, x) ∈ %i .

The relation ∼i is said to be the indifference relation derived from %i.
As usual R and P denote, respectively, the set of all rational preference relations and strict total

preference relations on the set X. Let A be any nonempty subset of Rn. We define a social welfare
functional as a mapping from A to R.

Definition 3 (Social Welfare Functional) Given a set of agents N = {1, 2, . . . , n}, an outcome
set X, and a set of profiles A of rational preference relations of the agents, A ⊂ Rn, a social welfare
functional is a mapping W : A −→ R.

Note that a social welfare functional W assigns a rational preference relation W ( %1, . . . ,%n) to a
given profile of rational preference relations ( %1, . . . ,%n) ∈ A .

Example 2 (Social Welfare Functional) Consider the example of the supplier selection problem
discussed in Example 2.45, where N = {1, 2}, X = {x, y, z}, Θ1 = {a1}, and Θ2 = {a2, b2}. Recall
the utility functions:

u1(x, a1) = 100; u1(y, a1) = 50; u1(z, a1) = 0

u2(x, a2) = 0; u2(y, a2) = 50; u2(z, a2) = 100

u2(x, b2) = 30; u2(y, b2) = 60; u2(z, b2) = 20.

The utility function u1 leads to the following strict preference relation:

%a1
= (x, y, z).

The utility function u2 leads to the strict total preference relations:

%a2
= (z, y, x); %b2= (y, x, z).

Let the set A be defined as
A = {(%a1

,%a2
), (%a1

,%b2)}.
An example of a social welfare functional here would be the mapping W1 given by

W1(%a1
,%a2

) = (x, y, z); W1(%a1
,%b2) = (y, x, z).

Another example would be the mapping W2 given by

W2(%a1
,%a2

) = (x, y, z); W2(%a1
,%b2) = (z, y, x).
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Note the difference between a social choice function and a social welfare functional. In the case
of a social choice function, the preferences are summarized in terms of types and each type profile is
mapped to a social outcome. On the other hand, a social welfare functional maps a profile of individual
preferences to a social preference relation. Recall that the type of an agent determines a preference
relation on the set X through the utility function.

We now define three properties of a social welfare functional: unanimity (also called Paretian
property); pairwise independence (also called independence of irrelevant alternatives (IIA)), and dic-
tatorship.

Definition 4 (Unanimity) A social welfare functional W : A −→ R is said to be unanimous if
∀ (%1, . . . , %n) ∈ A and ∀x, y ∈ X,

(x, y) ∈ %i ∀i ∈ N =⇒ (x, y) ∈ Wp(%1 . . . ,%n)

where Wp(%1 . . . ,%n) is the strict preference relation derived from W (%1 . . . ,%n).

The above definition means that, for all pairs x, y ∈ X, whenever x is preferred to y for every agent,
then x is also socially preferred to y.

Example 3 (Unanimity) For the problem being discussed, let

W1(%a1
,%a2

) = W1((x, y, z), (z, y, x)) = (x, y, z)

W1(%a1
,%b2) = W1((x, y, z), (y, x, z)) = (y, x, z).

This is unanimous because

• (y, z) ∈ %a1
, (y, z) ∈ %b2 , and (y, z) ∈ W1(%a1

,%b2); and

• (x, z) ∈ %a1
, (x, z) ∈ %b2 , and (x, z) ∈ W1(%a1

,%b2).

On the other hand, let

W2((x, y, z), (z, y, x)) = (x, y, z); W2((x, y, z), (y, x, z)) = (z, y, x)

Here (y, z) ∈ %a1
and (y, z) ∈ %b2 but (y, z) /∈ W2( %a1

,%b2). So W2 is not unanimous.

Definition 5 (Pairwise Independence) The social welfare functional W : A −→ R is said to
satisfy pairwise independence if ∀x, y ∈ X, the social preference between x and y will depend only on the
individual preferences between x and y. That is, ∀x, y ∈ X, ∀( %1 . . . ,%n) ∈ A , ∀( %

′

1
. . . ,%

′

n) ∈ A ,
with the property that

(x, y) ∈ %i ⇔ (x, y) ∈ %
′

i and (y, x) ∈ %i⇔ (y, x) ∈ %
′

i ∀i ∈ N,

we have that
(x, y) ∈ W ( %1, . . . ,%n) ⇔ (x, y) ∈ W ( %

′

1, . . . ,%
′

n); and

(y, x) ∈ W ( %1, . . . ,%n) ⇔ (y, x) ∈ W ( %
′

1, . . . ,%
′

n).
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Example 4 (Pairwise Independence) Consider the example as before and let

W3(%a1
,%a2

) = W3((x, y, z), (z, y, x)) = (x, y, z)

W3(%a1
,%b2) = W3((x, y, z), (y, x, z)) = (y, z, x).

Here agent 1 prefers x to y in both the profiles while agent 2 prefers y to x in both the profiles.
However in the first case, x is socially preferred to y while in the second case y is socially preferred
to x. Thus the social preference between x and y is not exclusively dependent on the individual
preferences between x and y. This shows that W1 is not pairwise independent. On the other hand,
consider W3 given by

W4((x, y, z), (z, y, x)) = (x, y, z)

W4((x, y, z), (y, x, z)) = (z, x, y).

Now this social welfare functional satisfies pairwise independence.

The pairwise independence property is a very appealing property since it ensures that the social
ranking between any pair of alternatives x and y does not in any way depend on other alternatives
or the relative positions of these other alternatives in the individual preferences. Secondly, the pair-
wise independence property has a close connection to a property called the weak preference reversal
property, which is quite crucial for ensuring dominant strategy incentive compatibility of social choice
functions. Further, this property leads to a nice decomposition of the problem of social ranking. For
instance, if we wish to determine a social ranking on the outcomes of a subset Y of X, we do not need
to worry about individual preferences on the set X\Y .

Definition 6 (Dictatorship) A social welfare functional W : A −→ R is called a dictatorship if
there exists an agent, d ∈ N , called the dictator such that ∀x, y ∈ X and ∀(%1, . . . ,%n) ∈ A , we have

(x, y) ∈ %d ⇒ (x, y) ∈ Wp(%1, . . . ,%n).

This means that whenever the dictator prefers x to y, then x is also socially preferred to y, irrespective
of the preferences of the other agents. A social welfare functional that does not have a dictator is said
to be nondictatorial.

Example 5 (Dictatorship) Consider the social welfare functional

W5((x, y, z), (z, y, x)) = (x, y, z)

W5((x, y, z), (y, x, z)) = (x, y, z).

It is clear that agent 1 is a dictator here. On the other hand, the social welfare functional

W3((x, y, z), (z, y, x)) = (x, y, z)

W3((x, y, z), (y, x, z)) = (y, z, x)

is not dictatorial.

Ideally, a social planner would like to implement a social welfare functional that is unanimous,
satisfies the pairwise independence property, and is nondictatorial. Unfortunately, this belongs to the
realm of impossible situations when the preference profiles of the agents are rich. This is the essence
of the Arrow’s Impossibility Theorem, which is stated next.
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Figure 2: An illustration of the Arrow’s impossibility theorem

Theorem 2 (Arrow’s Impossibility Theorem) Suppose

1. |X| ≥ 3,

2. A = Rn or A = Pn.

Then every social welfare functional W : A −→ R that is unanimous and satisfies pairwise indepen-
dence is dictatorial.

For a proof of this theorem, we refer the reader to proposition 21.C.1 of Mas-Colell, Whinston, and
Green [3]. Arrow’s Impossibility Theorem is pictorially depicted in Figure 2. The set P denotes the
set of all Paretian or unanimous social welfare functionals. The set IIA denotes the set of all social
welfare functionals that satisfy independence of irrelevant alternatives (or pairwise independence).
The diagram shows that the intersection of P and IIA is necessarily a subset of D, the class of all
dictatorial social welfare functionals.

The Gibbard–Satterthwaite theorem has close connections to Arrow’s Impossibility Theorem. The
property of unanimity of social welfare functionals is related to ex-post efficiency of social choice func-
tions. The notions of dictatorship of social welfare functionals and social choice functions are closely
related. The pairwise independence property of social welfare functionals has intimate connections
with the DSIC property of social choice functions through the weak preference reversal property and
monotonicity. We do not delve deep into this here; interested readers are referred to the book of
Mas-Colell, Whinston, and Green [3] (Chapters 21 and 23).
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