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1 Further Topics in Mechanism Design

Mechanism design is a rich area with a vast body of knowledge. So far in this chapter, we have seen
essential aspects of game theory, followed by key results in mechanism design. We now provide a brief
description of a few topics in mechanism design. The topics have been chosen, with an eye on their
possible application to network economics problems of the kind discussed in the monograph. We have
not followed any particular logical order while discussing the topics. We also caution the reader that
the treatment is only expository. Pointers to the relevant literature are provided wherever appropriate.

1.1 Characterization of DSIC Mechanisms

We have seen that a direct revelation mechanism is specified as D = ((Θi)i∈N , f(.)), where f is the
underlying social choice function and Θi is the type set of agent i. A valuation function of each agent
i, vi(.), associates a value of the allocation chosen by f to agent i, that is, vi : K → R, where K is the
set of project choices.

In the case of an auction for selling a single indivisible item, suppose each agent i has a valuation
for the object θi ∈ [θi, θi]. If agent i gets the object, vi(., θi) = θi. Otherwise the valuation is zero.
Thus for the agent i, the set of valuation functions over the set of allocations K can be written as
Θi = [θi, θi]. Thus Θi is single dimensional in this environment.

In a general setting, Θi may not be single dimensional. If we consider all real valued functions
on X and allow each agent to have a valuation function to be any of these functions, we say Θi is
unconstrained. Suppose |K| = m, then θi ∈ Θi is an m-dimensional vector:

θi = (θi1 , . . . , θij , . . . , θim).

Note that θij will be the valuation of agent i if the jth allocation from K is selected. In other words,
vi(j) = θij . With such unconstrained type sets/valuation functions, an elegant characterization of
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DSIC social choice functions has been obtained by Roberts [1]. The work of Roberts generalizes the the
Green–Laffont Theorem (Theorem ??) in the following way. Recall that the Green–Laffont Theorem
asserts that an allocatively efficient and DSIC social choice function in the above unconstrained setting
has to be necessarily a VCG mechanism. The result of Roberts asserts that all DSIC mechanisms
are variations of the VCG mechanism. These variants are often referred to as the weighted VCG
mechanisms. In a weighted VCG mechanism, weights are given to the agents and to the outcomes.
The resulting social choice function is said to be an affine maximizer . The notion of an affine maximizer
is defined below. Next we state the Roberts’ Theorem.

Definition 1.1 A social choice function f is called an affine maximizer if for some subrange A′ ⊂ X,
for some agent weights w1, w2, . . . , wn ∈ R

+, and for some outcome weights cx ∈ R, and for every
x ∈ A′, we have that

f(θ1, θ2, . . . , θn) ∈ arg max
x∈A′

(cx +
∑

i

wivi(x)).

Theorem 1.1 (Roberts’ Theorem) If |X| ≥ 3 and for each agent i ∈ N , Θi is unconstrained, then
any DSIC social choice function f has nonnegative weights w1, w2, . . . , wn (not all of them zero) and
constants {cx}x∈X , such that for all θ ∈ Θ,

f(θ) ∈ arg max
x∈X

{

n
∑

i=1

wivi(x) + cx

}

.

For a proof of this important theorem, we refer the reader to the article by Roberts [1]. Lavi, Mu’alem,
and Nisan have provided two more proofs for the theorem — interested readers might refer to their
paper [2] as well.

1.2 Dominant Strategy Implementation of BIC Rules

Clearly, dominant strategy incentive compatibility is stronger and much more desirable than Bayesian
incentive compatibility. A striking reason for this is any Bayesian implementation assumes that the
private information structure is common knowledge. It also assumes that the social planner knows a
common prior distribution. In many cases, this requirement might be quite demanding. Also, a slight
mis-specification of the common prior may lead the equilibrium to shift quite dramatically. This may
result in unpredictable effects; for example it might cause an auction to to be highly nonoptimal.

A dominant strategy implementation overcomes these problems in a simple way since the equi-
librium strategy does not depend upon the common prior distribution. We would therefore always
wish to have a DSIC implementation. Since the class of BIC social choice functions is much richer
than DSIC social choice functions, one would like to ask the question: Can we implement a BIC SCF
as a DSIC rule with the same expected interim utilities to all the players? Mookherjee and Stefan
[3] have answered this question by characterizing BIC rules that can be equivalently implemented
in dominant strategies. When these sufficient conditions are satisfied, a BIC social choice function
could be implemented without having to worry about a common prior. The article by Mookherjee
and Stefan [3] may be consulted for further details.

1.3 Implementation in Ex-Post Nash Equilibrium

Dominant strategy implementation and Bayesian implementation are widely used for implementing
a social choice function. There exists another notion of implementation, called ex-post Nash im-
plementation, which is stronger than Bayesian implementation but weaker than dominant strategy
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implementation. This was formalized by Maskin [4]. Dasgupta, Hammond, and Maskin [5] general-
ized this to the Bayesian Nash implementation.

Definition 1.2 A profile of strategies
(

s∗1(.), s
∗

2(.), . . . , s
∗

n(.)
)

is an ex-post Nash equilibrium if for

every θ = (θ1, . . . θn) ∈ Θ, the profile
(

s∗1(θ1), . . . , s
∗

n(θn)
)

is a Nash equilibrium of the complete

information game defined by (θ1, . . . , θn). That is, for all i ∈ N and for all θ ∈ Θ, we have

ui(s
∗

i (θi), s
∗

−i(θ−i), θi) ≥ ui(s
′

i(θi), s
∗

−i(θ−i), θi) ∀ s′i ∈ Si.

In a Bayesian Nash equilibrium, the equilibrium strategy is played by the agents after observing their
own private types and computing an expectation over others’ types; it is an equilibrium only in the
expected sense. On the other hand, in ex-post Nash equilibrium, even after the players are informed of
the types of the other players, it is still a Nash equilibrium for each agent i to play an action according
to s∗

i
(·). This is called the lack of regret feature. That is, even if agents come to know about the

others’ types, the agent need not regret playing this action. Bayesian Nash equilibrium may not have
this feature since the agents may want to revise their strategies after knowing the types of the other
agents.

For example, consider the first price sealed bid auction with two bidders. Let Θ1 = Θ2 = [0, 1]
and θ1 denote the valuation of the first agent and θ2 that of the agent 2. It can be shown that it is a
Bayesian Nash equilibrium for each bidder to bid according to the strategy (b∗1(θ1), b

∗

2(θ2)) = (θ1

2
, θ2

2
).

Now suppose agent 1 is informed that the other agent values the object at 0.6. If agent 1 has a
valuation of 0.8, say, it is not a Nash equilibrium for him to bid 0.4 even if agent 2 is still following a
Bayesian Nash strategy.

Definition 1.3 We say that the mechanism M = ((Si)i∈N , g(·)) implements the social choice func-
tion f(·) in ex-post Nash equilibrium if there is a pure strategy ex-post Nash equilibrium s∗(·) =
(s∗1(·), . . . , s

∗

n(·)) of the game Γb induced by M such that

g (s∗1(θ1), . . . , s
∗

n(θn)) = f (θ1, . . . , θn) ∀ (θ1, . . . , θn) ∈ Θ.

Though ex-post implementation is stronger than Bayesian Nash implementation, it is still much weaker
than dominant strategy implementation.

1.4 Interdependent Values

We have so far assumed that the private values or signals observed by the agents are independent of
one another. This is a reasonable assumption in many situations. However, in the real world, there are
environments where the valuation of agents might depend upon the information available or observed
by the other agents. We will look at two examples.

Example 1 Consider an auction for an antique painting. There is no guarantee that the painting is
an original one or a plagiarized version. If all the agents knew that the painting is not an original
one, they would have a very low value for it independent of one another, whereas on the other hand,
they would have a high value for it when it is a genuine piece of work. But suppose they have no
knowledge about its authenticity. In such a case, if a certain bidder happens to get information about
its genuineness, the valuations of all the other agents will naturally depend upon this signal (indicating
the authenticity of the painting) observed by this agent.
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Example 2 Consider an auction for oil drilling rights. At the time of the auction, buyers usually
conduct geological tests and their private valuations depend upon the results of these tests. If a
prospective bidder knew the results of the tests of the others, his own willingness to pay for the
drilling rights would be modulated suitably based on the information available.

The interdependent private value models have been studied in the mechanism design literature. For
example, there exists a popular model called the common value model (which we have already seen in
Section ??). As another example, consider a situation when a seller is trying to sell an indivisible good
or a fixed quantity of a divisible good. The value of the received good for the bidders depends upon
each others’ private signals. Also, the private signals observed by the agents are interdependent of
specified properties. In such a scenario, Cremer and McLean [6] have designed an auction that extracts
a revenue from the bidders, which is equal to what could have been extracted when the actual signals
of the bidders are known. In this auction, it is an ex-post Nash equilibrium for the agents to report
their true types. This auction is interim individually rational but may not be ex-post individually
rational.

1.5 Implementation Theory

Dominant strategy incentive compatibility ensures that reporting true types is a weakly dominant
strategy equilibrium. Bayesian incentive compatibility ensures that reporting true types is a Bayesian
Nash equilibrium. Typically, the Bayesian game underlying a given mechanism may have multiple
equilibria, in fact, could have infinitely many equilibria. These equilibria typically will produce differ-
ent outcomes. Thus it is possible that nonoptimal outcomes are produced by truth revelation.

The implementation problem addresses the above difficulty caused by multiple equilibria. The im-
plementation problem seeks to design mechanisms in which all the equilibrium outcomes are optimal.
This property is called the weak implementation property . If it also happens that every optimum out-
come is also an equilibrium, we call the property as full implementation property . Maskin [4] provided
a general characterization of Nash implementable social choice functions using a monotonicity prop-
erty, which is now called Maskin Monotonicity . This property has a striking similarity to the property
of independence of irrelevant alternatives, which we encountered during our discussion on Arrow’s
impossibility theorem (Section ??). Maskin’s work shows that Maskin monotonicity, in conjunction
with another property called no-veto-power will guarantee that all Nash equilibria will produce an
optimal outcome. His work has led to development of implementation theory. Dasgupta, Hammond,
and Maskin [5] have summarized many important results in implementation theory, and they discuss
incentive compatibility in detail. Maskin’s results have now been generalized in many directions; for
example, see the references in [7].

1.6 Computational Issues in Mechanism Design

We have seen several possibility and impossibility results in the context of mechanism design. While
every possibility result is good news, there could be still be challenges involved in actually implementing
a mechanism that is possible. For example, we have seen that the GVA mechanism (Example ??)
is an allocatively efficient and dominant strategy incentive compatible mechanism for combinatorial
auctions. A major difficulty with GVA is the computational complexity involved in determining the
allocation and the payments. Both the allocation and payment determination problems are NP-hard,
being instances of the weighted set packing problem (in the case of forward GVA) or the weighted set
covering problem (in the case of reverse GVA). In fact, if there are n agents, then in the worst case,
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the payment determination will involve solving as many as n NP-hard problems, so overall, as many
as (n+1) NP-hard problems will need to be solved for implementing the GVA mechanism. Moreover,
approximately solving any one of these problems may compromise properties such as efficiency and/or
incentive compatibility of the mechanism.

In mechanism design, computations are involved at two levels: first, at the agent level and secondly
at the mechanism level [8, 9]. Complexity at the agent level involves strategic complexity (complexity
of computing an optimal strategy) and valuation complexity (computation required to provide prefer-
ence information within a mechanism). Complexity at the mechanism level includes communication
complexity (how much communication is required between agents and the mechanism to compute
an outcome) and winner determination complexity (computation required to determine an outcome
given the strategies of the agents). Typically, insufficient computation leading to approximate solu-
tions hinders mechanism design since properties such as incentive compatibility, allocative efficiency,
individual rationality, etc., may be compromised. Novel algorithms and high computing power surely
lead to better mechanisms.

For a detailed description of computational complexity issues in mechanism design, the reader is
referred to the excellent survey articles [10, 8, 9].

2 To Probe Further

For a microeconomics oriented treatment of mechanism design, the readers are requested to refer
to textbooks, such as the ones by Mas-Colell, Whinston, and Green [11] (Chapter 23); Green and
Laffont [12]; and Laffont [13]. There is an excellent recent survey article by Nisan [14], which targets
a computer science audience. There are many other informative survey papers on mechanism design
— for example by Myerson [15], Serrano [16], and Jackson [17, 18]. The Nobel Prize website has a
scholarly technical summary of mechanism design theory [7]. The recent edited volume on Algorithmic
Game Theory by Nisan, Roughgarden, Tardos, and Vazirani [19] also has valuable articles related to
mechanism design.

This chapter is not to be treated as a survey on auctions in general. There are widely popular
books (for example, by Milgrom [20], Krishna [21], and Klemperer [22]) and surveys on auctions (for
example, [23, 24, 25, 26, 8]) that deal with auctions in a comprehensive way.

A related area where an extensive amount of work has been carried out in the past decade is
combinatorial auctions. Exclusive surveys on combinatorial auctions include the articles by de Vries
and Vohra [10], Pekec and Rothkopf [27], and Narahari and Pankaj Dayama [28]. Cramton, Ausubel,
and Steinberg [29] have brought out a comprehensive edited volume containing expository and survey
articles on varied aspects of combinatorial auctions.
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