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1 Myerson Optimal Auction

A key problem that faces a social planner is to decide which direct revelation mechanism (or equiva-
lently, social choice function) is optimal for a given problem. We now attempt to formalize the notion
of optimality of social choice functions and optimal mechanisms. For this, we first define the concept
of a social utility function.

Definition 1.1 (Social Utility Function) Social utility function w : R
n → R that aggregates the

profile (u1, . . . , un) ∈ R
n of individual utility values of the agents into a social utility.

Consider a mechanism design problem and a direct revelation mechanism D = ((Θi)i∈N , f(·)) proposed
for it. Let (θ1, . . . , θn) be the actual type profile of the agents and assume for a moment that they will
all reveal their true types when requested by the planner. In such a case, the social utility that would
be realized by the social planner for a type profile θ of the agents is given by:

w(u1(f(θ), θ1), . . . , un(f(θ), θn)). (1)

However, recall the implicit assumption behind a mechanism design problem, namely, that the agents
are autonomous, and they would report a type as dictated by their rational behavior. Therefore,
the assumption that all the agents will report their true types is not true in general. In general,
rationality implies that the agents report their types according to a strategy suggested by a Bayesian
Nash equilibrium s∗(·) = (s∗

1
(·), . . . , s∗n(·)) of the underlying Bayesian game. In such a case, the social

utility that would be realized by the social planner for a type profile θ of the agents is given by

w(u1(f(s∗(θ)), θ1), . . . , un(f(s∗(θ)), θn)). (2)

In some instances, the above Bayesian Nash equilibrium may turn out to be a dominant strategy equi-
librium. Better still, truth revelation by all agents could turn out to be a Bayesian Nash equilibrium
or a dominant strategy equilibrium.
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1.1 Optimal Mechanism Design Problem

In view of the above notion of a social utility function, it is clear that the objective of a social planner
would be to look for a social choice function f(·) that would maximize the expected social utility for
a given social utility function w(·). However, being the social planner, it is always expected of him to
be fair to all the agents. Therefore, the social planner would first put a few desirable constraints on
the set of social choice functions from which he can probably choose. The desirable constraints may
include any combination of all the previously studied properties of a social choice function, such as ex-
post efficiency, incentive compatibility, and individual rationality. This set of social choice functions
is known as a set of feasible social choice functions and is denoted by F . Thus, the problem of a
social planner can now be cast as an optimization problem where the objective is to maximize the
expected social utility, and the constraint is that the social choice function must be chosen from the
feasible set F . This problem is known as the optimal mechanism design problem and the solution of
the problem would be social choice function f∗(·) ∈ F , which is used to define the optimal mechanism
D∗ = ((Θi)i∈N , f∗(·)) for the problem that is being studied.

Depending on whether the agents are loyal or autonomous rational entities, the optimal mechanism
design problem may take two different forms.

maximize
f(·) ∈ F

Eθ [w(u1(f(θ), θ1), . . . , un(f(θ), θn))] (3)

maximize
f(·) ∈ F

Eθ [w(u1(f(s∗(θ)), θ1), . . . , un(f(s∗(θ)), θn))] (4)

The problem (13) is relevant when the agents are loyal and always reveal their true types whereas
the problem (14) is relevant when the agents are rational. At this point of time, one may ask how to
define the set of feasible social choice functions F . There is no unique definition of this set. The set of
feasible social choice functions is a subjective judgment of the social planner. The choice of the set F

depends on the desirable properties the social planner would wish to have in the optimal social choice
function f∗(·). If we define

F
DSIC

= {f : Θ → X|f(·) is dominant strategy incentive compatible}

F
BIC

= {f : Θ → X|f(·) is Bayesian incentive compatible}

F
EPIR

= {f : Θ → X|f(·) is ex-post individual rational}

F
IIR

= {f : Θ → X|f(·) is interim individual rational}

F
EAIR

= {f : Θ → X|f(·) is ex-ante individual rational}

F
EAE

= {f : Θ → X|f(·) is ex-ante efficient}

F
IE

= {f : Θ → X|f(·) is interim efficient}

F
EPE

= {f : Θ → X|f(·) is ex post efficient} .

The set of feasible social choice functions F may be either any one of the above sets or intersection of
any combination of the above sets. For example, the social planner may choose F = F

BIC

⋂

F
IIR

. In
the literature, this particular feasible set is known as incentive feasible set due to Myerson [1]. Also,
note that if the agents are loyal then the sets F

DSIC
and F

BIC
will be equal to the whole set of all the

social choice functions.

2



1.2 Myerson’s Optimal Reverse Auction

We now consider the problem of procuring a single indivisible item from among a pool of suppliers
and present Myerson’s optimal auction that minimizes the expected cost of procurement subject to
Bayesian incentive compatibility and interim individual rationality of all the selling agents. The
classical Myerson auction [2] is for maximizing the expected revenue of a selling agent who wishes to
sell an indivisible item to a set of prospective buying agents. We present it here for the reverse auction
case.

Each bidder i’s type lies in an interval Θi = [θi, θi]. We impose the following additional conditions
on the environment.

1. The auctioneer and the bidders are risk neutral.

2. Bidders’ types are statistically independent, that is, the joint density φ(·) has the form φ1(·) ×
. . . × φn(·).

3. φi(·) > 0 ∀ i = 1, . . . , n.

4. We generalize the outcome set X by allowing a random assignment of the good. Thus, we now
take yi(θ) to be seller i’s probability of selling the good when the vector of announced types is
θ = (θ1, . . . , θn). Thus, the new outcome set is given by

X =

{

(y0, y1 . . . , yn, t0, t1, . . . , tn) : y0 ∈ [0, 1], t0 ≤ 0, yi ∈ [0, 1], ti ≥ 0 ∀ i = 1, . . . , n,

n
∑

i=1

yi ≤ 1;

n
∑

i=0

ti = 0

}

.

Recall that the utility functions of the agents in this example are given by, ∀ i = 1, . . . , n,

ui(f(θ), θi) = ui(y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ), θi) = −θiyi(θ) + ti(θ).

Thus, viewing yi(θ) = vi(k(θ)) in conjunction with the second and third conditions above, we can
claim that the underlying environment here is linear.

In the above example, we assume that the auctioneer (buyer) is the social planner and he is looking
for an optimal direct revelation mechanism to buy the good. Myerson’s [2] idea was that the auctioneer
must use a social choice function that is Bayesian incentive compatible and interim individual rational
and at the same time minimizes the cost to the auctioneer. Thus, in this problem, the set of feasible
social choice functions is given by F = F

BIC

⋂

F
IIR

. The objective function in this case would be to
minimize the total expected cost of the buyer, which would be given by

Eθ [w(u1(f(θ), θ1), . . . , un(f(θ), θn))] = Eθ

[

n
∑

i=1

ti(θ)

]

.

Note that in the above objective function we have used f(θ) and not f(s∗(θ)). This is because in the
set of feasible social choice functions we are considering only BIC social choice functions, and for these
functions we have s∗(θ) = θ ∀ θ ∈ Θ. Thus, the Myerson’s optimal auction design problem can be
formulated as the following optimization problem:

minimize
f(·) ∈ F

Eθ

[

n
∑

i=1

ti(θ)

]

(5)
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where

F = {f(·) = (y0(·), y1(·), . . . , yn(·), t0(·), t1(·), . . . , tn(·)) : f(·) is BIC and interim IR} .

We have seen Myerson’s Characterization Theorem (Theorem 2.12) for BIC SCFs in linear environ-
ment. Similarly, we can say that an SCF f(·) in the above context would be BIC iff it satisfies the
following two conditions:

1. yi(·) is nonincreasing for all i = 1, . . . , n.

2. Ui(θi) = Ui(θi) +
θi
∫

θi

yi(s)ds ∀ θi ∈ Θi; ∀ i = 1, . . . , n.

Also, we can invoke the definition of interim individual rationality to claim that the an SCF f(·) in
the above context would be interim IR iff it satisfies the following conditions:

Ui(θi) ≥ 0 ∀θi ∈ Θi; ∀ i = 1, . . . , n

where

• ti(θ̂i) = Eθ
−i

[ti(θ̂i, θ−i)] is bidder i’s expected transfer given that he announces his type to be θ̂i

and that all the bidders j 6= i truthfully reveal their types.

• yi(θ̂i) = Eθ
−i

[yi(θ̂i, θ−i)] is the probability that object will be procured from bidder i given that

he announces his type to be θ̂i and all bidders j 6= i truthfully reveal their types.

• Ui(θi) = −θiyi(θi) + ti(θi) ( we can take unconditional expectation because types are indepen-
dent).

Based on the above, problem (15) can be rewritten as follows:

minimize
(yi(·), Ui(·))i∈N

n
∑

i=1

θi
∫

θi

(θiyi(θi) + Ui(θi)) φi(θi)dθi (6)

subject to

(i) yi(·) is nonincreasing ∀ i = 1, . . . , n

(ii) yi(θ) ∈ [0, 1],
∑n

i=1
yi(θ) ≤ 1 ∀i = 1, . . . , n,∀ θ ∈ Θ

(iii) Ui(θi) = Ui(θi) +
θi
∫

θi

yi(s)ds ∀ θi ∈ Θi; ∀ i = 1, . . . , n

(iv) Ui(θi) ≥ 0 ∀ θi ∈ Θi; ∀ i = 1, . . . , n.

We first note that if constraint (iii) is satisfied then constraint (iv) will be satisfied iff Ui(θi) ≥ 0 ∀ i =
1, . . . , n. As a result, we can replace the constraint (iv) with

(iv′) Ui(θi) ≥ 0 ∀ i = 1, . . . , n
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Next, substituting for Ui(θi) in the objective function from constraint (iii), we get

n
∑

i=1

θi
∫

θi






θiyi(θi) + Ui(θi) +

θi
∫

θi

yi(s)ds






φi(θi)dθi.

Integrating by parts the above expression, the auctioneer’s problem can be written as one of choosing
the yi(·) functions and the values U1(θ1), . . . , Un(θn) to minimize

θ1
∫

θ1

. . .

θn
∫

θn

[

n
∑

i=1

yi(θi)Ji(θi)

] [

n
∏

i=1

φi(θi)

]

dθn . . . dθ1 +

n
∑

i=1

Ui(θi)

subject to constraints (i), (ii), and (iv’), where

Ji(θi) =

(

θi +
Φi(θi)

φi(θi)

)

.

It is evident that the solution must have Ui(θi) = 0 for all i = 1, . . . , n. Hence, the auctioneer’s
problem reduces to choosing functions yi(·) to minimize

θ1
∫

θ1

. . .

θn
∫

θn

[

n
∑

i=1

yi(θi)Ji(θi)

][

n
∏

i=1

φi(θi)

]

dθn . . . dθ1

subject to constraints (i) and (ii).
Let us ignore constraint (i) for the moment. Then inspection of the above expression indicates

that yi(·) is a solution to this relaxed problem iff for all i = 1, . . . , n, we have

yi(θ) =

{

0 : if Ji(θi) > min
{

θ0,minh 6=i Jh(θh)
}

1 : if Ji(θi) < min
{

θ0,minh 6=i Jh(θh)
}

.
(7)

Note that Ji(θi) = min
{

θ0,minh 6=i Jh(θh)
}

is a zero probability event.
In other words, if we ignore the constraint (i) then yi(·) is a solution to this relaxed problem iff

the good is allocated to a bidder who has the lowest nonnegative value for Ji(θi). Now, recall the
definition of yi(·). It is easy to write down the following expression:

yi(θi) = Eθ
−i

[yi(θi, θ−i)] . (8)

Now, if we assume that Ji(·) is nondecreasing in θi then it is easy to see that the above solution yi(·),
given by (17), will be nonincreasing in θi, which in turn implies, by looking at expression (18), that
yi(·) is nonincreasing in θi. Thus, the solution to this relaxed problem actually satisfies constraint (i)
under the assumption that Ji(·) is nondecreasing. Assuming that Ji(·) is nondecreasing, the solution
given by (17) seems to be the solution of the optimal mechanism design problem for single unit-single
item procurement auction. The condition that Ji(·) is nondecreasing in θi is met by most of the
distribution functions such as Uniform and Exponential.
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So far we have computed the allocation rule for the optimal mechanism and now we turn our
attention toward the payment rule. The optimal payment rule ti(·) must be chosen in such a way that
it satisfies

ti(θi) = Eθ
−i

[ti(θi, θ−i)] = Ui (θi) + θiyi (θi) =

θi
∫

θi

yi(s)ds + θiyi (θi) . (9)

Looking at the above formula, we can say that if the payment rule ti(·) satisfies the following formula
(20), then it would also satisfy the formula (19).

ti(θi, θ−i) =

θi
∫

θi

yi(s, θ−i)ds + θiyi (θi, θ−i) ∀ θ ∈ Θ. (10)

The above formula can be rewritten more intuitively as follows. For any vector θ−i, let us define

zi(θ−i) = sup
{

θi : Ji(θi) < θ0 and Ji(θi) ≤ Jj(θj) ∀ j 6= i
}

.

Then zi(θ−i) is the supremum of all winning bids for bidder i against θ−i, so

yi(θi, θ−i) =

{

1 : if θi < zi(θ−i)
0 : if θi > zi(θ−i).

This gives us

θi
∫

θi

yi(s, θ−i)ds =

{

zi(θ−i) − θi : if θi ≤ zi(θ−i)
0 : if θi > zi(θ−i).

Finally, the formula (20) becomes

ti(θi, θ−i) =

{

zi(θ−i) : if θi ≤ zi(θ−i)
0 : if θi > zi(θ−i).

That is, bidder i will receive payment only when the good is procured from him, and then he receives
an amount equal to his highest possible winning bid.

We make a few interesting observations:

1. When the various bidders have differing distribution function Φi(·) then, the bidder who has the
smallest value of Ji(θi) is not necessarily the bidder who has bid the lowest amount for the good.
Thus Myerson’s optimal auction need not be allocatively efficient, and therefore, need not be
ex-post efficient.

2. If the bidders are symmetric, that is,

• Θ1 = . . . = Θn = Θ

• Φ1(·) = . . . = Φn(·) = Φ(·),
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then the allocation rule would be precisely the same as that of first-price reverse auction and
second-price reverse auction. In such a case the object would be allocated to the lowest bidder.
In such a situation, the optimal auction would also become allocatively efficient, and the payment
rule described above would coincide with the payment rules in second-price reverse auction. In
other words, the second price reverse auction would be an optimal auction when the bidders
are symmetric. Therefore, many times, the optimal auction is also known as modified Vickrey

auction.

Riley and Samuelson [3] also have studied the problem of design of an optimal auction for selling
a single unit of a single item. They assume the bidders to be symmetric. Their work is less general
than that of Myerson [2].

2 Optimal Mechanisms

An obvious problem that faces a social planner is to decide which direct revelation mechanism (or
equivalently, social choice function) is optimal for a given problem. In the rest of this paper, our
objective is to familiarize the reader with a couple of techniques which social planner can adopt to
design an optimal direct revelation mechanism for a given problem at hand.

One notion of optimality in multi-agent systems is that of Pareto efficiency . We now define
three different notions of efficiency: ex-ante, interim, and ex-post. These notions were introduced by
Holmstorm and Myerson [4].

Definition 2.1 (Ex-Ante Efficiency) For any given set of social choice functions F , and any mem-

ber f(·) ∈ F , we say that f(·) is ex-ante efficient in F if there is no other f̂(·) ∈ F having the following

two properties

Eθ[ui(f̂(θ), θi)] ≥ Eθ[ui(f(θ), θi)] ∀ i = 1, . . . , n

Eθ[ui(f̂(θ), θi)] > Eθ[ui(f(θ), θi)] for some i

Definition 2.2 (Interim Efficiency) For any given set of social choice functions F , and any mem-

ber f(·) ∈ F , we say that f(·) is interim efficient in F if there is no other f̂(·) ∈ F having the following

two properties

Eθ
−i

[ui(f̂(θ), θi)|θi] ≥ Eθ
−i

[ui(f(θ), θi)|θi] ∀ i = 1, . . . , n, ∀ θi ∈ Θi

Eθ
−i

[ui(f̂(θ), θi)|θi] > Eθ
−i

[ui(f(θ), θi)|θi] for some i and some θi ∈ Θi

Definition 2.3 (Ex-Post Efficiency) For any given set of social choice functions F , and any mem-

ber f(·) ∈ F , we say that f(·) is ex-post efficient in F if there is no other f̂(·) ∈ F having the following

two properties

ui(f̂(θ), θi) ≥ ui(f(θ), θi) ∀ i = 1, . . . , n, ∀ θ ∈ Θ

ui(f̂(θ), θi) > ui(f(θ), θi) for some i and some θ ∈ Θ

Using the above definition of ex-post efficiency, we can say that a social choice function f(·) is ex-post
efficient in the sense of definition 5.1 in [5] if and only if it is ex-post efficient in the sense of definition
2.3 when we take F = {f : Θ → X}.

The following proposition establishes a relationship among these three different notions of efficiency.
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Proposition 2.1 Given any set of feasible social choice functions F and f(·) ∈ F , we have

f(·) is ex-ante efficient ⇒ f(·) is interim efficient ⇒ f(·) is ex-post efficient

For proof of the above proposition, refer to Proposition 23.F.1 of [6]. Also, compare the above
proposition with the Proposition ??.

With this setup, we now try to formalize the design objectives of a social planner. For this, we
need to define the concept known as social utility function.

Definition 2.4 (Social Utility Function) A social utility function is a function w : R
n → R that

aggregates the profile (u1, . . . , un) ∈ R
n of individual utility values of the agents into a social utility.

Consider a mechanism design problem and a direct revelation mechanism D = ((Θi)i∈N , f(·)) proposed
for it. Let (θ1, . . . , θn) be the actual type profile of the agents and assume for a moment that they will
all reveal their true types when requested by the planner. In such a case, the social utility that would
be realized by the social planner for every possible type profile θ of the agents is given by:

w(u1(f(θ), θ1), . . . , un(f(θ), θn)) (11)

However, recall the implicit assumption behind a mechanism design problem, namely, that the agents
are autonomous and they would report a type as dictated by their rational behavior. Therefore,
the assumption that all the agents will report their true types is not true in general. In general,
rationality implies that the agents report their types according to a strategy suggested by a Bayesian
Nash equilibrium s∗(·) = (s∗

1
(·), . . . , s∗n(·)) of the underlying Bayesian game. In such a case, the social

utility that would be realized by the social planner for every possible type profile θ of the agents is
given by

w(u1(f(s∗(θ)), θ1), . . . , un(f(s∗(θ)), θn)) (12)

In some instances, the above Bayesian Nash equilibrium may turn out to be a dominant strategy equi-
librium. Better still, truth revelation by all agents could turn out to be a Bayesian Nash equilibrium
or a dominant strategy equilibrium.

2.1 Optimal Mechanism Design Problem

In view of the above notion of social utility function, it is clear that the objective of a social planner
would be to look for a social choice function f(·) that would maximize the expected social utility for
a given social utility function w(·). However, being the social planner, it is always expected of him to
be fair to all the agents. Therefore, the social planner would first put a few fairness constraints on the
set of social choice functions which he can probably choose from. The fairness constraints may include
any combination of all the previously studied properties of a social choice function, such as ex-post
efficiency, incentive compatibility, and individual rationality. This set of social choice functions is
known as set of feasible social choice functions and is denoted by F . Thus, the problem of a social
planner can now be cast as an optimization problem where the objective is to maximize the expected
social utility and the constraint is that the social choice function must be chosen from the feasible
set F . This problem is known as the optimal mechanism design problem and the solution of the
problem is some social choice function f∗(·) ∈ F which is used to define the optimal mechanism
D∗ = ((Θi)i∈N , f∗(·)) for the problem that is being studied.
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Depending on whether the agents are loyal or autonomous entities, the optimal mechanism design
problem may take two different forms.

maximize
f(·) ∈ F

Eθ [w(u1(f(θ), θ1), . . . , un(f(θ), θn))] (13)

maximize
f(·) ∈ F

Eθ [w(u1(f(s∗(θ)), θ1), . . . , un(f(s∗(θ)), θn))] (14)

The problem (13) is relevant when the agents are loyal and always reveal their true types whereas
the problem (14) is relevant when the agents are rational. At this point of time, one may ask how to
define the set of feasible social choice functions F . There is no unique definition of this set. The set
of feasible social choice functions is a subjective judgment of the social planner. The choice of the set
F depends on what all fairness properties the social planner would wish to have in the optimal social
choice function f∗(·). If we define

F
DSIC

= {f : Θ → X|f(·) is dominant strategy incentive compatible}

F
BIC

= {f : Θ → X|f(·) is Bayesian incentive compatible}

F
ExPostIR

= {f : Θ → X|f(·) is ex-post individual rational}

F
IntIR

= {f : Θ → X|f(·) is interim individual rational}

F
ExAnteIR

= {f : Θ → X|f(·) is ex-ante individual rational}

F
Ex−AnteEff

= {f : Θ → X|f(·) is ex-ante efficient}

F
IntEff

= {f : Θ → X|f(·) is interim efficient}

F
Ex−PostEff

= {f : Θ → X|f(·) is ex post efficient}

The set of feasible social choice functions F may be either any one of the above sets or intersection of
any combination of the above sets. For example, the social planner may choose F = F

BIC

⋂

F
IntIR

. In
the literature, this particular feasible set is known as incentive feasible set due to Myerson [1]. Also,
note that if the agents are loyal then the sets F

DSIC
and F

BIC
will be equal to the whole set of all the

social choice functions.
If the environment is quasi-linear, then we can also define the set of allocatively efficient social

choice functions F
AE

and the set of budget balanced social choice functions F
BB

. In such an environ-
ment, we will have F

Ex−PostEff
= F

AE

⋂

F
BB

.

2.2 Myerson’s Optimal Auction: An Example of Optimal Mechanism

Let us consider Example 2.1 in [5], of single unit - single item auction without reserve price and
discuss an optimal mechanism developed by Myerson [2]. The objective function here is to maximize
the auctioneer’s revenue.

Recall that each bidder i’s type lies in an interval Θi = [θi, θi]. We impose the following additional
conditions on the environment.

1. The auctioneer and the bidders are risk neutral

2. Bidders’ types are statistically independent, that is, the joint density φ(·) has the form φ1(·) ×
. . . × φn(·)
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3. φi(·) > 0 ∀ i = 1, . . . , n

4. We generalize the outcome set X relative to that considered in Example 2.1 in [5], by allowing a
random assignment of the good. Thus, we now take yi(θ) to be buyer i’s probability of getting
the good when the vector of announced types is θ = (θ1, . . . , θn). Thus, the new outcome set is
given by

X =

{

(y0, y1 . . . , yn, t0, t1, . . . , tn)|y0 ∈ [0, 1], t0 ≥ 0, yi ∈ [0, 1], ti ≤ 0 ∀ i = 1, . . . , n,

n
∑

i=1

yi ≤ 1
n

∑

i=0

ti = 0

}

1 Recall that the utility functions of the agents in this example are given by

ui(f(θ), θi) = ui(y0(θ), . . . , yn(θ), t0(θ), . . . , tn(θ), θi) = θiyi(θ) + ti(θ) ∀ i = 1, . . . , n

Thus, viewing yi(θ) = vi(k(θ)) in conjunction with the second and third conditions above, we can
claim that the underlying environment here is linear.

In the above example, we assume that the auctioneer is the social planner and he is looking for an
optimal direct revelation mechanism to sell the good. Myerson’s [2] idea was that the auctioneer must
use a social choice function which is Bayesian incentive compatible and interim individual rational
and at the same time fetches the maximum revenue to the auctioneer. Thus, in this problem, the set
of feasible social choice functions is given by F = F

BIC

⋂

F
InterimIR

. The objective function in this
case would be to maximize the total expected revenue of the seller which would be given by

Eθ [w(u1(f(θ), θ1), . . . , un(f(θ), θn))] = −Eθ

[

n
∑

i=1

ti(θ)

]

Note that in above objective function we have used f(θ) not f(s∗(θ)). This is because in the set
of feasible social choice functions we are considering only BIC social choice functions and for these
functions we have s∗(θ) = θ ∀ θ ∈ Θ. Thus, Myerson’s optimal auction design problem can be
formulated as the following optimization problem.

maximize
f(·) ∈ F

− Eθ

[

n
∑

i=1

ti(θ)

]

(15)

where

F = {f(·) = (y1(·), . . . , yn(·), t1(·), . . . , tn(·))|f(·) is BIC and interim IR}

By invoking Myerson’s Characterization Theorem (Theorem 11.2 in [5]) for BIC SCF in linear envi-
ronment, we can say that an SCF f(·) in the above context would be BIC iff it satisfies the following
two conditions

1. yi(·) is non-decreasing for all i = 1, . . . , n

1
Pn

i=1
yi < 1 when there is no trade.

10



2. Ui(θi) = Ui(θi) +
θi
∫

θi

yi(s)ds ∀ θi ∈ Θi; ∀ i = 1, . . . , n

Also, we can invoke the definition of interim individual rationality to claim that the an SCF f(·) in
the above context would be interim IR iff it satisfies the following conditions

Ui(θi) ≥ 0 ∀θi ∈ Θi; ∀ i = 1, . . . , n

where

• ti(θ̂i) = Eθ
−i

[ti(θ̂i, θ−i)] be bidder i’s expected transfer given that he announces his type to be

θ̂i and that all the bidders j 6= i truthfully reveal their types.

• yi(θ̂i) = Eθ
−i

[yi(θ̂i, θ−i)] is the probability that bidder i would receive the object given that he

announces his type to be θ̂i and all bidders j 6= i truthfully reveal their types.

• Ui(θi) = θiyi(θi) + ti(θi)
2

In view of the above paraphernalia, problem (15) can be rewritten as follows.

maximize
(yi(·), Ui(·))i∈N

n
∑

i=1

θi
∫

θi

(θiyi(θi) − Ui(θi)) φi(θi)dθi (16)

subject to

(i) yi(·) is non-decreasing ∀ i = 1, . . . , n

(ii) yi(θ) ∈ [0, 1],
∑n

i=1
yi(θ) ≤ 1 ∀i = 1, . . . , n,∀ θ ∈ Θ

(iii) Ui(θi) = Ui(θi) +
θi
∫

θi

yi(s)ds ∀ θi ∈ Θi; ∀ i = 1, . . . , n

(iv) Ui(θi) ≥ 0 ∀ θi ∈ Θi; ∀ i = 1, . . . , n

We first note that if constraint (iii) is satisfied then constraint (iv) will be satisfied iff Ui(θi) ≥ 0 ∀ i =
1, . . . , n. As a result, we can replace the constraint (iv) with

(iv’) Ui(θi) ≥ 0 ∀ i = 1, . . . , n
Next, substituting for Ui(θi) in the objective function from constraint (iii), we get

n
∑

i=1

θi
∫

θi






θiyi(θi) − Ui(θi) −

θi
∫

θi

yi(s)ds






φi(θi)dθi

Integrating by parts the above expression, the auctioneer’s problem can be written as one of choosing
the yi(·) functions and the values U1(θ1), . . . , Un(θn) to maximize

θ1
∫

θ1

. . .

θn
∫

θn

[

n
∑

i=1

yi(θi)Ji(θi)

] [

n
∏

i=1

φi(θi)

]

dθn . . . dθ1 −
n

∑

i=1

Ui(θi)

2We can take unconditional expectation because types are independent
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subject to constraints (i), (ii), and (iv’), where

Ji(θi) =

(

θi −
1 − Φi(θi)

φi(θi)

)

=

(

θi −
Φi(θi)

φi(θi)

)

where, we define Φi(θi) = 1−Φi(θi). It is evident that solution must have Ui(θi) = 0 for all i = 1, . . . , n.
Hence, the auctioneer’s problem reduces to choosing functions yi(·) to maximize

θ1
∫

θ1

. . .

θn
∫

θn

[

n
∑

i=1

yi(θi)Ji(θi)

][

n
∏

i=1

φi(θi)

]

dθn . . . dθ1

subject to constraints (i) and (ii).
Let us ignore constraint (i) for the moment. Then inspection of the above expression indicates

that yi(·) is a solution to this relaxed problem iff for all i = 1, . . . , n, we have

yi(θ) =

{

0 : if Ji(θi) < max {0,maxh 6=i Jh(θh)}
1 : if Ji(θi) > max {0,maxh 6=i Jh(θh)}

(17)

Note that Ji(θi) = max {0,maxh 6=i Jh(θh)} is a zero probability event.
In other words, if we ignore the constraint (i) then yi(·) is a solution to this relaxed problem iff the

good is allocated to a bidder who has highest non-negative vale for Ji(θi). Now, recall the definition
of yi(·). It is easy to write down the following expression

yi(θi) = Eθ
−i

[yi(θi, θ−i)] (18)

Now, if we assume that Ji(·) is non-decreasing in θi then it is easy to see that above solution yi(·), given
by (17), will be non-decreasing in θi, which in turn implies, by looking at expression (18), that yi(·) is
non-decreasing in θi. Thus, the solution to this relaxed problem actually satisfies constraint (i) under
the assumption that Ji(·) is non-decreasing. Assuming that Ji(·) is non-decreasing, the solution given
by (17) seems to be the solution of the optimal mechanism design problem for single unit- single item
auction. The condition that Ji(·) is non-decreasing in θi is met by most of the distribution functions
such as Uniform and Exponential.

So far we have computed the allocation rule for the optimal mechanism and now we turn out
attention towards the payment rule. The optimal payment rule ti(·) must be chosen in such a way
that it satisfies

ti(θi) = Eθ
−i

[ti(θi, θ−i)] = Ui (θi) − θiyi (θi) =

θi
∫

θi

yi(s)ds − θiyi (θi) (19)

Looking at the above formula, we can say that if the payment rule ti(·) satisfies the following formula
(20), then it would also satisfy the formula (19).

ti(θi, θ−i) =

θi
∫

θi

yi(s, θ−i)ds − θiyi (θi, θ−i) ∀ θ ∈ Θ (20)
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The above formula can be rewritten more intuitively, as follows. For any vector θ−i, let we define

zi(θ−i) = inf {θi|Ji(θi) > 0 and Ji(θi) ≥ Jj(θj) ∀ j 6= i}

Then zi(θ−i) is the infimum of all winning bids for bidder i against θ−i, so

yi(θi, θ−i) =

{

1 : if θi > zi(θ−i)
0 : if θi < zi(θ−i)

This gives us

θi
∫

θi

yi(s, θ−i)ds =

{

θi − zi(θ−i) : if θi ≥ zi(θ−i)
0 : if θi < zi(θ−i)

Finally, the formula (20) becomes

ti(θi, θ−i) =

{

−zi(θ−i) : if θi ≥ zi(θ−i)
0 : if θi < zi(θ−i)

That is bidder i must pay only when he gets the good, and then he pays the amount equal to his
lowest possible winning bid.

A few interesting observations are worth mentioning here.

1. When the various bidders have differing distribution function Φi(·) then, the bidder who has
the largest value of Ji(θi) is not necessarily the bidder who has bid the highest amount for the
good. Thus Myerson’s optimal auction need not be allocatively efficient and therefore, need not
be ex-post efficient.

2. If the bidders are symmetric, that is,

• Θ1 = . . . = Θn = Θ

• Φ1(·) = . . . = Φn(·) = Φ(·)

then the allocation rule would be precisely the same allocation rule of first-price and second-
price auctions. In such a case the object would be allocated to the highest bidder. In such a
situation, the optimal auction would also become allocatively efficient. Also, note that in such a
case the payment rule that we described above would coincide with the payment rules in second-
price auction. In other words, the second price (Vickrey) auction would be the optimal auction
when the bidders are symmetric. Therefore, many a time, the optimal auction is also known as
modified Vickrey auction.

Riley and Samuelson [3] also have studied the problem of design of an optimal auction for selling
a single unit of a single item. They assume the bidders to be symmetric. Their work is less
general than that of Myerson [2].
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2.3 Extensions to Myerson’s Auction

2.3.1 Efficient Optimal Auctions

Krishna and Perry [7] have argued in favor of an auction which will maximize the revenue subject to
allocative efficiency (AE) and also DSIC and IIR constraints. The Green Laffont theorem (Theorem
10.2 in [5]) tells us that any DSIC and AE mechanism is necessarily a VCG mechanism. So, we have
to look for a VCG mechanism which will maximize the revenue to the seller. Krishna and Perry [7]
define, social utility as the value of an efficient allocation:

SW (θ) =

j=n
∑

j=1

vj(k
∗(θ), θj)

SW−i(θ) =
∑

j 6=i

vj(k
∗(θ), θj)

With these functions, we can write the payment rule in Clarke’s pivotal mechanism as

ti(θ) = SW−i(0, θ−i) − SW−i(θ)

That is, payment by the agent i is the externality he is imposing by reporting type to be θi rather than
zero. The authors of [7] generalize it. Fix a vector, s = (s1, s2, . . . , sn) ∈ Θ called as basis because, it
defines the payment rule . The VCG mechanism with basis s is defined by

ti(θ|si) = SW (si, θ−i) − SW−i(θ)

It can be seen that this new mechanism is also DSIC. Now choosing an appropriate basis, one can
always find an optimal auction in the class of VCG mechanisms. Krishna and Perry [7] have shown
that the classical Vickrey auction is an optimal and efficient auction for a single indivisible item. They
have also shown that the Vickrey auction is an optimal one among VCG mechanisms for multi-unit
auctions, when all the bidders have downward sloping demand curves.

3 Problems

1. Consider a sealed bid auction with one seller and two buying agents. There is a single indivisible
item which the seller wishes to sell. The bidders are symmetric with independent private values
distributed uniformly over [0, 1]. Whoever bids higher will be allocated the item. For this
auction:

• What is the equilibrium bidding strategy of a bidder in the first price auction?

• What is the expected revenue in the first price auction

• What is the expected revenue in the second price auction

• What is the expected revenue in the optimal auction
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