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Abstract. In this paper we present a cooperative game theoretic inter-
pretation of the shortest path problem. We consider a buying agent who
has a budget to go from a specified source node s to a specified target
node t in a directed acyclic network. The budget may reflect the level
of utility that he associates in going from node s to node t. The edges
in the network are owned by individual utility maximizing agents each
of whom incurs some cost in allowing its use. We investigate the design
of economic mechanisms to obtain a least cost path from s to t and
to share the surplus (difference between the budget and the cost of the
shortest path) generated among the participating agents in a fair man-
ner. Previous work related to this problem assumes that cost and budget
information is common knowledge. This assumption can be severely re-
strictive in many common applications. We relax this assumption and
allow both budget and cost information to be private, hence known only
to the respective agents. We first develop the structure of the shortest
path cooperative game with incomplete information. We then show the
non-emptiness of the incentive compatible core of this game and the ex-
istence of a surplus sharing mechanism that is incentive efficient and
individually rational in virtual utilities, and strongly budget balanced.

1 Introduction

The shortest path problem and its many variants such as all pairs shortest paths
and stochastic shortest paths occur in a wide variety of contexts and have been
studied extensively. More recently, motivated by applications in grid computing,
mobile ad-hoc networks, and electronic commerce, game theoretic interpretations
of the shortest path problem including both the non cooperative interpretation
[1, 2, 3, 4] and the cooperative interpretation [5, 6] have emerged.

In these game theoretic interpretations, economic agents control and provide
access to different resources - edges and/or nodes, of the network for a price. In
addition, one other agent, hereafter called the buying agent, associates a certain
level of utility, in traversing the network between two specified nodes - the source
s and the target t. In the remaining part of this section we first summarize the
existing state-of-the-art in analyzing shortest path games and then motivate the
context for this paper.
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1.1 Extant Work and Motivation

In the noncooperative game theoretic interpretation introduced in [2] it is as-
sumed that the cost of edges in the network are only privately known. In order to
find the least cost path, a Vickrey-Clarke-Groves (VCG) mechanism (see chapter
23 of [7]) is employed to elicit truthful cost information. When this approach is
analyzed from the perspective of the buying agent, it has been shown that the
incentives provided through this mechanism to elicit truthful cost information
may be arbitrarily high [8] and cannot be avoided [3].

In the cooperative game theoretic interpretation introduced in [5, 6], the buy-
ing agent indicates his budget limitation (which may be a proxy for the utility he
obtains) in going from node s to node t. The N agents owning the edges/nodes
in the network then agree to cooperate among themselves to identify a short-
est (least cost) path and share the surplus revenue, if any, among themselves
in some fair way as enunciated by solutions concepts such as the core or the
Shapley value. It should be noted here that this is a complete information coop-
erative game and no information is privately held. However, if the agents (both
the buying agent and resource owners) have access to private budget and cost
information, as is often the case in real world scenarios, then there is reason to
expect strategic misrepresentation of either the budget and/or cost information
by them. We give below two real world scenarios where such misrepresentation
can be commonly expected.

– QoS routing in communication networks: Consider a scenario where high
quality video is to be transmitted over the public Internet with a Quality
of Service (QoS) guarantee. The agent requiring such a service is willing to
compensate the owners of the intermediate interconnecting networks. Clearly
(1) the agent is going to act strategically so that he obtains the service at
the least possible cost and (2) the resource owners will bid strategically so
as to maximize their share of the surplus in the transaction.

– Supply chain procurement : Consider a procurement scenario with an auto-
motive assembler where a subassembly is to be procured. The way in which
a subassembly maybe put together may involve many alternatives in terms
of which suppliers participate in supplying components and services. All this
may be captured as a network with edges representing value added by each
preceding node and the network itself converging into the node representing
the assembler. All nodes with no incoming edge may be grouped into the
category of source nodes and the objective now is to find a shortest path
from any one of the source nodes to the terminal assemblers node. Clearly
the automotive assembler as well as the suppliers can be expected to behave
strategically and misrepresent budget and cost information.

To model these scenarios, we need to extend the analysis of the class of
shortest path cooperative games in two directions: First, by including the buying
agent as a game theoretic agent and second, by treating costs and budgets as
private information. These extensions prompt us to formulate the scenarios as
cooperative games with incomplete information.



1.2 Contributions and Outline

Our contributions in this paper are two-fold.

1. As far as we know this is the first time that a cooperative game with in-
complete information arising out of the shortest path problem has been
addressed. We develop the structure for this game.

2. For this class of games, we investigate the design of surplus sharing mech-
anisms. We invoke results in cooperative game theory to show the non-
emptiness of the incentive compatible core for this class of games and then
prove the existence of mechanisms that are incentive efficient and individu-
ally rational in virtual utilities, and strongly budget balanced.

The structure of the paper is as follows. In Section 2, we provide the basic
notation to develop the structure of the shortest path cooperative game with
incomplete information (SPCG-II). In Section 3, we show the non-emptiness
of the Incentive Compatible Core for this game. In Section 4, we adapt the
bargaining solution based on a generalization of the Shapley Value for the SPCG-
II. Finally in Section 5, we summarize the contributions of the paper.

2 A Shortest Path Cooperative Game with Incomplete
Information (SPCG-II)

To begin with, in this section we set out the basic notation required and then
present the structure of the SPCG-II. We consider a directed graph N = (V,E)
with V , the set of vertices, E the set of edges and two special nodes s (source)
and t(target). We let n = |E| be the number of edges. Each edge in the network is
assumed to be a commodity that is owned by an agent. For expositional clarity
we assume that the number of agents is equal to the number of edges in the
network. However, any analysis that follows can be extended to cases where
agents own multiple edges. We therefore let I = {1, 2, . . . , n, n + 1} be the set
of all agents where 1, 2, . . . , n are edge owning agents and agent (n + 1) is the
buying agent.

Each agent i ∈ I has an initial endowment vector ei ∈ <n+1
+ where ei,j ∈

{0, 1},∀j ∈ {1, 2, . . . , n} and ei,(n+1) ∈ <. This implies that when agent i owns
the edge j ∈ E then eij = 1 and is otherwise 0. Having assumed that there is a
one-to-one correspondence between the edges and the agents, we have ei,i = 1
and ei,j = 0,∀j 6= i. In addition the (n + 1)th entry in the endowment vector
ei indicates the amount of money that agent i has. For any agent i ∈ I we let
Ti denote the set of possible types. The type ti ∈ Ti for all edge owning agents
i ∈ I\{(n + 1)} is a description of the cost that he incurs when his edge is used.
The type t(n+1) ∈ T(n+1) however describes the budget of the buying agent.

Let C denote the set of all possible coalitions or non empty subsets of I,
that is, C = {S|S ⊆ I, S 6= ∅}. For any coalition S ∈ C, we let TS = ×i∈STi

so that any tS ∈ TS denotes a combination of types of all agents i in S. For
the grand coalition I, we let T = TI = ×i∈ITi. Now, for any subset S ∈ C,



which includes the agent (n + 1), we define a set of market transactions. This
follows from a shortest path computation that is carried out after the agents
i in S declare their types ti. We call this set of market transactions as the
set of possible outcomes XS(tS), such that XS(tS) = {(ẽi)i∈S |ẽi ∈ <n+1

+ and∑
i∈S ẽij ≤

∑
i∈S eij , ∀j ∈ {1, 2, . . . , n, n + 1}, where ẽi is the outcome vector

of agent i after the transaction is carried out. The outcome set specifies that
the reallocation of resources and money is such that there is no infusion of
additional resources into the system. We also define the set XS and X as the
sets that include the outcomes for all possible type declarations tS ∈ TS and all
possible coalitions S ∈ C. So, XS =

⋃
tS∈TS

XS(tS) and X =
⋃

S∈C XS .
The reallocation of resources, i.e., the edges and the money, is carried out

as follows: Given the set of edges owned by the agents in S and the edge costs
declared by them, a shortest path computation identifies the set of edges whose
ownership is to be transferred to the buying agent. Following this, each edge
agent whose edge is transferred to the buying agent is compensated according
to the declared cost. The entire surplus, defined as the difference between the
budget and the cost of the shortest path, that results from the transaction is
then given to either the buying agent or to one of the agents who plays an active
role in providing the shortest path. Note here that from the way in which we
define the outcomes, there are only a finite number of outcomes, which is one
greater than the number of edge agents who provide the shortest path. In reality
however, we would expect the surplus to be shared among the participating
agents. This sharing of the surplus is achieved by using randomized mechanisms
as state contingent contracts.

Now, for any outcome x ∈ X and any t ∈ T , we let the utility for an agent
i ∈ I be ui(x, t). For any agent i and outcome x, the final outcome vector
ẽi reflects the edges that it currently owns and the money that it has after the
transfers have been carried out. That is ẽi,i can be either 0 or 1 and ẽi,(n+1) ∈ <.
So, the payoff that the agent receives from outcome x when its type is ti is given
by ui(x, t) = ẽi,(n+1) + (ẽi,i − 1)ti.

We use the notation I−i to denote I\{i} and we write t = (t−i, ti). Similarly,
(t−i, si) denotes the vector t where the ith component is changed to si. Now,
for any t ∈ T , we let pi(t−i|ti) denote the conditional probability that t−i is
the combination of types for players other than i as would be assessed by player
i if ti were his type. We will assume that these probabilities are consistent as
in [9]. We are now in a position to define the structure of the SPCG-II. In line
with the structure for cooperative games with incomplete information in [10], the
shortest path cooperative game with incomplete information can be described
by the structure below.

Γ = (X, x∗, (Ti)i∈I , (ui)i∈I , (pi)i∈I) (1)

Here, X refers to the set of all outcomes for all coalitions S ∈ C that could be
formed; x∗ is a default outcome that results when the agents are unable to come
to an agreement over the solution. In the context of the SPCG-II, the default
outcome is a null transaction whose utility for all types of all agents is 0. Ti,



ui, and pi are as defined earlier. This structure Γ of the game is assumed to be
known to all agents. In addition we assume that each agent knows his own type
before the start of negotiations. Our concern now is to develop a solution to this
cooperative game and interpret the results in the context of the SPCG-II and
the applications introduced in Section 1.

As opposed to solution concepts for cooperative games with complete infor-
mation, where the focus is on finding an allocation of the surplus value to the
participating agents, in cooperative games with incomplete information the fo-
cus is on finding mechanisms or state contingent contracts that a grand coalition
of all agents agree to [10, 11]. Here, in the context of the SPCG-II, we use the
same conceptual apparatus as presented in [10, 12, 13, 14, 15] and find that the
solution approaches for this class of games are analogous to the Core and the
Shapley Value. It appears, as we shall see below, that extensions to these con-
cepts based on important additional insights lead to the Incentive Compatible
Core [15] and Myerson’s generalization of the Shapley Value [10] which we adapt
as solutions to SPCG-II.

3 The Incentive Compatible Core for SPCG-II

The core as a solution concept for cooperative games with complete information
is based on the premise that a group of agents can cooperate and agree upon a
coordinated set of actions which can then be enforced; and the resulting feasible
allocations of surplus value cannot be improved upon by any other coalition. In
the context of incomplete information games, however, since we are concerned
with state contingent contracts rather than allocations, the meaning of the two
terms - “feasible” and “improve upon” needs a precise clarification. Feasibility in
this context refers to contracts that satisfy not only physical resource constraints
in each information state but also the incentive constraints that arise when
information is private and is inherently unverifiable. And secondly “improving
upon” a state contingent contract implies that agents need to examine what
information they use at the time of evaluating contracts. The evaluations may
be carried out either at the ex-ante stage when none of the agents has any
type information or at the interim stage when individuals know their own type
information but not that of other agents. For the class of games that we are
concerned with here, agents already possess private information when they enter
into negotiations. So, the evaluation of contracts should be done at the interim
stage and the measure of an agent’s well being is based on conditionally expected
utilities (conditional on private information). Our further analysis is based on
this measure of evaluation. Before that we introduce some additional notation
to enable the analysis that follows.

Let 4X and 4XS be the sets of all possible probability distributions on X
and XS respectively. Now, we define µ and µS as mappings from T and TS to
4X and 4XS respectively. i.e., µ : T →4X; µS : TS →4XS . Now, µ and µS

may be viewed as direct random mechanisms. Note also that a state contingent
contract can be written as function from T to4X. So, while strictly a mechanism



should be seen as a means to implement a state contingent allocation, here we
interpret it as a state contingent contract. Having defined a mechanism, we can
now define the conditionally expected utilities of the agents. We let Ui(µ, si|ti)
be the conditionally expected utility of agent i from the mechanism µ, if i’s true
type is ti but he reports si while all other agents report their types truthfully.
So we have,

Ui(µ, si|ti) =
∑

t−i∈T−i

pi(t−i|ti)
∑
x∈X

µ(x|t−i, si)ui(x, t) (2)

Ui(µ, ti) = Ui(µ, ti|ti) =
∑

t−i∈T−i

pi(t−i|ti)
∑
x∈X

µ(x|t)ui(x, t) (3)

Now, from our definition of outcomes and mechanisms, we can easily verify
that the mechanisms always meet the resource feasibility constraints. Since a
feasible mechanism is required to satisfy both physical resource constraints and
incentive constraints, we now define Π as the set of all mechanisms which are
physically feasible and Π∗ as the set of all mechanisms which are also incentive
compatible. So we have,

Π = {µ : T →4X | µ(x|t) ≥ 0 and
∑
x∈X

µ(x|t) = 1} (4)

Π∗ = {µ ∈ Π | Ui(µ, ti) ≥ Ui(µ, si|ti) ∀si, ti ∈ Ti,∀i ∈ I} (5)

These two equations taken together imply that the set of Bayesian incentive
compatible mechanisms Π∗, is a subset of Π, the set of resource feasible mecha-
nisms that obey probability constraints. In a similar vein, we define ΠS and Π∗

S

as the set of resource feasible mechanisms and incentive compatible mechanisms
respectively for a coalition S ⊆ C.

ΠS = {µS : TS →4XS | µ(xS |tS) ≥ 0 and
∑

xS∈XS

µ(xS |tS) = 1} (6)

Π∗
S = {µS ∈ ΠS | Ui(µS , ti) ≥ Ui(µS , si|ti) ∀si, ti ∈ Ti,∀i ∈ S} (7)

Now, in the spirit of the core defined for cooperative games with complete
information, we can say that a mechanism or a state contingent contract is in the
core of the SPCG-II if no subset of agents stands to gain by breaking away and
negotiating a separate contract which gives them all a better expected utility.
But in order to break away and negotiate a more beneficial contract, the agents
in the breakaway coalition, say S, must be able to gain in an event that is
discernible by all of them. We define an event Λ as Λ = ×i∈IΛi, where Λi ⊆ Ti.
This event Λ is discernible by a coalition S (or is common knowledge within S)
if pi(t̂−i|ti) = 0,∀i ∈ S, t ∈ Λ, and t̂ /∈ Λ.

Now, coalition S has an objection to a mechanism µ ∈ Π∗ if there exists a
contract µS ∈ Π∗

S and an event Λ that is discernible by S such that the following



inequality holds for all agents i ∈ S with strict inequality holding for at least
one of them.

Ui(µS |ti) ≥ Ui(µ|ti), ∀ti ∈ Λi,∀i ∈ S. (8)

The incentive compatible core consists of all mechanisms µ ∈ Π∗ to which
there is no such objection. In other words if a mechanism µ has to belong to the
incentive compatible core then there should not exist a coalition S, an incentive
compatible mechanism µS and an event Λ ∈ T such that:

1. Λ is discernible by S,
2. Ui(µS |ti) ≥ Ui(µ|ti), ∀ti ∈ Λi,∀i ∈ S,
3.

∑
i∈S ẽij ≤

∑
i∈S eij , ∀j ∈ {1, 2, . . . , n, n + 1}; ∀t ∈ T ,

The question that now arises is whether the core of such a game is non-empty.
The answer to this lies in recognizing the fact that the utility functions ui(x, t)
are all affine linear in ti and from Remark 3.1 in [15], it can be deduced that the
incentive compatible core is indeed non-empty. This immediately gives us the
following theorem.
Theorem 1. The shortest path cooperative game with incomplete information,
Γ = (X, x∗, (Ti)i∈I , (ui)i∈I , (pi)i∈I), has a non-empty incentive compatible core.

The incentive compatible core is an important solution concept, whose non-
emptiness provides strong guarantees for the stability of a coalition. Many times
we are also interested in finding a single solution to the SPCG-II as opposed to
a set of solutions like in the core. We address this issue next.

4 A Generalization of the Shapley Value for SPCG-II

In the case of cooperative games with incomplete information, we are concerned
with finding an incentive efficient mechanism or a state contingent contract
agreeable to the grand coalition I so that it is both implementable, and pareto
dominates all other incentive compatible mechanisms. In addition, the mecha-
nism chosen should fairly capture the power structure of the agents in the game
and must also be an adequate compromise between the types of the agents if
type information is to be protected in the bargaining process. A solution for this
class of games was proposed in [10] which we adapt here to the SPCG-II.

A mechanism µ is incentive efficient iff µ ∈ Π∗ and there is no other mecha-
nism ν ∈ Π∗ such that Ui(ν|ti) ≥ Ui(µ|ti),∀i ∈ I,∀ti ∈ Ti with strict inequality
holding at least for one type ti of some agent i. Since, X and T are finite sets,
the set of incentive compatible mechanisms Π∗ is a closed convex polyhedron
defined by incentive compatibility constraints and probability constraints. These
constraints are linear and hence by the supporting hyperplane theorem if there
is a set of utility transfer weights λ ∈ ×i∈I<Ti then the incentive efficient mech-
anism µ is a solution to an appropriate linear programming problem (LP1). This
is given by:



max
µ∈Π∗

∑
i∈I

∑
ti∈Ti

λi(ti)Ui(µ|ti) (9)

subject to:

Ui(µ|ti) ≥ Ui(µ, si|ti), ∀i ∈ I,∀ti ∈ Ti,∀si ∈ Ti. (10)

µ(x|t) ≥ 0,∀x ∈ X; and
∑
x∈X

µ(x|t) = 1,∀t ∈ T (11)

The dual of LP1 can be constructed by letting αi(si|ti) be the dual variable
corresponding to the incentive compatible constraint that requires agent i to not
gain by claiming that his type is si when it is actually ti. So, α ∈ ×i∈I<Ti×Ti

is a vector of dual variables. Now, a Lagrangian function can be written by
multiplying each of the incentive compatibility constraints with its corresponding
dual variable and adding it to the objective function of LP1. We then define
vi(x, t, λ, α) as the virtual utility of agent i with respect to λ and α for an
outcome x when the type profile is t [10]. This is given by:

vi(d, t, λ, α) = {{λi(ti) +
∑

si∈Ti

αi(si|ti)}pi(t−i|ti)ui(x, t)

−
∑

si∈Ti

αi(ti|si)pi(t−i|si)ui(x, (t−i, si))}/p(t) (12)

With this definition of virtual utilities, the Lagrangian of LP1 may be written
in terms of the virtual utilities as:

max
µ∈Π∗

∑
t∈T

p(t)
∑
x∈X

µ(x|t)
∑
i∈I

vi(x, t, λ, α) (13)

Notice that we now seek a mechanism that maximizes the sum of virtual util-
ities. It is also shown in [10], that when agents face binding incentive constraints,
they appear to act according to the preferences of their virtual utilities and not
their actual utilities. So, for cooperative games with incomplete information, the
bargaining solution is based on conditional transfers of virtual utility rather than
transfers of actual utility.

In the computation of the Shapley Value for cooperative games with com-
plete information, the worth of each of the smaller coalitions serves only as a
countervailing force to influence the final allocations of the surplus. Analogously,
in the model of bargaining for incomplete information games, every coalition se-
lects a threat mechanism against a complementary coalition. We note that the
SPCG-II is a game with orthogonal coalitions, in the sense that the threat mech-
anisms only affect the payoffs of the agents in the coalition. In addition, only a
coalition S which includes the buying agent (n+1) can select a threat which has
some positive utility for the coalition. All other coalitions can only select threats
whose utility for the coalition is zero (empty threats!). We let Ω = ×S∈CΠS .



That is any vector ω = (µS)S∈C ∈ Ω includes a specification of the threats µS

that each coalition S ∈ C threatens to use in case of a breakdown in negotiations
of the grand coalition. Since the significance of these threat mechanisms is only
to influence the mechanism µ = µI chosen by the grand coalition, we do not re-
quire them to be incentive compatible nor equitable. So, in our choice of threat
mechanisms involving all coalitions S where S includes (n + 1) and S ⊂ I, we
can restrict ourselves to those mechanisms which place the complete probability
weight on the outcome which gives the maximum possible payoff to agent (n+1).
We do this because one of the motivations in our application scenarios was to
reduce the high payments that are seen when VCG mechanisms are used.

Now, we can define the warranted claims WS(ω, t, λ, α) of virtual utility of
each coalition S with respect to λ and α given the type profile t and threat profile
ω by considering only the parameters relevant to the coalition S and neglecting
those of I\{S}.

WS(ω, t, λ, α) =
∑

xS∈XS

µS(xS |tS)
∑
i∈S

vi(xS , ts, λ, α) (14)

With these warranted claims of the coalitions we can build a characteristic
function form game W (ω, t, λ, α). That is, W (ω, t, λ, α) = (WS(ω, t, λ, α))S∈C .
The Shapley value of such a game is given by:

φi(W (ω, t, λ, α)) =
∑

S∈C,S⊇{i,(n+1)}

(|S| − 1)!((n + 1)− |S|)!
(n + 1)!

(WS(ω, t, λ, α))

(15)
From the Shapley value, the expected virtual-utility payoff of agent i with

type ti is given by
∑

t−i∈T−i
Pi(t−i|ti)Φi(W (ω, t, λ, α)). We note here that the

mechanism µ = µI in the warranted claim WI(ω, t, λ, α) of the grand coalition
I is the one that maximizes the sum of virtual utilities of all the agents in I and
hence is the one which maximizes the Lagrangian of LP1 expressed in virtual
utilities. That such a mechanism exists and is also individually rational is shown
in [10]. And from our construction of the outcome set X =

⋃
S∈C XS , where we

ensure that there are no transfers of money into or out of the system, we can
infer that the mechanism is strongly budget balanced. This discussion can be
summarized as the following theorem:
Theorem 2. The shortest path cooperative game with incomplete information,
Γ = (X, x∗, (Ti)i∈I , (ui)i∈I , (pi)i∈I), has a Shapley value mechanism that is in-
centive efficient and individually rational in virtual utilities, and strongly budget
balanced .

5 Summary

In this paper we have extended the analysis of shortest path cooperative games
to scenarios with incomplete information where a buying agent is also a partic-
ipant in the game. Such scenarios are routinely encountered in many real life



applications such as supply chain procurement, Internet routing, etc. We have
developed the structure for the shortest path cooperative game with incomplete
information. We have then, using previous results in cooperative game theory,
shown the following:

– the non-emptiness of the incentive compatible core of such a game.
– the existence of a Shapley Value mechanism that is incentive efficient and

individually rational in virtual utilities and also strongly budget balanced.

We believe that this analysis can be extended to multi commodity network
flow scenarios that capture more complex features of the motivating problems.
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