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The Nash bargaining problem represents one of the earliest and most influential results in cooperative game

theory. Given two rational and intelligent players and a set of feasible allocations from among which a unique

allocation is to be chosen, the Nash bargaining theory proposes an elegant axiomatic approach to solve the

problem. This chapter describes the problem and proves the Nash bargaining result.

1 Nash Program

Cooperation refers to coalitions of two or more players acting together with a specific common purpose
in mind. Since rationality and intelligence are two fundamental assumptions in game theory, any
cooperation between players must take into account the objective of maximizing their own individual
payoffs. As we have seen in the previous chapter, the notion of cooperation which is closely tied with the
notion of correlated strategies can be developed without abandoning the individual decision theoretic
foundations underlying game theory. This has been emphasized by John Nash himself [1, 2]. According
to Nash, cooperative actions can be considered as the culmination of a certain process of bargaining
among the cooperating players and consequently, cooperation between players can be studied using
core concepts of non-cooperative game theory. In this bargaining process, we can expect each player to
behave according to some bargaining strategy that satisfies the original utility-maximization criterion
as in standard game theory.

The ingenious idea of Nash is to define a cooperative transformation that will transform a strategic
form game into another strategic form game that has an extended strategy space for each player.
The extended strategy set for a player has all the strategies of the original game and also additional
strategies that capture bargaining with the other players to jointly plan cooperative strategies. This is
on the lines of what we have studied in the previous chapter on correlated strategies. We will illustrate
this with the standard example of the prisoner’s dilemma problem which provides a classic example
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for illustrating the benefits of cooperation.

NC C

NC −2, −2 −10, −1

C −1, −10 −5, −5

Clearly, the rationality of the players suggests the equilibrium (C,C) which is obviously not an
optimal option for the players. The two players here have a strong incentive to bargain with each other
or sign a contract to transform this game into one which has equilibria that are better for both the
players. This has already been brought in the previous chapter. The concept of a Nash program for
cooperative game theory is to define cooperative solution concepts such that a cooperative solution
for any given game is a Nash equilibrium of some cooperative transformation of the original non-
cooperative game. The notion of Nash program was introduced by Nash in his classic paper [2]. If
we carefully describe all the possibilities that are feasible when the players bargain or sign contracts
with each other, we may end up with a game that has numerous equilibria. This means the Nash
program may not lead to a unique cooperative solution. This automatically means that we should
have a credible theory of cooperative equilibrium selection. This is what the Nash bargaining theory
offers in an axiomatic and rigorous, yet intuitive way.

2 The Two Person Bargaining Problem

We now study the classic two person bargaining problem enunciated by Nash in [1]. According to
Nash, the term bargaining refers to a situation in which

• individuals have the possibility of concluding a mutually beneficial agreement

• there is a conflict of interests about which agreement to conclude

• no agreement may be imposed on any player without that player’s approval.

The following assumptions are implicit in Nash’s formulation: when two players negotiate or an
impartial arbitrator arbitrates, the payoff allocations that the two players ultimately get should depend
only on:

• the payoffs they would expect if the negotiation or arbitration were to fail to reach a settlement,
and

• on the set of payoff allocations that are jointly feasible for the two players in the process of
negotiation or arbitration.

The two person bargaining problem has been applied in many important contexts including:

• Management labor arbitration where the management negotiates contracts with the labor union

• International relations, where two Nations or two groups of Nations work out agreements on is-
sues such as nuclear disarmament, military cooperation, anti-terrorist strategy, bilateral emission
control initiatives, etc.

• Duopoly market games where two major competing companies work out adjustments on their
production to maximize their profits
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• Supply chain contracts where a buyer and a supplier work out a mutually beneficial contract
that facilitates a long-term relationship

• Negotiation protocols in multi-agent systems

2.1 The Bargaining Problem

The two person bargaining problem consists of a pair (F, v) where F is called the feasible set and v is
called the disagreement point.

• F , the feasible set of allocations, is a closed, convex subset of R
2.

• The disagreement point v = (v1, v2) ∈ R
2 represents the disagreement payoff allocation for the

two players. It is also called the status-quo point or the default point . This gives the payoffs
for the two players in the event that the negotiations fail. It may be noted that v is invariably
chosen to belong to the feasible set F though it is not a mandatory technical requirement.

• The set F ∩ {(x1, x2) ∈ R
2 : x1 ≥ v1;x2 ≥ v2} is assumed to be non-empty and bounded.

Justification for the Assumptions

• F is assumed to be convex. This can be justified as follows. Assume that the players can agree
to jointly randomized strategies (correlated strategies). Consequently, if the utility allocations
x = (x1, x2) and y = (y1, y2) are feasible and 0 ≤ α ≤ 1, then the expected utility allocation
αx+ (1−α)y can be achieved by planning to implement x with probability α and to implement
y with probability (1 − α).

• F is assumed to be closed (that is, any convergent sequence in F will converge to a point that
belongs to F ). This is a natural topological requirement. If we have a sequence of allocations
belonging to F and the limiting allocation does not belong to F , then we have an undesirable
situation that is not acceptable.

• The set F ∩ {(x1, x2) ∈ R
2 : x1 ≥ v1, x2 ≥ v2} is assumed to be non-empty and bounded.

This assumption implies that there exists some feasible allocation that is at least as good as
disagreement for both players, but unbounded gains over the disagreement point are not possible.
Both these requirements are reasonable.

2.2 Connection to Two Player Non-Cooperative Games

Suppose Γ = 〈{1, 2}, S1, S2, u1, u2〉 is a two person strategic form game. If the strategies of the players
can be regulated by binding contracts, then one possibility for the feasible set F is the set of all
allocations under correlated strategies:

F = {(u1(α), u2(α)) : α ∈ ∆(S1 × S2)}

where
ui(α) =

∑

s∈S

α(s)ui(s)

We could also choose the subset of allocations under individually rational correlated strategies (re-
call that the payoffs for players under individually rational correlated strategies will be at least the
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respective minmax values). If the players’ strategies cannot be regulated by binding contracts then a
possibility for F would be the set of all allocations under correlated equilibria:

F = {(u1(α), u2(α)) : α is a correlated equilibrium of Γ}

There are several possibilities for the disagreement point v. The first possibility is to let vi be the
minmax value for player i.

v1 = min
σ2∈∆(S2)

max
σ1∈∆(S1)

u1(σ1, σ2)

v2 = min
σ1∈∆(S1)

max
σ2∈∆(S2)

u2(σ1, σ2)

The above choice is quite reasonable and scientific because the minmax value for a player is the
minimum guaranteed payoff to the player even in a strictly competitive setting where the other player
always tries to hurt this player most.

A second possibility is to choose some focal Nash equilibrium (σ1, σ2) of Γ and let

v1 = u1(σ1, σ2); v2 = u2(σ1, σ2)

A focal Nash equilibrium is one which becomes a natural choice for the players due to some external
factors prevailing at the time of allocation.

A third possibility is to derive v = (v1, v2) from some rational threats. The theory of rational
threats has been proposed using rationality-based arguments and will be explained in an appendix of
this chapter.

A sound theory of negotiation or arbitration must allow us to identify, given any bargaining problem
(F, v), a unique allocation vector in R

2 that would be selected as a result of negotiation or arbitration.
Let us denote this unique allocation by f(F, v). Thus the bargaining problem involves finding an
appropriate solution function f(.) from the set of all two-person bargaining problems into R

2, which
is the set of payoff allocations.

3 The Axioms of Nash

John Nash used a brilliant axiomatic approach to solve this problem. He first came up with a list
of properties an ideal bargaining solution function is expected to satisfy and then proved that there
exists a unique solution that satisfies all of these properties. The following are the five axioms of Nash:

1. Strong Efficiency

2. Individual Rationality

3. Scale Covariance

4. Independence of Irrelevant Alternatives (IIA)

5. Symmetry

Let us use the notation f(F, v) = (f1(F, v), f2(F, v)) to denote the Nash bargaining solution for the
bargaining problem (F, v).
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Figure 1: Illustrating strong efficiency and individual rationality

3.1 Axiom 1: Strong Efficiency

Given a feasible set F , we say an allocation x = (x1, x2) ∈ F is strongly Pareto efficient or simply
strongly efficient iff there exists no other point y = (y1, y2) ∈ F such that y1 ≥ x1; y2 ≥ x2 with strict
inequality satisfied for at least one player. An allocation x = (x1, x2) ∈ F is weakly Pareto efficient
or weakly efficient iff there exists no other point y = (y1, y2) ∈ F such that y1 > x1; y2 > x2.

The strong efficiency axiom asserts that the solution to any two person bargaining problem should
be feasible and strongly Pareto efficient. Formally, f(F, v) ∈ F and there does not exist any x =
(x1, x2) ∈ F such that x1 ≥ f1(F, v); x2 ≥ f2(F, v) with xi > fi(F, v) for at least some i ∈ {1, 2}.
This implies that there should be no other feasible allocation that is better than the solution for one
player and not worse than the solution for the other player.

3.2 Axiom 2: Individual Rationality

This axiom states that f(F, v) ≥ v which implies that

f1(F, v) ≥ v1; f2(F, v) ≥ v2

This means that neither player should get less in the bargaining solution than he/she could get in the
event of disagreement. Axioms 1 and 2 are illustrated in Figure 1.

3.3 Axiom 3: Scale Covariance

This axiom is stated as follows. For any numbers λ1, λ2, µ1, µ2 with λ1 > 0, λ2 > 0, define the set

G = {(λ1x1 + µ1, λ2x2 + µ2 : (x1, x2) ∈ F}

and the point
w = (λ1v1 + µ1, λ2v2 + µ2),
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Figure 2: Illustration of scale covariance

Then the solution f(G,w) for the problem (G,w) is given by

f(G,w) = (λ1f1(F, v) + µ1, λ2f2(F, v) + µ2)

In the above, the bargaining problem (G,w) can be derived from (F, v) by applying an increasing affine
utility transformations which will not affect any decision theoretic properties of the utility functions.
The axiom implies that the solution of (G,w) can be derived from the solution of (F, v) by the same
transformation. This axiom is illustrated in Figure 2.

3.4 Axiom 4: Independence of Irrelevant Alternatives

This axiom states that, for any closed convex set G,

G ⊆ F and f(F, v) ∈ G ⇒ f(G, v) = f(F, v)

The axiom asserts that eliminating feasible alternatives (other than the disagreement point) that
would not have been chosen should not affect the solution. The eliminated alternatives are referred
to as irrelevant alternatives. This axiom is illustrated in Figure 3. If an arbitrator or referee were to
select a solution by maximizing some aggregate measure of social gain, that is,

f(F, v) =
max

x ∈ F
M(x, v)

where M(x, v) is a measure of social gain by choosing x instead of v, then Axiom 4 can be shown to
be always satisfied.
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Figure 3: Independence of irrelevant alternatives

3.5 Axiom 5: Symmetry

This axiom asserts that if the positions of players 1 and 2 are completely symmetric in the bargaining
problem, then the solution should also treat them symmetrically. Formally,

v1 = v2 and {(x2, x1) : (x1, x2) ∈ F} = F ⇒ f1(F, v) = f2(F, v)

This axiom is illustrated in Figure 4.

3.6 The Nash Bargaining Solution

Using ingenious arguments, Nash showed the a solution that satisfies all the five axioms exists and
moreover it is unique. The following provides the details of the theorem.

Theorem 1 Given a two person bargaining problem (F, v), there exists is a unique solution function
f(., .) that satisfies Axioms (1) through (5). The solution function satisfies, for every two person
bargaining problem (F, v),

f(F, v) ∈
argmax

(x1, x2) ∈ F

x1 ≥ v1;x2 ≥ v2

(x1 − v1)(x2 − v2)
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Figure 4: Illustration of symmetry

3.7 An Illustrative Example

Figure 5 shows a closed convex space F which is actually the convex hull enclosing the points (4,0),
(1,1), and (0,4). Suppose the default point is (1,1). It can be shown that the Nash bargaining solution
is (2,2). This illustrates Pareto efficiency, individual rationality, and symmetry. We shall define a
new feasible space G obtained the following scaling: λ1 = λ2 = 1

2 ; µ1 = µ2 = 1. Consider the
bargaining problem (G,w) with w = (1, 1) = v that is obtained using w = (λ1v1 + µ1, λ2v2 + µ2).
Using scale covariance, the Nash bargaining solution becomes (2, 2). The problems (F, v) and (G,w)
also illustrate the independence of irrelevant alternatives axiom. For, we find that G ⊆ F ; G is closed
and convex, and (2, 2) ∈ G. Therefore we have f(G, v) = f(F, v) = (2, 2). Finally, if H is the feasible
space obtained using λ1 = λ2 = 1

2 ; µ1 = µ2 = 0, then the problem (H, (0.5, 0.5)) illustrates another
instance of scale covariance.

4 Proof of the Nash Bargaining Theorem

First we prove the theorem for a special class of two person bargaining problems called essential
bargaining problems and subsequently, we generalize this to the entire class of problems. A two
person bargaining problem (F, v) is said to be essential if there exists at least one allocation y ∈ F

that is strictly better for both the players than the disagreement allocation v, that is y1 > v1 and
y2 > v2.
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Figure 5: An example to illustrate Nash axioms

4.1 Proof for Essential Bargaining Problems

We are given an essential two person bargaining problem (F, v). Clearly, there exists some y =
(y1, y2) ∈ F such that y1 > v1 and y2 > v2.

Recall the definition of a quasiconcave function from Chapter 10: A function f : S → R where S

is non-empty and convex is said to be quasiconcave if

f(λx + (1 − λ)y) ≥ min(f(x), f(y)) ∀x, y ∈ S and ∀λ ∈ [0, 1]

f is strictly quasiconcave if

f(λx + (1 − λ)y) > min(f(x), f(y)) ∀x, y ∈ S and ∀λ ∈ (0, 1)

It is a standard result that a strictly quasiconcave function will have a unique optimal (maximum)
solution.

• Consider the optimization problem:

max
(x1, x2) ∈ F

x1 ≥ v1;x2 ≥ v2

(x1 − v1)(x2 − v2)

where (v1, v2) ∈ F . The function (x1 − v1)(x2 − v2) is strictly quasiconcave (since we are dealing
with an essential bargaining problem) and therefore it has a unique maximizer. Therefore the
above optimization problem has a unique optimal solution. Call this solution as (x∗

1, x
∗
2).
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• Let F ⊂ R
2 be convex and closed. Suppose v = (v1, v2) ∈ F and

F ∩ {(x1, x2) ∈ R
2 : x1 ≥ v1;x2 ≥ v2}

is non-empty and bounded. Suppose the function f(F, v) satisfies the five axioms (1) strong
efficiency (2) individual rationality (3) scale covariance (4) independence of irrelevant alterna-
tives, and (5) symmetry. Then the Nash bargaining theorem states that f(F, v) = (x∗

1, x
∗
2) which

happens to be the unique solution of optimization problem above.

The proof of the Nash bargaining theorem proceeds in two parts. In Part 1, we show that the optimal
solution (x∗

1, x
∗
2) of the optimization problem above satisfies all the five axioms. In Part 2, we show

that if f(F, v) satisfies all the five axioms, then f(F, v) = (x∗
1, x

∗
2). We use the following notation for

the objective function in the rest of this proof:

N(x1, x2) = (x1 − v1)(x2 − v2)

The objective function is appropriately called the Nash Product .

4.2 Proof of Part 1

We have to show that the optimal solution (x∗
1, x2)

∗ of the optimization problem above satisfies all
the five axioms. We do this one by one.

Strong Efficiency

We have to show that there does not exist (x̂1, x̂2) ∈ F such that x̂1 ≥ x∗
1 and x̂2 ≥ x∗

2 with at least
one inequality strict. Suppose such a (x̂1, x̂2) exists. Since there exists a (y1, y2) ∈ F such that y1 > v1

and y2 > v2, the maximum value of the Nash product in the optimization problem is strictly greater
than zero. Since the objective function N(x1, x2) is increasing in x1 and x2, we have

N(x̂1, x̂2) > N(x∗
1, x

∗
2)

which is not possible since N(x∗
1, x

∗
2) is the maximum possible value of N(x1, x2) in the optimization

problem.

Individual Rationality

This is immediately satisfied being one of the constraints in the optimization problem.

Scale Covariance

For λ1 > 0, λ2 > 0, µ1, µ2, define

G = {λ1x1 + µ1, λ1x2 + µ2) : (x1, x2) ∈ F}

Consider the problem

max
(y1, y2) ∈ G

(y1 − (λ1v1 + µ1))(y2 − (λ2v2 + µ2))

10



This can be written using y1 = λ1x1 + µ1 and y2 = λ2x2 + µ2 as

max
(x1, x2) ∈ G

(λ1x1 + µ1 − (λ1v1 + µ1))(λ2x2 + µ2 − (λ2v2 + µ2))

The above problem is the same as

max
(x1, x2) ∈ G

λ1λ2(x1 − v1)(x2 − v2)

which attains maximum at (x∗
1, x

∗
2). Therefore the problem

max
(x1, x2) ∈ G

(y1 − (λ1v1 + µ1)) (y2 − (λ2v2 + µ2))

attains maximum at (λ1x
∗
1 + µ1, λ2x

∗
2 + µ2).

Independence of Irrelevant Alternatives

We are given G ⊆ F with G closed and convex. Let (x∗
1, x

∗
2) be optimal to (F, v) and let (y∗1 , y

∗
2) be

be optimal to (G, v). It is also given that (x∗
1, x

∗
2) ∈ G.

• Since (x∗
1, x

∗
2) is optimal to F which is a superset of G, we have

N(x∗
1, x

∗
2) ≥ N(y∗1, y

∗
2)

• Since (y∗1 , y
∗
2) is optimal to G and (x∗

1, x
∗
2) ∈ G, we have

N(y∗1, y
∗
2) ≥ N(x∗

1, x
∗
2)

Therefore we have
N(x∗

1, x
∗
2) = N(y∗1 , y

∗
2)

Since the optimal solution is unique, we then immediately obtain

(x∗
1, x

∗
2) = (y∗1 , y

∗
2)

Symmetry

Suppose we have
{(x2, x1) : (x1, x2) ∈ F} = F

and v1 = v2. Since v1 = v2, then (x∗
1, x

∗
2) maximizes (x1 − v1)(x2 − v1). Since the optimal solution is

unique, we should have (x∗
1, x

∗
2) = (x∗

2, x
∗
1) which immediately yields x∗

1 = x∗
2.

11
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Figure 6: Diagram showing F, G, H for proving the Nash bargaining theorem

4.3 Proof of Part 2

We are given that f(F, v) is a bargaining solution that satisfies all the five axioms. We have to show
that f(F, v) is the same as (x∗

1, x
∗
2) which is the unique solution of the optimization problem:

max
(x1, x2) ∈ F

x1 ≥ v1;x2 ≥ v2

(x1 − v1)(x2 − v2)

We have that x∗
1 > v1 and x∗

2 > v2. Consider the following transformation

L(x1, x2) = (λ1x1 + µ1, λ2x2 + µ2)

where

λ1 =
1

x∗
1 − v1

; λ2 =
1

x∗
2 − v2

; µ1 =
−v1

x∗
1 − v1

; µ2 =
−v2

x∗
2 − v2

In other words, we have

L(x1, x2) =
(x1 − v1

x∗
1 − v1

,
x2 − v2

x∗
2 − v2

)

12



Note that L(v1, v2) = (0, 0) and L(x∗
1, x

∗
2) = (1, 1). Defining G = {L(x1, x2) : (x1, x2) ∈ F}, we have

thus transformed the problem (F, (v1, v2)) to the problem (G, (0, 0)). In fact, since L(x∗
1, x

∗
2) = (1, 1),

it is known that the transformed problem (G, (0, 0)) has its solution at (1, 1). See Figure 6. Also
observe that the objective function of the transformed problem is (x1 − 0)(x2 − 0) = x1x2. First we
show that

x1 + x2 ≤ 2 ∀ (x1, x2) ∈ G

To show this, we assume that x1 + x2 > 2 and arrive at a contradiction. Suppose α ∈ (0, 1) and

t = (1 − α)(1, 1) + α(x1, x2) = (1 − α + αx1, 1 − α + αx2)

Since G is convex and (1, 1) ∈ G, we therefore have t ∈ G and we get

t1t2 = (1 − α + αx1)(1 − α + αx2) = (1 − α)2 + α2x1x2 + (1 − α)α(x1 + x2)

If x1 + x2 > 2, we then get

t1t2 > (1 − α)2 + α2x1x2 + (1 − α)α = (1 − α) + α2x1x2

We can always choose α sufficiently small and make t1t2 > 1, which is impossible since the optimal
(that is, maximal) value of t1t2 is 1.

G is bounded and we can always find a rectangle H which is symmetric about the line x1 = x2

such that G ⊆ H and H is also convex and bounded. Further choose H such that the point (1, 1) ∈ G

is on the boundary of H.

Strong efficiency and symmetry imply that

f(H, (0, 0)) = (1, 1)

We can now use independence of irrelevant alternatives to get

f(G, (0, 0)) = (1, 1)

We know G is obtained through scaling. Now use scale covariance to get

f(G, (0, 0)) = L(f(f, v))

This implies
L(f(F, v)) = (1, 1)

Since we know that L(x∗
1, x

∗
2) = (1, 1), we finally obtain

f(F, v) = (x∗
1, x∗

2)

4.4 Proof for Inessential Bargaining Problems

Consider the case when the problem (F, v) is inessential, that is, there does not exist any (y1, y2) ∈ F

such that y1 > v1; y2 > v2. Since F is convex, the above implies that there exists at least one player
i such that

y1 ≥ v1 and y2 ≥ v2 ⇒ yi = vi ∀ (y1, y2) ∈ F

13



The reason is if we could find (y1, y2), (z1, z2) ∈ F such that (y1, y2) ≥ (z1, z2), y1 > v1, z2 > v2, then
1
2 (y1, y2) + 1

2(z1, z2) would be a point in F that is strictly better than (v1, v2) for both the players. In
the rest of the discussion, let us assume without loss of generality that

y1 ≥ v1 and y2 ≥ v2 ⇒ y1 = v1 ∀ (y1, y2) ∈ F

Suppose x∗ is an allocation in F that is best for the player 2 subject to the constraint x1 = v1

(with this constraint, the maximum value of the Nash product in the optimization problem will be
zero). This would imply that the vector (x∗

1, x
∗
2) is the unique point that is strongly efficient in F and

individually rational relative to v. This would mean that, to satisfy Axioms 1 and 2, we must have
f(F, v) = (x∗

1, x
∗
2). It can be easily observed that (x∗

1, x
∗
2) achieves the maximum value of the Nash

product (x1 − v1)(x2 − v2) which happens to be zero for all individually rational allocations.

4.5 A Note on Essential Bargaining Problems

For essential bargaining problems, the strong efficiency axiom can be replaced by the following weak
efficiency axiom:

Axiom 1′. (Weak Efficiency). f(F, v) ∈ F and there does not exist any y ∈ F such that

y > f(F, v).

Also, it is trivial to see that for essential bargaining problems, the individual rationality assumption is
not required. Thus in the case of essential two person bargaining problems, any solution that satisfies
Axioms 1′, 3, 4, 5 must coincide with the Nash bargaining solution.

4.6 An Illustrative Example

This example is taken from the book by Myerson [3]. Let v = (0, 0) and

F = {(y1, y2) : 0 ≤ y1 ≤ 30; 0 ≤ y2 ≤ 30 − y1}
The bargaining problem (F, v) can be thought of a situation in which the players can share 30 million
rupees in any way in which they agree or get zero if they cannot agree, with both players having
a linear utility for money (that is, utility varies linearly with money). A player with such a utility
function is said to be risk neutral. The Nash bargaining solution f(F, v) is the vector y = (y1, y2)
such that y1 ≥ 0, y2 ≥ 0, and y maximizes the Nash product (y1 − v1)(y2 − v2). This can be easily
seen to be (15, 15) which looks perfectly reasonable. This corresponds to each player being allocated
15 million rupees.

Let us modify this example by choosing

F = {(y1, y2) : 0 ≤ y1 ≤ 30; 0 ≤ y2 ≤
√

30 − y1}
Suppose v = (0, 0) as earlier. This problem is similar to the one above, except that player 1 is risk
neutral (that is, has linear utility for money) and player 2 is risk averse (with a utility scale that is
proportional to the square root of the money) Note that

d

dy1

[

y1

√

30 − y1

]

= 0

yields y1 = 20. The Nash bargaining solution is the allocation (20,
√

10) = (20, 3.162). This corre-
sponds to a wealth sharing of (20, 10).

14



To Probe Further

The original discussion of the Nash bargaining problem and its solution is of course found in the
classic paper of Nash [1]. The discussion and approach presented in this chapter closely follows that of
Myerson [3]. There are two books that deal with the bargaining problem quite extensively. The book
by Abhinay Muthoo [4] deals exclusively with the bargaining problem. The book by Osborne and
Rubinstein [5] discusses bargaining theory extensively and presents rigorous applications to market
situations of different kinds. The book by Straffin [6] provides two real-world applications of the two
person bargaining problem: (1) Management - labor union negotiations, and (2) Duopoly Model of two
competing companies trying to maximize their revenues. The concept of Nash program is discussed
by Nash [2].

There are several appendix sections in this chapter. Appendix 1 discusses two other well known
solutions to the bargaining problem, namely egalitarian and utilitarian solutions. Appendix 2 treats
a class of games called transferable utility games. Finally Appendix 3 discussed the theory of rational
threats which could be used for choosing a disagreement point.

Problems

1. With reference to the axiom on independence of irrelevant alternatives, show the following
property: Given a Nash bargaining problem )F, v), if an arbitrator were to select a solution by
maximizing some aggregate measure of social gain, that is,

f(F, v) =
max

x ∈ F
M(x, v)

where M(x, v) is a measure of social gain by choosing x instead of v, then Axiom 4 can be shown
to be always satisfied.

2. Suppose F is the convex hull enclosing the points A= (1,8); B = (6,7); C = (8,6); D = (9,5); E
=(10,3); F = (11, -1); and G = (-1,-1). Suppose the default point (status quo point) is (2,1).
Compute the Nash bargaining solution for this situation. Write down a picture and that will be
helpful.

3. Consider the following two player game:

A B

A 5, 5 2,2

B 2,2 3,3

For this game,

• compute the set of all payoff utility pairs possible (a) under correlated strategies (b) under
individually rational correlated strategies.

• What would be the Nash bargaining solution in cases (a) and case (b) assuming the minmax
values as the disagreement point.

4. Consider the following situation. It is required to lease a certain quantity of telecom bandwidth
from Bangalore to Delhi. There are two service providers in the game {1, 2}. Provider 1 offers
a direct service from Bangalore to New Delhi with a bid of 100 million rupees. Provider 1 also
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offers a service from Mumbai to Delhi with a bid of 30 million rupees. On the other hand,
Provider 2 offers a a direct service between Bangalore and Delhi with a bid of 120 million dollars
and a service from Bangalore to Mumbai with a bid of 50 million rupees. Compute a Nash
bargaining solution assuming (0, 0) as the disagreement point. What can you infer from the
Nash bargaining solution?

Appendix 2: Other Solutions for the Bargaining Problem: Egalitar-

ian and Utilitarian Solutions

In typical bargaining situations, interpersonal comparisons of utility are made in two different ways.

• Principle of Equal Gains: Here a person’s argument will be: you should do this for me because
I am doing more for you. This leads to what is called an egalitarian solution.

• Principle of the Greatest Good: The argument here goes as follows: You should do this for
me because it helps me more than it hurts you. This leads to the so called utilitarian solution.

For a two-person bargaining problem (F, v), the egalitarian solution is the unique point (x1, x2) ∈ F

that is weakly efficient in F and satisfies the equal gains condition:

x1 − v1 = x2 − v2

Recall that ((x1, x2) ∈ F is said to be weakly efficient if there does not exist any (y1, y2) ∈ F such
that y1 > x1 and y2 > x2).

A utilitarian solution is any solution function that selects, for every two person bargaining problem
(F, v), an allocation (x1, x2) ∈ F such that

x1 + x2 = max
(y1,y2)∈F

(y1 + y2)

If agents in negotiation or arbitration are guided by the equal gains principle, the natural outcome
is the egalitarian solution. If it is guided by the principle of greatest good, a natural outcome is a
utilitarian solution.

The egalitarian and the utilitarian solutions violate the axiom of scale covariance. The intuition
for this as follows. The scale covariance axiom is based on an assumption that only the individual
decision theoretic properties of the utility scales should matter. Also interpersonal comparisons of
utility have no decision theoretic significance as long as no player can be asked to decide between
being himself or someone else.

λ-Egalitarian Solution

Consider a two person bargaining problem (F, v). Given numbers λ1, λ2, µ1, µ2, with λ1 > 0, λ2 > 0,
let

L(y) = (λ1y1 + µ1, λ2y2 + µ2) for y ∈ R
2

Given the problem (F, v), define
L(F ) = {L(y) : y ∈ F}

16



Then the egalitarian solution of (L(F ), L(v)) is L(x), where x is the unique weakly efficient point in
F such that

λ1(x1 − v1) = λ2(x2 − v2)

This is called the λ-egalitarian solution of (F, v). If λ = (1, 1), this is called the simple egalitarian
solution. The egalitarian solution does not satisfy scale covariance because the λ-egalitarian solution
is generally different from the simple egalitarian solution.

λ-Utilitarian Solution

A utilitarian solution of (L(f), L(v)) is a point L(z) where z = (z1, z2) is a point in F such that

λ1z1 + λ2z2 = max
(y1,y2)∈F

(λ1y1 + λ2y2)

The solution point z is called a λ-utilitarian solution of (F, v). Utilitarian solutions do not satisfy
scale covariance because a λ-utilitarian solution is generally not a simple utilitarian solution.

Relationship to the Nash Bargaining Solution

Note that the equal gains principle suggests a family of egalitarian solutions and the greatest good
principle suggests a family of utilitarian solutions. These solutions correspond to application of these
principles when the payoffs are compared in a λ-weighted utility scale.

As λ1 increases and λ2 decreases, the λ-egalitarian solutions trace out the individually rational,
weakly efficient frontier moving in the direction of decreasing payoff to player 1. Also as λ1 increases
and λ2 decreases, the λ-utilitarian solutions trace out the entire weakly efficient frontier, moving in
the direction of increasing payoff to player 1.

It turns out that for an essential two person bargaining problem (F, v), there exists a vector
λ = (λ1, λ2) such that λ > (0, 0) and the λ-egalitarian solution of (F, v) is also a λ-utilitarian solution
of (F, v). λ1 and λ2 that satisfy this property are called natural scale factors.

Remarkably, the allocation in F that is both λ-egalitarian and λ-utilitarian in terms of the natural
scale factors is the Nash bargaining solution. Thus the Nash bargaining solution can be viewed as a
natural synthesis of the equal gains and greatest good principles. The following theorem formalizes
this fact.

Theorem

Let (F, v) be an essential two person bargaining problem. Suppose x is an allocation vector such that
x∗ ∈ F and x∗ ≥ v. Then x∗ is the Nash-bargaining solution for (F, v) iff there exist strictly positive
numbers λ1 and λ2 such that

λ1x
∗
1 − λ1v1 = λ2x

∗
2 − λ2v2

and
λ1x

∗
1 − λ2x

∗
2 = max

y∈F
(λ1y1 + λ2y2)

Proof: Let H(x, v) denote the hyperbola

H(x, v) = {y ∈ R
2 : (y1 − v1)(y2 − v2) = (x1 − v1)(x2 − v2)}
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The allocation x is the Nash bargaining solution of (F, v) if and only if the hyperbola H(x, v) is
tangential to F at x. Now, the slope of the hyperbola H(x, v) at x

=
−(x2 − v2)

(x1 − v1)

This means H(x, v) is tangent at x to the line

{y ∈ R
2 : λ1y1 + λ2y2 = λ1x1 + λ2x2}

for any two positive numbers λ1 and λ2 such that

λ1(x1 − v1) = λ2(x2 − v2)

Therefore x ∈ F is the Nash bargaining solution of (F, v) if any only if F is tangent at x to a line of
the form

{y ∈ R
2 : λ1y1 + λ2y2 = λ1x1 + λ2x2}

for some (λ1, λ2) such that
λ1(x1 − v1) = λ(x2 − v2)

.

An Illustrative Example

Let v = (0, 0) and F = {(y1, y2) : 0 ≤ y1 ≤ 30; 0 ≤ y2 ≤ √
30 − y1}. The above problem is the same as

Example 2. Recall that the Nash bargaining solution is the allocation

(20,
√

10) = (20, 3.162)

which corresponds to a monetary allocation of 20 for player 1 and 10 to player 2. Note that the
risk averse player is under some disadvantage as per the Nash bargaining solution. The natural scale
factors for this problem are

λ1 = 1

λ2 =
√

40 = 6.325

Let player 2’s utility for a monetary gain of D be 6.325
√

D instead of
√

D. This is a decision-
theoretically irrelevant change. Let player 1’s utility be measured in the same units as money gained
(λ1 = 1). The representation of this bargaining problem becomes (G, (0, 0)) where

G = {(y1, y2) : 0 ≤ y1 ≤ 30; 0 ≤ y2 ≤ 6.325
√

30 − y1}

Now the Nash bargaining solution is (20, 20), which still corresponds to a monetary allocation of 20 to
player 1 and 10 for player 2. Note that this is both an egalitarian solution and a utilitarian solution.
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Appendix 3: Games with Transferable Utility

Let Γ = 〈N, (Si), (ui)〉 be a strategic form game. Informally, Γ is said to be a game with transferable
utility if, in addition to the strategy options listed in Si, each player i can

1. give any amount of money to any other player, or

2. simply destroy money

Each unit of net monetary outflow decreases the utility of player i by one unit. This is formalized in
the following definition.

Definition: A strategic form game Γ = 〈N, (Si), (ui)〉 is called a game with transferable utility if it
can be represented by the game G = 〈N, (Ŝi), (ûi)〉 where for i ∈ N ,

Ŝi = Si × R
n
+

ûi((sj , tj)j∈N ) = ui((sj)j∈N ) + [
∑

j 6=i

(tj(i) − ti(j))] − ti(i)

where tj = (tj(k))k∈N . The monetary transfer tj(k), for any k 6= j, represents the quantity of money
given by player j to player k and tj(j) denotes the amount of money destroyed by j but not given to
any other player.

An Example

Let N = {1, 2}. The payoff function ûi would look like the following:

û1(s1, s2, t1(1), t1(2), t2(1), t2(2)) = u1(s1, s2) − (t2(1) − t1(2)) − t1(1)

û2(s1, s2, t1(1), t1(2), t2(1), t2(2)) = u2(s1, s2) − (t1(2) − t2(1)) − t2(2)

Note that

û1(s1, s2, t1(1), t1(2), t2(1), t2(2))+û2(s1, s2, t1(1), t1(2), t2(1), t2(2)) = u1(s1, s2)+u2(s1, s2)−t1(1)−t2(2)

Note in the above definition that ûi is linearly dependent on the transfers tj . Thus risk neutrality is
implicitly assumed when we talk of transferable utility in a game. Transferable utility is an assumption
which ensures that the given scale factors in a game will also be the natural scale factors for the Nash
bargaining solution.

Let (F, v) be a two person bargaining problem derived from a game with transferable utility. Let
v12 represent the maximum transferable wealth that the players can jointly achieve. Then the feasible
set F will be of the form

F = {(x1, x2) ∈ R
2 : x1 + x2 ≤ v12}

This implies that, in the presence of transferable utility, a two person bargaining problem can be fully
characterized by three numbers.

1. v1 = disagreement payoff to player 1

2. v2 = disagreement payoff to player 2

3. v12 = total transferable wealth available to the players if they cooperate.
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x∗ will be a Nash bargaining solution to this problem iff ∃λ1 > 0, λ2 > 0 such that

λ1x
∗
1 − λ1v1 = λ2x

∗
2 − λ2v2

λ1x
∗
1 + λ2x

∗
2 = max

(x1,x2)∈F
(λ1x1 + λ2x2)

To satisfy the above conditions, λ1 = λ2, since otherwise

max
(x1,x2)∈F

(λ1x1 + λ2x2) = +∞

since both x1 and x2 are real numbers and x1 + x2 ≤ v12 will allow unbounded values for x1 and x2

separately.
Thus the conditions for f(F, v) become

f1(F, v) − v1 = f2(F, v) − v2

f1(F, v) + f2(F, v) = v12

Solving these equations, the following general formulae can be obtained for the Nash bargaining
solution of a game with transferable utility.

f1(F, v) =
v12 + v1 − v2

2

f2(F, v) =
v12 + v2 − v1

2

Let us say F is derived under the assumption that the players’ strategies can be regulated by binding
contracts. Then we can say, as a consequence of the transferable utility property,

v12 = max
σ∈∆(S)

(u1(σ) + u2(σ))

Appendix 4: Rational Threats

We have shown that a two player bargaining problem (F, v), in a transferable utility setting, has the
Nash bargaining solution

f1(F, v) =
v12 + v1 − v2

2

f2(F, v) =
v12 + v2 − v1

2

• Note that the payoff to player 1 increases as the disagreement payoff to player 2 decreases. That
is, hurting player 2 in the event of disagreement may actually help player 1 if a cooperative
agreement is reached.

• Thus, reaching a cooperating point depends on a disagreement point and this induces rational
players to behave in an antagonistic way in trying to create a more favorable disagreement point.

• This phenomenon is called the chilling effect . This is described formally by Nash’s theory of
rational threats.
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Nash’s Theory of Rational Threats

Let Γ = 〈{1, 2}, S1 , S2, u1, u2〉 be a two player finite strategic form game. Let F be the feasible set
derived from Γ. F will take the form

F = {(u1(σ), u2(σ)) : σ ∈ ∆(S)}

where
ui(σ) =

∑

s∈S

σ(s)ui(s) for i = 1, 2

in the case of binding contracts without non-transferable utility. In the case of binding contracts with
transferable utility, F will take the form

F = {(y1, y2) ∈ R
2 : y1 + y2 ≤ v12}

where
v12 = max

σ∈∆(S)
[u1(σ) + u2(σ)]

Before entering into the negotiation or arbitration, each player is required to choose a threat τi ∈ ∆(Si).
If the players fail to reach a cooperative agreement, then each player is committed independently to
carry out his threat.

If (τ1, τ2) is a pair of threats chosen by the two players, the disagreement point in the two person
bargaining problem should be

(u1(τ1, τ2), u2(τ1, τ2))

Let wi(τ1, τ2) be the payoff that player i (i = 1, 2) gets in the Nash bargaining solution with the above
disagreement point. That is,

wi(τ1, τ2) = fi(F, (u1(τ1, τ2), u2(τ1, τ2)))

The game Γ∗ = 〈{1, 2},∆(S1),∆(S2), w1, w2〉 is called the threat game corresponding to the original
game Γ.

Assume that the players expect that they will finally reach a cooperative agreement, that will
depend on the disagreement point, according to the Nash bargaining solution. This implies that the
players should not be concerned about carrying out their threats but instead should evaluate their
threats only in terms of their impact on the final cooperative agreement.

This makes each player i to choose his threat τ∗
i so as to maximize wi(τ

∗
1 , τ∗

2 ) given the other
player’s expected threat. This motivates to call (τ∗

1 , τ∗
2 ) a pair of rational threats iff

w1(τ
∗
1 , τ∗

2 ) ≥ w1(σ1, τ
∗
2 ) ∀σ1 ∈ ∆(S1)

w2(τ
∗
1 , τ∗

2 ) ≥ w2(τ
∗
1 , σ2) ∀σ2 ∈ ∆(S2)

Thus (τ∗
1 , τ∗

2 ) is a Nash equilibrium of the threat game

Γ∗ = 〈{1, 2},∆(S1),∆(S2), w1, w2〉

Kakutani’s fixed point theorem can be used to prove the existence of rational threats. In the threat
game,
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• Player 1 wants to choose her threat τ∗
1 so as to put the disagreement point (u1(τ

∗
1 , τ∗

2 ), u2(τ
∗
1 , τ∗

2 ))
as favorable to her as possible and as unfavorable to Player 2 as possible.

• Player 2 wants choose his threat τ∗
2 so as to put the disagreement point as favorable to him as

possible and as unfavorable to Player 1 as possible.

The payoffs in the threat game (in the transferable utility case) are

w1(τ1, τ2) =
v12 + u1(τ1, τ2) − u2(τ1, τ2)

2

w2(τ1, τ2) =
v12 + u2(τ1, τ2) − u1(τ1, τ2)

2
where

v12 = max
σ∈∆(S)

[u1(σ) + u2(σ)]

Note that v12 is a constant. Therefore maximizing w1(τ1, τ2) is equivalent to maximizing u1(τ1, τ2) −
u2(τ1, τ2). Similarly maximizing w2(τ1, τ2) is equivalent to maximizing u2(τ1, τ2) − u1(τ1, τ2).

It is straightforward to note that, under the transferable utilities case, τ∗
1 and τ∗

2 are rational
threats for players 1 and 2 iff (τ∗

1 , τ∗
2 ) is an equilibrium of the two person zero sum game

Γ∗∗ = 〈{1, 2},∆(S1),∆(S2), u1 − u2, u2 − u1〉

The game Γ∗∗ is called the difference game derived from G.

Example to Illustrate Different Ways of Choosing Disagreement Point

In this example from Myerson’s book [3], we examine three different ways to determine a disagreement
point for deriving the Nash bargaining solution.

1. A Nash equilibrium of game Γ

2. Minimax values

3. Rational threats

Consider the following two player strategic form game

2
1 a2 b2

a1 10, 0 −5, 1

b1 0, −5 0, 10

Note that the maximum total payoff achievable in this game is v12 = 10.

Choice 1: Nash Equilibrium

Note that (b1, b2) is a non-cooperative equilibrium. Let us take the payoffs in the equilibrium as the
disagreement point, that is,

v = (0, 10)

The Nash bargaining solution is
f(F, v) = (0, 10)
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Choice 2: Minimax Values

• Minimax value for player 1 : v1 = 0. This is achieved when player 2 chooses an offensive threat
b2 and player 1 chooses a defensive response b1.

• Minimax value for player 2: v2 = 1. This is achieved when player 1 chooses a1 as his optimal
offensive threat and player 2 chooses b2 as an optimal defensive strategy.

Therefore, v = (0, 1). The Nash bargaining solution is f(F, v) = (4.5, 5.5).

Choice 3: Rational Threats

The threat game Γ∗ derived from Γ is as follows.

2
1 a2 b2

a1 10, 0 2, 8

b1 7.5, 2.5 0, 10

The unique equilibrium of this threat game = (a1, b2) which leads to

v = (−5, 1)

f(F, v) = (2, 8)

In all the three cases, player 2 chooses b2 in any disagreement because a2 is dominated by b2 with
respect to both

• player 2’s defensive objective of maximizing u2

• player 2’s offensive objective of minimizing u1

Player 1’s disagreement behavior is different across the three cases.

• In case 1 (Nash equilibrium case), player 1’s behavior in the event of disagreement would be
determined by his purely defensive objective of maximizing u1. So he chooses b1 allowing player
2 to get his maximum payoff

• In case 2 (minimax case), player 1 is supposed to be able to select between two threats:

– an offensive threat a1 for determining v2

– a defensive threat b1 for determining v1.

• In case 3 (rational threats case), player 1 must choose a single threat that must serve both
offensive and defensive purposes simultaneously, so he chooses a1 because a1 maximizes the
objective

10 + u1 − u2

2

that is a synthesis of his offensive and defensive criteria.
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Which of these three methods is appropriate is an interesting question to ponder. Equilibrium
theory of disagreement is appropriate where the players could not commit themselves to any planned
strategies in the event of disagreement, until a disagreement actually occurs. The rational threats
theory is applicable when each player can, before the negotiation or arbitration process, commit
himself to a single planned strategy that he would carry out in the event of disagreement, no matter
whose final rejection may have caused the disagreement. It is implicitly assumed that the probability
of a disagreement is extremely low. The minimax values theory is appropriate in situations where
each player can, before the process starts, commit himself to two planned strategies: (a) defensive (b)
offensive. The player would carry out one of these depending on how the disagreement was caused.
We can suppose that he would implement his defensive strategy if he himself rejected the last offer in
the negotiation or arbitration process and his offensive strategy otherwise.
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