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In the previous chapter, we have studied the two person bargaining problem where we have explored
the effect of cooperation between two players. In this chapter, we introduce multiplayer coalitional

games.

1 Multi-Person Bargaining Problem

Let N = {1, . . . , n} be the set of players. We have already seen the Nash bargaining solution for a two
player game. What will this solution look like for an n-player game with n > 2? Let F be the set of
feasible allocations that the players can get if they all work together. Let us assume that F is a closed
convex subset of R

n. Let (v1, . . . , vn) be the disagreement payoff allocation the players would expect if
they did not cooperate. Also assume that the set {(y1, . . . , yn) ∈ F : yi ≥ vi ∀i ∈ N} is non-empty and
bounded. The pair (F, (v1, . . . , vn)) is then called an n-person bargaining problem. The bargaining
problem (F, (v1, . . . , vn)) is said to be essential if there exists y ∈ F such that yi > vi ∀i ∈ N .

Suppose (F, (v1, . . . , vn)) is essential. Then its Nash bargaining solution can be defined to be the
unique strongly efficient allocation vector that maximizes

n
∏

i∈N

(xi − vi)

over all vectors x ∈ F such that xi ≥ vi ∀i ∈ N .
However this Nash bargaining solution ignores the possibility of cooperation among subsets of

the players as shown in the series of four examples below. Consequently for n > 2, Nash bargaining
solution may not give a credible solution. So we have to look for more appropriate solution concepts.
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1.1 Divide the Dollar Problem

Example 1: Divide the Dollar Game - Version 1

Here there are three players, so N = {1, 2, 3}. The players wish to divide a total wealth of 300 (real
number) among themselves. Each player can propose a payoff such that no player’s payoff is negative
and the sum of all the payoffs does not exceed 300. The strategy sets can therefore be defined as
follows:

S1 = S2 = S3 = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 ≤ 300; x1 ≥ 0; x2 ≥ 0, x3 ≥ 0}

Assume that the players will get 0 unless all three players propose the same allocation. That is for
i = 1, 2, 3,

ui(s1, s2, s3) = xi if s1 = s2 = s3 = (x1, x2, x3)

= 0 otherwise

Note in this game that the players can achieve any allocation in which their payoffs are non-negative
and sum to ≤ 300. The minimum guaranteed wealth is 0 for each player. The above game can
therefore be described as a three person bargaining problem (F, v) where:

F = {(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 ≤ 300, x1 ≥ 0; x2 ≥ 0, x3 ≥ 0}

v = (v1, v2, v3) = (0, 0, 0)

The Nash bargaining solution for this problem is x = (100, 100, 100), which clearly is a reasonable
outcome for this situation.

Example 2: Divide the Dollar Game - Version 2

This is a variation of Version 1 with the difference that players get 0 unless player 1 and player 2
propose the same allocation in which case the allocation proposed by players 1 and 2 is enforced.
That is, for i = 1, 2, 3,

ui(s1, s2, s3) = xi if s1 = s2 = (x1, x2, x3)

= 0 otherwise

The same bargaining problem (F, v) as in Version 1 would describe the situation here and hence the
Nash bargaining solution for this problem also is x = (100, 100, 100). This solution looks unreasonable
because players 1 and 2 together determine the payoff allocation and player 3 is not involved in the
decision. So, we would expect players 1 and 2 to divide the payoff equally between them, leading to
the allocation (150, 150, 0). Another viewpoint which supports this argument is as follows. Suppose
1 and 2 ignore 3 and play out a two person cooperative game. The resulting two person game would
have the Nash bargaining solution that divides 300 equally between 1 and 2.

Having noted the above, there are a few reasons for arguing in favor of the solution (100, 100, 100)
for this problem.

• The players are required to choose their proposals simultaneously and both (100, 100, 100) and
(150, 150, 0) are equilibria for the players.
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• Even if non-binding preplay communication is possible between the players, there is still an
equilibrium in which both players 1 and 2 expect each other to ignore anything that was said.
This again points to (100, 100, 100) as a possibility.

• If player 3 has any influence, then player 3, being rational, would clearly try to influence players
1 and 2 to go for the equilibrium (100, 100, 100).

However, there is one central assumption based on which the outcome (100, 100, 100) loses credibility
and fails any justification. This is the effective negotiation assumption which is a natural assumption
to make, as articulated by Myerson [1]. The members of a coalition of players are said to negotiate

effectively and are said to form an effective coalition if the players, on realizing that there is a feasible
change in their strategies that would benefit them all, would all agree to actually make such a change
unless such a change contradicts some agreements that some members of the coalition might have
made with other players outside this coalition, in the context of some other equally effective coalition.
According to Myerson [1], effective negotiation is the key assumption that distinguishes cooperative
game theory from non-cooperative game theory.

The n-person Nash bargaining solution would be relevant if the only coalition that can negotiate
effectively is the grand coalition that includes the whole of N . If other coalitions also can negotiate
effectively, then the Nash solution is no longer relevant. This is because it ignores all information
about the power of multi-player coalitions other than the grand coalition N . In Version 1 of the
divide-the-dollar game, no coalition that is smaller than {1, 2, 3} can guarantee more than 0 to its
members. In Version 2, the coalition {1, 2} could guarantee its members any payoff allocation that
they could get in {1, 2, 3}.

Example 3: Divide the Dollar Game - Version 3

This is a slight variation of Version 2 with the difference that players get 0 unless player 1 and player
2 propose the same allocation or player 1 and player 3 propose the same allocation, in which case they
would get what is proposed. That is, for i = 1, 2, 3,

ui(s1, s2, s3) = xi if s1 = s2 = (x1, x2, x3) or s1 = s3 = (x1, x2, x3)

= 0 otherwise

The bargaining problem (F, v) as in Versions 1 and 2 would describe the situation here and hence the
Nash bargaining solution for this problem also is x = (100, 100, 100). Much like in the case of Version
2, this solution also looks quite unreasonable since players 1 and 2 together or players 1 and 3 together
determine the payoff allocation. Player 1 is necessarily involved in both the above situations. So, we
would expect the players to divide the payoff in a way that players 2 and 3 get the same payoff but
this payoff should be less than the payoff that player 1 would get (since player 1 has to necessarily
agree for a non-zero allocation). This leads to uncountably infinite number of possibilities, such as
(120, 90, 90), (150, 75, 75), (200, 50, 50), (280, 10, 10), etc. One can even suggest an allocation (300,
0, 0) on the ground that player 1 is indispensable for a non-zero allocation.
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Example 4: Divide the Dollar Game - Version 4 (Majority Voting Game)

In this version, the players get 0 unless there is some pair of players {1, 2}, {2, 3}, or {1, 3} who propose
the same allocation, in which case they get this allocation. That is,

ui(s1, s2, s3) = xi if sj = sk = (x1, x2, x3) for some j 6= k

= 0 otherwise

Here again, the Nash bargaining solution is (100, 100, 100). Clearly, this is perfectly justified for this
version because of symmetry and equal bargaining power of the players. Observe that this allocation
is a Nash equilibrium. If we assume that every coalition can negotiate effectively, the analysis becomes
quite interesting as seen below.

• If players 1 and 2 negotiate effectively in the coalition {1, 2}, they can agree to the allocation
(150, 150, 0) which is attractive for both of them. Observe that this allocation is also a Nash
equilibrium.

• If (150, 150, 0) is the expected outcome, then player 3 would be eager to persuade player 1 or
player 2 to form an effective coalition with him. For example, player 3 would be willing to
negotiate an agreement with player 2 to both propose (0, 225, 75). This allocation is also a Nash
equilibrium.

• If (0, 225, 75) were to be the expected outcome in the absence of further negotiations, then player
1 would be willing to negotiate an agreement with player 3 to propose an allocation that is better
for both of them, say, (113, 0, 187). This allocation is again a Nash equilibrium.

• It turns out that in any equilibrium of this game, there is always at least one pair of players who
would both do strictly better by jointly agreeing to change their strategies together.

The above sequence of coalitional negotiations will have no end. There are two possible ways in which
the negotiations could conclude.

1. Let us say that a player, having negotiated an agreement as part of a coalition, cannot later
negotiate a different agreement with another coalition, that does not contain all the mem-
bers of the first coalition. For example, if the grand coalition {1, 2, 3} negotiated the agree-
ment (100, 100, 100) before any two player coalition could negotiate separately, then no two
player coalition can veto this outcome. Also, if players 1 and 2 first negotiated an agreement
(150, 150, 0), then player 3 would be unable to increase this payoff by negotiating with player 1
or player 2 separately. It is clear that the order in which coalitions can negotiate may crucially
determine the outcome of the game. The advantage lies with coalitions that negotiate earlier.

2. Suppose the negotiated agreements are tentative and non-binding. Thus a player who negotiates
in a sequential manner in various coalitions can nullify his earlier agreements and reach a different
agreement with a coalition that negotiates later. Here the order in which negotiations are made
and nullified will have a bearing on the final outcome. For example, let us say the order of
negotiations is {1, 2}, {2, 3}, {1, 3} and {1, 2, 3}. Here any agreement by {1, 2} and {2, 3} in
that order to pay non-zero amount to player 2 can be overturned by the coalition {1, 3} which
might agree on (150, 0, 150). Player 2 may not be able to make them concede anything when
the turn of coalition {1, 2, 3} arises. As another example, assume that player 1 believes that,
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any negotiated agreement with player 2, would be overturned by player 3. Player 1 may first
suggest (100, 100, 100) and stick to it and refuse to agree for (150, 150, 0). This he would do to
prevent any possibility of his getting zero payoff. It is clear that coalitions that get to negotiate
later hold the advantage in this scheme.

In realistic cooperative scenarios where different coalitions could form, the number of possibilities
could be mind-boggling and a systematic analysis of all scenarios may become infeasible. There are
as many as 2n − 1 such coalitions possible and therefore there is a need for theories of cooperative
games that can provide a clear sense of what to expect as a result of the balance of power among
various coalitions. Such order-independent theories will be extremely useful but will pose challenges
in interpretation because ordering is often natural and important.

2 Games in Characteristic Form (TU Games)

The assumption of transferable utility makes cooperative games somewhat tractable. This assumption
implies that there is a commodity called money that the players can freely transfer among themselves
such that any player’s payoff increases by one unit for every unit of money that he gets. With the
assumption of transferable utility in place, the cooperative possibilities of a game can be described by
a characteristic function v : 2N → R, that assigns a number v(C) to every coalition C ⊆ N . v(∅) is
always taken to be zero. v(C) is called the worth of the coalition C and it captures the total amount
of transferable utility that the members of C could earn without any help from the players outside of
C.

Definition: A cooperative game with transferable utility is defined as the pair (N, v) where N =
{1, . . . , n} is a set of players and v : 2N → R is a characteristic function, with v(∅) = 0. We call such a
game also as a game in coalition form, game in characteristic form, or coalitional game or TU game.

Note that, under the assumption of transferable utility, specifying a single number for each coalition
is enough to describe what allocations of utility can be achieved by the members of the coalition.

Non-Transferable Utility (NTU) Games

In contrast, games without transferable utility (also called NTU coalitional games or games in NTU
coalitional form) are defined as follows.

Definition: An NTU coalitional game on the set of players N is any mapping V (.) on the domain
2N such that, for any coalition C ⊂ N ,

• V (C) is a non-empty closed and convex sub set of R
|C|, and

• The set {x : x ∈ V (C) and xi ≥ vi ∀i ∈ C} is a bounded subset of R
|C|, where

vi = max{yi : y ∈ V ({i})}

< ∞ ∀i ∈ N

Here V (C) is the set of expected payoff allocations that the members of coalition C could
guarantee for themselves if they act cooperatively. An NTU game is a generalization of a TU
game.

In the remainder of the discussion, we will consider only TU games.
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2.1 Examples of TU Games

2.1.1 Characteristic Functions for Divide the Dollar Games

The Divide-the-Dollar - Version 1 game discussed in Example 1 has the following characteristic func-
tion.

v({1, 2, 3}) = 300

v({1, 2}) = v({1, 3}) = v({2, 3}) = 0

v({1}) = v({2}) = v({3}) = 0

Version 2 of the game has the characteristic function:

v({1, 2, 3}) = v({1, 2}) = 300

v({2, 3}) = v({1, 3}) = 0

v({1}) = v({2}) = v({3}) = 0

Version 3 of the game has the characteristic function:

v({1, 2, 3}) = v({1, 2}) = v({1, 3}) = 300

v({1}) = v({2}) = v({3}) = v({2, 3}) = 0

Version 4 of the game (majority voting game) has the characteristic form:

v({1, 2, 3}) = v({1, 2}) = v({2, 3}) = v({1, 3}) = 300

v({1}) = v({2}) = v({3}) = 0

2.1.2 A Voting Game

This example is taken from [2]. Consider that the Parliament of a certain Nation has four political
parties 1, 2, 3, 4 with 45, 25, 15, 12 members respectively. To pass any bill, at least 51 votes are
required. This situation could be modeled as a TU games with N = {1, 2, 3, 4} and

v(1) = v(2) = v(3) = v(4) = 0

v(12) = v(13) = v(14) = v(123) = v(124) = v(134) = v(234) = v(1234) = 100

v(23) = v(24) = v(34) = 0

2.1.3 Minimum Spanning Tree Game

This example is also taken from [2]. Suppose a group of users are to be connected to an expensive
resource managed by a central facility (for example, a power plant, a synchrotron, a radio telescope, a
high performance cluster, etc.). In order to make utilize this resource, a user should either be directly
connected to the facility or be connected to some other connected user. Figure 1 provides a picture of
a typical network of customers. Here the set of players is the set of all users and v(C) for any coalition
of users is the cost of connecting all users in C directly to the facility minus the cost of a minimum
cost spanning tree that spans the facility and the users in C.
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Figure 1: A network of users connected to a critical resource (central facility)
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2.1.4 A Logistics Game

Figure 2 shows a logistics network that provides connectivity between two important cities S and
T. There are five logistics hubs A, B, C, D, E which are intermediate points from S to T. The
transportation is provided by service providers 1, 2, 3, 4. Each edge in the network is labeled by two
quantities namely the service provider and the cost of service. For example, the label 3, 15 on the
directed edge from A to B means that service provider 3 provides the logistics service from A to B at
a cost of 15 units. Assume that movement from S to T fetches a revenue of 100 units. The objective
is to choose an optimal path from S to T that minimizes the cost of moving from S to T. We can
formulate this as a cooperative game with N = {1, 2, 3, 4} and with characteristic function

v(1) = v(2) = v(3) = v(4) = 0

v(12) = v(13) = v(14) = v(23) = v(24) = v(34) = v(234) = v(123) = 0

v(134) = 100 − 60 = 40

v(124) = 100 − 55 = 45

v(1234) = 100 − 35 = 65

3 Representations for TU Games

Like in the case of Nash bargaining problems, there are several different ways in which the characteristic
function could be defined for TU games, starting from the base model, namely a strategic form game.
Three of the more common representations are:

1. Minimax representation

2. Defensive equilibrium representation

3. Rational threats representation

We describe the minimax representation below and postpone a discussion of the other two represen-
tations to the Appendix.

3.1 Minimax Representation

Let Γ = 〈N, (Si), (ui)〉 be a n-person strategic form game with transferable utility. Let C ⊂ N be any
coalition of players. N \ C is the set of all players who are not in the coalition C. Let

SN\C = ×j∈N\C Sj

SC = ×j∈C Sj

Now, ∆(SC) is the set of correlated strategies available to coalition C. Let ui(σC , σN\C) denote
player i’s expected payoff, before transfers of money, when the correlated strategies σC and σN\C are
independently implemented:

ui(σC , σN\C) =
∑

sC∈SC

∑

sN\C∈SN\C

σC(sC)σN\C(sN\C) ui(sC , sN\C)
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It was suggested by von Neumann and Morgenstern that the characteristic function should be defined
by:

v(C) = min
σN\C∈∆(SN\C)

max
σC∈∆(SC)

∑

i∈C

ui(σC , σN\C)

v(C) may be interpreted as the maximum sum of utility payoffs that the members of coalition C can
guarantee themselves against the most offensive threat by the complementary coalition. This is called
the minimax representation in coalitional form of the strategic form game Γ with transferable utility.

3.1.1 Intuition on Minimax Representation

This representation implicitly assumes that a coalition C should be concerned that N \C would attack
C offensively if the members of C decided to cooperate with each other but without the players in
N \C. However, offensively minimizing the sum of payoffs of the players in C may not be in the best
interests of players in N \ C. Note that the primary interest of all players is to maximize their own
payoffs. A justification for the assumption that the members of N \C might act offensively against C

is as follows. When all players ultimately cooperate together as a part of the grand coalition N and
the players are negotiating over the possible division of worth v(N), the players in N \ C can jointly
commit themselves to an offensive threat that would be carried out only in the improbable event that
the players in C break off negotiations with players in N \ C. Such a threat by N \ C is a deterrent
on the coalition C and the members of C would be willing to concede a larger share to N \ C.

3.1.2 An Example for Minimax Representation of a TU Game

This example is taken from the book by Straffin [3]. Consider a strategic form game with N =
{1, 2, 3}, S1 = S2 = S3 = {A,B}, and with payoffs as shown in Table 1.

(s1, s2, s3) u1(s1, s2, s3) u2(s1, s2, s3) u3(s1, s2, s3)

(A,A,A) 1 1 -2

(A,A,B) 3 -2 -1

(A,B,A) -4 3 -1

(A,B,B) -6 -6 12

(B,A,A) 2 -4 2

(B,A,B) 2 2 -4

(B,B,A) -5 -5 10

(B,B,B) -2 3 -1

Table 1: Payoff matrix for the given strategic form game

If players 2 and 3 cooperate and decide to move jointly against player 1, then we have a virtual
game with two players {1} and {2, 3}. Then using minmax representation, the payoffs will be as shown
in Table 2.

The game shown in Table 2 is a zero sum game with optimal strategies for the players as: (3
5 , 2

5)
for player 1; (0, 1) for player 2 and (4

5 , 1
5) for player 3. this leads to a payoff of -4.4 for player 1 and

a payoff of 4.4 for the coalition {2, 3}. Likewise, the minimax values can be computed for all possible
coalitional structures and this yields the following characteristic function.
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{2, 3}
{1} (A,A) (B,A) (A,B) (B,B)

A 1, -1 -4, 4 3, -3 -6, 6

B 2, -2 -5, 5 2, -2 -2, 2

Table 2: Payoff matrix with two coalitions {1} and {2, 3}

v(1) = −4.4; v(2) = 4; v(3) = −1.43

v(23) = 4.4; v(13) = 4; v(12) = 1.43

v(123) = 0

4 Superadditive Games

Definition: A TU game (N, v) is said to be superadditive if

v(C ∪ D) ≥ v(C) + v(D) ∀ C,D,⊆ N such that C ∩ D = φ

Intuitively, the value of union of two disjoint coalitions is higher than the sum of values of the two
parts, that is, two disjoint coalitions on coming together produce an additional value beyond the sum
of the individual values. It can be shown that all games (N, v) obtained from strategic form games
using minimax representation will satisfy this property. The defensive equilibrium and rational threats
representations do not necessarily lead to super-additive games.

4.1 Examples for Superadditivity

Example 1

The majority voting game with N = {1, 2, 3, 4} and v given by v(1) = v(2) = v(3) = 0 and v(12) =
v(13) = v(23) = v(123) = 300 is a superadditive game.

Example 2

The following game (called the communication satellite game [3]) is also superadditive. v(1) =
3; v(2) = 2; v(3) = 1
v(12) = 8; v(13) = 6.5; v(23) = 8.2
v(123) = 11.2

Example 3

The following three player game is not superadditive. v(1) = 10; v(2) = 15; v(3) = 20
v(12) = 20; v(13) = 30; v(23) = 35
v(123) = 40
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4.2 Superadditive Cover

Definition: Given a game (N, v) in coalitional form, the super-additive cover of v is the super-additive
game (N,w) in coalitional form with the lowest possible worths for all coalitions such that

w(C) ≥ v(C) ∀C ⊂ N

Let P (C) be the set of all partitions of C. The super-additive cover w of the game v in coalitional
form satisfies the equation

w(C) = max







k
∑

j=1

v(Tj) : {T1, . . . , Tk} ∈ P (C)







∀C ⊂ N

The above definition implies that the worth of a coalition in the super-additive cover is the maximum
worth that the coalition could achieve by breaking up into a set of smaller disjoint coalitions. The
notion of a super-additive cover provides a way to define a super-additive game corresponding to any
game in coalitional form.

4.3 Imputations

Given a TU game (N, v), an imputation is an allocation x = (x1, . . . , xn) ∈ R
n that satisfies

• Individual Rationality : xi ≥ v({i}) ∀ i ∈ N

• Collective Rationality :
∑

i∈N xi = v(N)

An imputation keeps all individual players happy and also distributes the total value of the grand
coalition among the players (Pareto efficiency).

4.4 Essential and Inessential Games

A superadditive game (N, v) is said to be inessential if

∑

i∈N

v(i) = v(N)

and essential if
∑

i∈C

v(i) ≤ v(N)

If (N, v) is inessential then,
∑

i∈N

v(i) = v(C) ∀ C ⊆ N

Therefore the only possible imputation for an inessential game is (v(1), v(2), . . . , v(n)). On the other
hand, there are infinitely many imputations possible for an essential game.
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Figure 3: An equilateral triangle, x1 + x2 + x3 = h

4.5 Strategic Equivalence of TU Games

Two TU games (N, v) and (N,w) are said to be strategically equivalent if there exist constants
c1, c2, . . . , cn and b > 0 such that

w(c) = b(v(C) +
∑

i∈C

ci) ∀ C ⊆ N

Intuitively, strategic equivalence means that the dynamics among the players would be identical in the
two games. An important result concerning strategic equivalence is that any superadditive, essential
n-person characteristics form game G in the strategically equivalent to a unique game with

N = {1, 2, . . . , n}

v(1) = v(2) = · · · = v(n) = 0i; v(N) = 1

0 ≤ v(C) ≤ 1 ∀ C ⊆ N

This unique game is called the 0-1 normalization of the original game.

4.6 Triangular Representation for Three Person Superadditive Games

The imputations in any three person game with v(1) = v(2) = v(3) = 0 and v(N) = 1 can be
represented using an interesting triangular representation. This representation uses the following
property: Suppose P is any point in a equilateral triangle with height h. Then the sum of the
distances from P to the three sides of the triangle is equal to h (see Figure 3).

If we consider the majority voting game with v(1) = v(2) = v(3) = 0; v(12) = v(13) = v(23) =
v(123) = 1 then any point ρ = (x1, x2, x3) represents an imputation because x1 ≥ 0; x1 ≥ 0; x2 ≥
0; x3 ≥ 0; x1 + x2 + x3 = 1. Figure 4 depicts several representative imputations.
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4.6.1 Example: Bargaining in Majority Voting Game

Consider the majority voting game (Divide-the-Dollar-version 4) where we have N = {1, 2, 3} and
v(1) = v(2) = v(3) = 0; v(12) = v(13) = v(23) = v(123) = 300. Suppose we start with an alloca-
tion (150, 150, 0) which indicates an alliance between players 1 and 2. Player 3 can entice player 1
by proposing an allocation such as (180, 0, 120). Player 2 can now propose an allocation such as
(0,120,180) and draw player 3 out of alliance with player 1. In this particular game, bargaining can
go on endlessly without any stable allocation being agreed upon. A graphical representation of this
endless negotiation is presented in Figure 5.

4.7 Domination of Imputation

An imputation x = (x1, . . . , xn) of a TU game (N, v) is said to dominate an imputation y = (y1, . . . , yn)
if there exists a coalition C such that

∑

i∈C

xi ≤ v(C)

xi > yi ∀ i ∈ C

We make several observations about the notion of domination.

1. Given two imputations x and y, it is possible that neither dominates the other. An immediate
example would be three person majority voting game where the imputation x = (150, 150, 0)
neither dominates nor is dominated by the imputation y = (0, 150, 150).

2. The relation of domination is not transitive and cycles of domination are possible. Again an
immediate example would be majority voting game where imputation (0, 180, 120) dominates
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(150,150,0)

(150,0,150)

(0,120,180)

(20,0,280)

(60,0,240)

(180,0,120)

(60,240,0)

(0,30,270)

Figure 5: Chain of unending negotiations in majority voting game

imputation (150, 150,0) which dominates imputation (90, 0, 210) which in turn dominates (0,
180, 120).

3. In a TU game, it is possible that every imputation is dominated by some other imputation as
shown in Figure 6. Note that the imputation x is dominated by imputations in the shaded
regions and dominates imputations in the dotted regions.

To Probe Further

The material in this chapter is mostly based on the books by Myerson [1] and Straffin [3].

Problems

1. Show that a TU game obtained from a strategic form game using the minimax representation is
superadditive.

2. (Straffin 1993) [3]. Show that any superadditive, essential, two person TU game (N, v) is strate-
gically equivalent to a unique game (N,w) where

w(1) = w(2) = . . . = w(n) = 0

w(N) = 0

0 ≤ w(C) ≤ 1 ∀C ⊆ N

The game (N,w) is called the 0-1 normalization of (N, v).
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Figure 6: Imputation x is dominated by some imputations and dominates the other imputations

3. (Straffin 1993) [3]. Show that the 0-1 normalization of any three person constant sum game
(that is, a TU game where, for every coalition C ⊆ N , v(C) + v(N \ C) is a constant) is the
three person majority voting game.

5 Appendix: Defensive Equilibrium Representation and Rational

Threats Representation

5.1 Defensive Equilibrium Representation

Here we assume that complementary coalitions would play an essentially defensive pair of equilibrium
strategies against each other. The implicit assumption that each coalition makes here is that the
complementary coalition will play an equilibrium strategy and the coalition settles for a defensive
strategy by playing its equilibrium strategy. For all C ⊂ N , define σ̄C as a correlated strategy
belonging to the set

argmax

σC ∈ ∆(SC)
∑

i∈C

ui(σC , σ̄N\C)

Similarly, define σ̄N\C a correlated strategy belonging to the set

argmax

σN\C ∈ ∆(SN\C)
∑

j∈N\C

uj(σ̄C , σN\C)

Define the characteristic function as

v(C) =
∑

i∈C

ui(σ̄C , σ̄N\C)
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v(N \ C) =
∑

j∈N\C

uj(σ̄C , σ̄N\C)

Then v is called a defensive equilibrium representation in coalition form of the strategic form game Γ
with transferable utility.

5.2 Rational Threats Representation

This was proposed by Harsanyi in 1963. This representation is derived by generalizing the rational
threats criterion of Nash. Let C ⊂ N be any coalition. Define σ̄C as a correlated strategy belonging
to the set

argmax

σC ∈ ∆(SC)





∑

i∈C

ui(σC , σ̄N\C) −
∑

j∈N\C

uj(σC , σ̄N\C)





Similarly, define σ̄N\C a correlated strategy belonging to the set

argmax

σN\C ∈ ∆(SN\C)





∑

j∈N\C

uj(σ̄C , σN\C) −
∑

i∈C

ui(σ̄C , σN\C)





Now define
v(C) =

∑

i∈C

ui(σ̄C , σ̄N\C)

v(N \ C) =
∑

j∈N\C

uj(σ̄C , σ̄N\C)

5.3 Some Observations

Note that in all the three representations, the worth of the grand coalition N is the same:

v(N) = max
sN∈SN

∑

i∈N

ui(sN )

The distinction between the three representations can be interpreted in terms of different assumptions
about the ability of the coalitions to commit themselves to offensive and defensive threats.

Example: Different Representations of TU Games

Let N = {1, 2, 3}; Si = {ai, bi} for i = 1, 2, 3. Suppose the payoff matrix is as shown below.

S2 × S3

S1 a2, a3 b2, a3 a2, b3 b2, b3

a1 4, 4, 4 2, 5, 2 2, 2, 5 0, 3, 3

b1 5, 2, 2 3, 3, 0 3, 0, 3 1, 1, 1

ai is to be interpreted as a generous strategy and bi as a selfish strategy .

16



1. In the minimax representation, each coalition C gets the most that it could guarantee itself if
the players in the complementary coalition were selfish.

v({1, 2, 3}) = 12

v({1, 2}) = v({1, 3}) = v({2, 3}) = 4

v({1}) = v({2}) = v({3}) = 1

2. In the defensive equilibrium representation, the members of a two player coalition can actually
increase the sum of their payoffs by both being generous. Here the characteristic function would
be

av({1, 2, 3}) = 12

v({1, 2}) = v({1, 3}) = v({2, 3}) = 4

v({1}) = v({2}) = v({3}) = 5

This representation imputes an advantage to a player who acts selfishly alone against a generous
two player coalition.

3. In the rational threats representation, both the offensive and defensive considerations are taken
into account. Here all coalitions smaller than N choose selfishness in the game.

v({1, 2, 3}) = 12

v({1, 2}) = v({1, 3}) = v({2, 3}) = 2

v({1}) = v({2}) = v({3}) = 1

If all three representations coincide, the game is said to have orthogonal coalitions. As to which
representation is to be used depends on what the modeler or designer perceives as most appropriate.
In some cases, as in the orthogonal case, there may be a natural representation that might immediately
suggest itself.
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