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Abstract. We consider the problem of routing traffic to optimize the performance of a congested
network. We are given a network, a rate of traffic between each pair of nodes, and a latency function
for each edge specifying the time needed to traverse the edge given its congestion; the objective is to
route traffic such that the sum of all travel times—the total latency—is minimized.

In many settings, it may be expensive or impossible to regulate network traffic so as to implement
an optimal assignment of routes. In the absence of regulation by some central authority, we assume
that each network user routes its traffic on the minimum-latency path available to it, given the network
congestion caused by the other users. In general such a “selfishly motivated” assignment of traffic to
paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased
network performance.

In this article, we quantify the degradation in network performance due to unregulated traffic. We
prove that if the latency of each edge is a linear function of its congestion, then the total latency of the
routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject
to the condition that all traffic must be routed). We also consider the more general setting in which
edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion.
Here, the total latency of the routes chosen by unregulated selfish network users may be arbitrarily
larger than the minimum possible total latency; however, we prove that it is no more than the total
latency incurred by optimally routingtwiceas much traffic.
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1. Introduction

A fundamental problem arising in the management of large-scale traffic and com-
munication networks is that of routing traffic to optimize network performance.
One problem of this type is the following: Given the rate of traffic between each
pair of nodes in a network, find an assignment of traffic to paths so that the sum of
all travel times (thetotal latency) is minimized. A difficult aspect of this problem
is that the amount of time needed to traverse a single link of a network is typi-
cally load-dependent, that is, the common latency suffered by all traffic on the link
increases as the link becomes more congested.

It is often difficult or even impossible to impose optimal or near-optimal routing
strategies on the traffic in a network; in these settings, network users are free to act
according to their own interests, without regard to overall network performance.
The central question of this paper ishow much does network performance suffer
from this lack of regulation?

As a first step toward formalizing this question mathematically, we assume that,
in the absence of network regulation, users act in a purely selfish (but not malicious)
manner. Under this assumption, we can view network users as independent agents
participating in anoncooperative gameand expect the routes chosen by users to
form aNash equilibriumin the sense of classical game theory [Owen 1995]. In other
words, we assume that each agent uses the minimum-latency path from its source to
its destination, given the link congestion caused by the rest of the network users.1

It is well known that Nash equilibria do not in general optimize social welfare;
perhaps the most famous example is that of “The Prisoner’s Dilemma” [Dubey
1986; Owen 1995]. We are then interested in comparing the total latency of a Nash
equilibrium with that of the optimal assignment of traffic to paths.

Our approach to quantifying the inefficiency inherent in a selfishly defined solu-
tion (dubbed the “price of anarchy” by Papadimitriou [2001]) is inspired by recent
work of Koutsoupias and Papadimitriou [1999]. In Koutsoupias and Papadimitriou
[1999], network routing was modeled as a noncooperative game (though with a
different model than ours, and only for two-node networks) and the worst-case
ratio of the social welfare achieved by a Nash equilibrium and by a socially op-
timal set of strategies was proposed as a measure of the performance degradation
caused by a lack of regulation. As articulated in Koutsoupias and Papadimitriou
[1999], we study the cost of the lack ofcoordinationinherent in a noncooperative
game, as opposed to the cost of a lack ofunbounded computing power(studied via
approximation algorithms) or the cost of a lack ofcomplete information(studied
via on-line algorithms).

For most of the article, we assume that each agent controls a negligible fraction
of the overall traffic. For example, each agent could represent a car in a highway
system, or a packet in a communication network; an equilibrium then represents
a steady-state in the system (perhaps best achieved in a road network by daily
commuters during rush hour and in a communication network by persistent or
long-running applications). Under this assumption, a feasible assignment of traffic
to paths in the network can be modeled asnetwork flow, with the amount of flow

1 Friedman [2001] has pointed out that this equilibrium arises not only in settings where network
users can select their own paths, but also in network protocols that determine routes for users via a
shortest path computation (provided link latency is used as the distance metric).
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between a pair of nodes in the network equal to the rate of traffic between the
two nodes. A Nash equilibrium in the aforementioned noncooperative game then
corresponds to a flow where all flow paths between a given source and destination
have equal (and smallest possible) latency—if a flow does not have this property,
some agent can improve its travel time by switching from a longer flow path to a
shorter one.

Beckmann et al. [1956] showed that if the latency of each network link is a
continuous nondecreasing function of the flow on the link, then a flow corresponding
to a Nash equilibrium always exists and moreover all such flows have the same total
latency. Thus, we can study the cost of routing selfishly via the following question:
among all networks with continuous, nondecreasing link latency functions, what
is the worst-case ratio between the total latency of a flow at Nash equilibrium and
that of an optimal flow (i.e., a flow minimizing the total latency)?

1.1. OUR RESULTS. In networks in which the latency of each edge is a linear
function of the edge congestion (a model that has been the focus of several previous
papers [Cohen and Horowitz 1991; Frank 1981; Steinberg and Zangwill 1983]),
we show that a flow at Nash equilibrium has total latency at most4

3 times that of
the optimal flow. We give examples showing that this result is tight.

We also consider the model in which link latency functions are assumed only to be
continuous and nondecreasing. We first show that the ratio between the total latency
of a flow at Nash equilibrium and that of an optimal flow may be unbounded in this
model. We then work towardbicriteria results; in particular, we compare the total
latency of a flow at Nash equilibrium with that of an optimal flow that routesaddi-
tional trafficbetween each pair of nodes.2 Our main result in this setting is that for
any network with continuous nondecreasing latency functions, the total latency in-
curred by a flow at Nash equilibrium is at most that of an optimal flow forced to route
twice as much traffic. We again give an example showing that our analysis is tight.

Finally, we examine two unrealistic assumptions made in the basic model: first,
the assumption that agents can evaluate the latency of a path with arbitrary precision,
and second, that there is an infinite number of agents each controlling a negligible
fraction of the overall traffic. We define extensions to the basic model and use them
to analyze the sensitivity of our results to these assumptions.

1.2. RELATED WORK. Unregulated traffic has been modeled as network flow
with all flow paths between a given source-destination pair having equal latency
since the 1950’s [Beckmann et al. 1956; Wardrop 1952] (see also Knight [1924]).
Beckmann et al. [1956], observing that such an equilibrium flow is an optimal
solution to a related convex program (see also Section 2), gave existence and
uniqueness results for traffic equilibria. Dafermos and Sparrow [1969] were per-
haps the first authors interested in computing the equilibrium efficiently, and many
subsequent papers gave increasingly efficient methods for computing equilibria
(see Florian [1986] and Florian and Hearn [1995] for a survey). Since these
early works, many properties of and extensions to this traffic model have been
studied (see, e.g., Aashtiani and Magnanti [1981], Dafermos [1980], Florian [1986],
Hall [1978], Nagurney [2000], Nesterov [1999], Nesterov and Palma [2000],

2 This approach is thus in the spirit of the analyses of online algorithms viaresource augmentation
given by Kalyanasundaram and Pruhs [2000] and Phillips et al. [2002].



How Bad Is Selfish Routing? 239

(a) Before (b) After

FIG. 1. Braess’s Paradox. The addition of an intuitively helpful link can negatively impact all of the
users of a congested network.

Orda et al. [1993], Rosenthal [1973], Roughgarden [2001b], Sheffi [1985], and
Smith [1979]).

In the past several decades, much of the work on this traffic model has been
inspired by a “paradox” first discovered by Braess [1968] and later reported by
Murchland [1970] (see also Bass [1992] for a nontechnical account). The essence
of Braess’s Paradox is captured by the example shown in Figure 1, where the edges
are labeled with their latency functions (each a function of the link congestionx).
Suppose one unit of traffic needs to be routed froms to t in the first network of
Figure 1. In the unique flow at Nash equilibrium, which coincides with the optimal
flow, half of the traffic takes the upper path and the other half travels along the lower
path, and thus all agents are routed on a path of latency3

2. Next suppose a fifth edge
of latency 0 (independent of the congestion) is added to the network, with the result
shown in Figure 1(b). The optimal flow is unaffected by this augmentation (there is
no way to use the new link to decrease the total latency) while in the new (unique)
flow at Nash equilibrium, all traffic follows paths → v → w → t ; here, the
latency experienced by each individual agent is 2. Thus, the intuitively helpful (or
at least innocuous) action of adding a new zero-latency link may negatively impact
all of the agents!

Motivated by the discovery of Braess’s Paradox and evidence of similarly coun-
terintuitive and counterproductive traffic behavior following the construction of
new roads in congested cities [Kn¨odel 1969; Murchland 1970], researchers at-
tempted to classify networks in which the addition of a single link could degrade
network performance [Frank 1981; Steinberg and Zangwill 1983], discovered new
types of “paradoxes” [Dafermos and Nagurney 1984; Fisk 1979; Hagstrom and
Abrams 2001; Smith 1978; Steinberg and Stone 1988], and proved that detecting
Braess’s Paradox (even in its worst-possible manifestation) is algorithmically dif-
ficult [Roughgarden 2001a]. In a related model with finitely many agents, each
controlling a strictly positive amount of flow, Korilis et al. [1997, 1999] studied
strategies for adding new edges and/or capacity to a network that guarantee an
improvement in network performance.

In contrast to this previous work, we are interested in quantifying the differ-
ence in social welfare between equilibrium and optimal traffic flows. To the best of
our knowledge, the only previous work with this goal is the paper of Koutsoupias
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(a) Before

(b) After

FIG. 2. Strings and springs. Severing a taut string results in the rise of a heavy weight.

and Papadimitriou [1999]; however, the model of this paper is quite different from
ours. In Koutsoupias and Papadimitriou [1999], a finite number of users share a
collection of parallel links, and each user chooses a distribution on the set of links
(specifying the probability that the agent will route all of its flow on a given link).
Each agent wishes to minimize the expected congestion it will experience, while
the global objective is to minimize the expected load on the most congested edge.
Different Nash equilibria may have different objective function values in the model
of Koutsoupias and Papadimitriou [1999], so theworst-caseNash equilibrium is
compared to a globally optimal choice of distributions. Koutsoupias and Papadim-
itriou obtain a tight analysis of this worst-case ratio in two-node, two-link networks
and partial results for two-node networks with three or more parallel links; tight re-
sults have recently been obtained for parallel networks with any number of links by
Mavronicolas and Spirakis [2001] (for a special case) and by Czumaj and V¨ocking
[2002] (for the general case).

1.3. EQUILIBRIA IN OTHER SETTINGS. Braess’s Paradox is not particular to
traffic in networks; perhaps the most compelling analogue occurs in a mechanical
network of strings and springs, constructed by Cohen and Horowitz [1991] and
shown in Figure 2. In this device, one end of a spring is attached to a fixed support,
and the other end to a string. A second identical spring is hung from the free end
of the string and carries a heavy weight. Finally, strings are connected (with some
slack) from the support to the upper end of the second spring and from the lower
end of the first spring to the weight. Assuming that the springs are ideally elastic,
the stretched length of a spring is a linear function of the force applied to it. We
may thus view the network of strings and springs as a traffic network, where forces
correspond to flows and physical distance corresponds to latency. With a suitable
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choice of string and spring lengths and spring constants, the equilibrium position of
this mechanical network is described by Figure 2(a). Contrary to intuition, severing
the taut string causes the weight to rise, as shown in Figure 2(b); this corresponds
to deleting the zero-latency arc of Figure 1(b), thereby obtaining the network of
Figure 1(a) with its improved Nash equilibrium.

Our result for traffic equilibria in networks with linear latency functions provides
a quantitative limit on the extent to which this phenomenon can occur. In particular,
we show that our result implies that for any system of strings and springs carrying
a single weight, the distance between the support and the weight after severing an
arbitrary collection of strings and springs is at least3

4 times the original support-
weight distance.

Further examples of analogous phenomena have been exhibited in two-terminal
electrical networks [Cohen and Horowitz 1991] (where our results give analogous
bounds on the largest possible increase in conductivity obtainable by removing
conducting links) and queuing networks [Cohen and Kelly 1990].

1.4. ORGANIZATION. In Section 2, we give a formal definition of our network
model and of flows at Nash equilibrium, and state several lemmas needed for our
main results. In Section 3, we prove our main bicriteria result for networks with
arbitrary edge latency functions. In Section 4, we prove a stronger and technically
more involved result for networks with linear edge latency functions. Section 5
considers several extensions to the basic model, and Section 6 concludes with a
discussion of recent work.

2. Preliminaries

In this section we present the basic definitions and preliminary results needed in
the rest of the paper. Sections 2.1 and 2.2 describe the basic model and flows at
Nash equilibrium, and are prerequisites for all that follows. Section 2.3 gives a
characterization of minimum-latency flows that is crucial for our result for net-
works with linear latency functions (Section 4), but unnecessary for our bicriteria
result for networks with arbitrary latency functions (Section 3). In Section 2.4 we
prove the existence and essential uniqueness of flows at Nash equilibrium and in
Subsection 2.5 we observe that this proof gives a good (but not optimal) upper
bound on the cost of selfish routing for networks with sufficiently well-behaved
edge latency functions. Except for the fact that Nash flows exist and are unique, no
results or techniques from these two sections will be needed in the rest of the paper.

2.1. THE MODEL. We consider a directed networkG = (V, E) with vertex set
V , edge setE, andk source-destination vertex pairs{s1, t1}, . . . , {sk, tk}. We denote
the set of (simple)si -ti paths byPi , and defineP = ∪iPi . A flow is a function
f : P → R+; for a fixed flow f we definefe =

∑
P:e∈P fP. We associate a finite

and positiverate ri with each pair{si , ti }, the amount of flow with sourcesi and
destinationti ; a flow f is said to befeasibleif for all i ,

∑
P∈Pi

f P = ri . Finally, each
edgee∈ E is given a load-dependentlatency functionthat we denote bỳe(·). For
eache∈ E, we assume that the latency function`e is nonnegative, differentiable,3

3 We make this assumption for simplicity only. All of our results hold, with minor modifications to
the proofs, under the weaker assumption of continuity.
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and nondecreasing. We will call the triple (G, r, `) an instance. The latency of a
pathP with respect to a flowf is defined as the sum of the latencies of the edges
in the path, denoted bỳP( f ) =∑e∈P `e( fe). We define thecost C( f ) of a flow f
in G as the total latency incurred byf , that is,

C( f ) =
∑
P∈P

`P( f ) fP.

By summing over the edges in a pathP and reversing the order of summation, we
may also writeC( f ) =∑e∈E `e( fe) fe.

2.2. FLOWS AT NASH EQUILIBRIUM . We wish to consider flows that represent
an equilibrium among many noncooperative agents—that is, flows that behave
“greedily” or “selfishly,” without regard to the overall cost. Intuitively, we expect
each unit of such a flow (no matter how small) to travel along the minimum-latency
path available to it, where latency is measured with respect to the rest of the flow;
otherwise, this flow would reroute itself on a path with smaller latency. We formalize
this idea in the next definition.

Definition 2.1. A flow f feasible for instance (G, r, `) is atNash equilibrium
if for all i ∈ {1, . . . , k}, P1, P2 ∈ Pi , andδ ∈ (0, fP1], we havè P1( f ) ≤ `P2( f̃ ),
where

f̃ P =


fP − δ if P = P1

fP + δ if P = P2

fP if P /∈ {P1, P2}.
Lettingδ tend to 0, continuity and monotonicity of the edge latency functions give

the following useful characterization of a flow at Nash equilibrium, occasionally
called a Wardrop equilibrium [Haurie and Marcotte 1985] or Wardrop’s Principle
[Steinberg and Stone 1988; Steinberg and Zangwill 1983] in the literature, due to
an influential paper of Wardrop [1952].

LEMMA 2.2. A flow f feasible for instance(G, r, `) is at Nash equilibrium if
and only if for every i∈ {1, . . . , k} and P1, P2 ∈ Pi with fP1 > 0,`P1( f ) ≤ `P2( f ).

In particular, if f is at Nash equilibrium then allsi -ti flow paths (i.e.,si -ti paths
to which f assigns a positive amount of flow) have equal latency, sayLi ( f ). We
can thus express the costC( f ) of a flow f at Nash equilibrium in a particularly
nice form.

LEMMA 2.3. If f is a flow at Nash equilibrium for instance(G, r, `), then

C( f ) =
k∑

i=1

Li ( f )ri .

Remark2.4. Our definition of a flow at Nash equilibrium corresponds to an
equilibrium in which each agent chooses a single path of the network (apure
strategy), whereas in classical game theory a Nash equilibrium is typically defined
via mixed strategies(in which an agent may choose a probability distribution over
pure strategies) [Owen 1995]. However, since in our model each agent carries
a negligible fraction of the overall traffic, these two definitions are essentially
equivalent (see Haurie and Marcotte [1985] for a rigorous discussion).
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2.3. CHARACTERIZINGOPTIMAL FLOWS VIA CONVEX PROGRAMMING. We now
investigate the properties of an optimal flow—that is, a flow that minimizes total
latency. Recalling that the cost of a flowf may be expressedC( f ) =∑

e∈E `e( fe) fe, observe that the problem of finding the minimum-latency feasi-
ble flow in a network is a special case of the following non-linear program

Min
∑
e∈E

ce( fe)

subject to:
(NLP)

∑
P∈Pi

f P = ri ∀i ∈ {1, . . . , k}
fe =

∑
P∈P:e∈P

fP ∀e∈ E

fP ≥ 0 ∀P ∈ P

where in our problem,ce( fe) = `e( fe) fe.
For simplicity, we have given a formulation with an exponential number of

variables, but it is not difficult to give an equivalent compact formulation (with
decision variables only on edges and explicit conservation constraints) that requires
only polynomially many variables and constraints.

Next, we characterize the local optima of (NLP). Intuitively, we expect a flow
to be locally optimal if and only if moving flow from one path to another can only
increase the flow’s cost. Put differently, we expect a flow to be locally optimal
when the marginal benefit of decreasing flow along anysi -ti flow path is at most
the marginal cost of increasing flow along any othersi -ti path. Since the local and
global minima of a convex function on a convex set coincide (see, e.g., Peressini
et al. [1998, Thm 2.3.4]), this condition should be necessary and sufficient for a
flow to begloballyoptimal whenever the objective function of (NLP) is convex (as
is the case when for each edgee ∈ E we havece( fe) = `e( fe) fe with a convex
latency functioǹ e).

We formalize this characterization of global optima in convex programs of the
form (NLP) in the next lemma. Letc′e denote the derivativeddx ce(x) of ce and define
c′P( f ) by c′P( f ) =∑e∈P c′e( fe). We then have the following.4

LEMMA 2.5 [BECKMANN ET AL. 1956; DAFERMOS ANDSPARROW1969]. The
flow f is optimal for a convex program of the form(NLP) if and only if for every
i ∈ {1, . . . , k} and P1, P2 ∈ Pi with fP1 > 0, c′P1

( f ) ≤ c′P2
( f ).

Remark2.6. To see that this characterization still makes sense under the weaker
assumption of continuous (and not necessarily differentiable) latency functions,
definec−e (x), c+e (x) to be the left and right derivatives ofce atx, respectively; since
ce is assumed to be convex,c+e andc−e exist everywhere. Definec+P( f ) andc−P( f )
for a pathP in the obvious way. Then, the proof of Lemma 2.5 can easily be
extended to show that a flowf is optimal in this more general setting if and only
if for any P1, P2 as above,c−P1

( f ) ≤ c+P2
( f ).

4 For a formal derivation via the Karush-Kuhn-Tucker Theorem [Peressini et al. 1988], see Beckmann
et al. [1956] and Dafermous and Sparrow [1969].
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The striking similarity between the characterizations of optimal solutions to a
convex program of the form (NLP) and of flows at Nash equilibrium was noticed
early on by Beckmann et al. [1956], and provides an interpretation of an optimal
flow as a flow at Nash equilibriumwith respect to a different set of edge latency
functions. To make this relationship precise, denote the marginal cost of increasing
flow on edgee by `∗e( fe) = (`e( fe) fe)′ = `e( fe) + `′e( fe) fe. Lemmas 2.2 and 2.5
then yield the following corollary.

COROLLARY 2.7 [BECKMANN ET AL. 1956; DAFERMOS AND SPARROW1969].
Let (G, r, `) be an instance in which x· `e(x) is a convex function for each edge
e, with marginal cost functions̀∗ defined as above. Then a flow f feasible for
(G, r, `) is optimal if and only if it is at Nash equilibrium for the instance(G, r, `∗).

Remark2.8. We will typically denote a minimum-latency flow for an instance
by f ∗. The marginal cost functions are denoted by`∗ as they are “optimal latency
functions” in a sense made precise by Corollary 2.7: the optimal flowf ∗ arises as
a flow at Nash equilibrium with respect to latency functions`∗.

Observe that the functioǹ∗e(x) describing the marginal cost of increasing flow on
edgee has one term̀e(x) capturing the per-unit latency incurred by the additional
flow and a second termx·`′e(x) accounting for the increased congestion experienced
by the flow already using the edge. Essentially, the only difference between an
optimal flow and a flow at Nash equilibrium is that the former accounts for this
“conscientious” second term while the latter disregards it.

2.4. EXISTENCE OFFLOWS AT NASH EQUILIBRIUM . In this section, we exploit
the similarity between the characterizations of Nash and of minimum-latency flows
(Lemmas 2.2 and 2.5) to prove the existence and essential uniqueness of Nash equi-
libria. This result is originally due to Beckmann et al. [1956] and was later reproved
by Dafermos and Sparrow [1969]; we include a proof both for completeness and
because the techniques will prove useful in the next subsection.

LEMMA 2.9 [BECKMANN ET AL. 1956; DAFERMOS AND SPARROW1969]. An
instance (G, r, `) with continuous, nondecreasing latency functions admits a
feasible flow at Nash equilibrium. Moreover, if f, f̃ are flows at Nash equilibrium,
then C( f ) = C( f̃ ).

PROOF. Set he(x) = ∫ x
0 `e(t)dt. Since eachhe is differentiable with non-

decreasing derivativèe, eachhe is convex. Now consider the convex program

Min
∑
e∈E

he( fe)

subject to:
(NLP2)

∑
P∈Pi

f P = ri ∀i ∈ {1, . . . , k}
fe =

∑
P∈P:e∈P

fP ∀e∈ E

fP ≥ 0 ∀P ∈ P
and notice that the optimality conditions of Lemma 2.5 for (NLP2) precisely
match the characterization of flows at Nash equilibrium in Lemma 2.2. In other
words, the optimal solutions for (NLP2) are precisely the flows at Nash equilib-
rium for (G, r, `). Existence of a Nash equilibrium then follows from the facts that
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(NLP2) has a continuous objective function and a compact feasible region. Next,
supposef, f̃ are flows inG at Nash equilibrium (and hence global optima for
(NLP2)). By convexity of the objective function of (NLP2), wheneverfe 6= f̃ e the
functionhe must be linear between these two values (otherwise any convex com-
bination of f, f̃ would be a feasible solution for (NLP2) with smaller objective
function value) and hencèe must be constant between these two values. This
implies that`e( fe) = `e( f̃ e) for all e ∈ E, henceLi ( f ) = Li ( f̃ ) for all i , and
hence (by Lemma 2.3)C( f ) = C( f̃ ).

2.5. A GOOD BUT NOT OPTIMAL UPPER BOUND. The proof of Lemma 2.9
provides a fairly general method for upper-bounding the ratio between the cost of a
flow at Nash equilibrium and of a minimum-latency flow for instances with latency
functions that are, in some sense, “not too steep.” Before making this statement
precise, we require some additional notation. For an instance (G, r, `) admitting an
optimal flow f ∗ and a flow at Nash equilibriumf , we denote the ratioC( f )/C( f ∗)
by ρ = ρ(G, r, `); note thatρ is well defined by Lemma 2.9. We then have the
following corollary.

COROLLARY 2.10. Suppose the instance(G, r, `) and the constantα ≥ 1
satisfy

x · `e(x) ≤ α ·
∫ x

0
`e(t)dt

for all edges e and all positive real numbers x. Then

ρ(G, r, `) ≤ α.

PROOF. Roughly speaking, the corollary holds since a flow at Nash equilibrium
for (G, r, `) optimizes an objective function (the objective function of (NLP2) in
the proof of Lemma 2.9) that is at most a factorα away from the true objective
function C(·). More formally, let f and f ∗ denote Nash and optimal flows for
(G, r, `), respectively; we can then derive

C( f ) =
∑
e∈E

`e( fe) fe

≤ α
∑
e∈E

∫ fe

0
`e(t)dt

≤ α
∑
e∈E

∫ f ∗e

0
`e(t)dt

≤ α
∑
e∈E

`e( f ∗e ) f ∗e

= α · C( f ∗)

where the first inequality follows from the hypothesis, the second inequality from
the fact that the Nash flowf optimizes the objective function

∑
e

∫ x
0 `e(t)dt

(see Lemma 2.9), and the third inequality from the assumption that every latency
function`e is nondecreasing.
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FIG. 3. A simple bad example.

While the hypothesis of Corollary 2.10 is somewhat opaque, the corollary nev-
ertheless gives a non-trivial upper bound on the cost of selfish routing for many
instances, such as instances with latency functions that are polynomials with non-
negative coefficients.

COROLLARY 2.11. Suppose every latency function`e of the instance(G, r, `)
has the form̀ e(x) = ∑p

i=0 ae,i xi for a positive integer p and nonnegative reals
ae,i . Then,

ρ(G, r, `) ≤ p+ 1.

In particular, Corollary 2.11 states that in an instance with linear latency functions
(that is, every latency functioǹe has the form̀ e(x) = aex + be for ae, be ≥
0), the cost of a flow at Nash equilibrium is at most twice that of a minimum-
latency flow. This upper bound is nontrivial (to the best of our knowledge, it was
not known prior to this work) but it is not sharp: in Section 4 we prove that if
(G, r, `) is an instance with linear latency functions, thenρ(G, r, `) ≤ 4

3. The upper
bound of Corollary 2.11 is not best possible for higher-degree polynomials, either;
Roughgarden [2002a] has recently shown that if all latency functions of an instance
(G, r, `) are polynomials with degree at mostp, thenρ(G, r, `) = O(p/ln p) (see
Section 6 for details). On the other hand, for each value ofα ≥ 1, there is an instance
(with rather contrived latency functions) for which the inequality of Corollary 2.10
holds with equality.

3. A Bicriteria Bound for General Latency Functions

We have already seen (Figure 1(b)) that a flow at Nash equilibrium and a minimum-
latency flow may have different costs. In the next two sections, we analyze theratio
of the cost of a flow at Nash equilibrium to that of the minimum-latency flow. In
this section, we work with general (continuous, nondecreasing) latency functions.
In Section 4, we will specialize to the case of linear latency functions.

We begin with some simple negative results. Recall from Subsection 2.5 that by
ρ(G, r, `) we mean the ratio between the cost of a Nash flow and of an optimal
flow for instance (G, r, `). For example, in the second network of Braess’s Paradox
(Figure 1(b)), a flow at Nash equilibrium has total latency 2 while the optimal flow
has total latency32; thus,ρ = 4

3 in this instance. In fact, it is easy to construct an
even simpler example (still with linear latency functions) with ratioρ = 4

3. In the
network shown in Figure 3, with a single source-destination pair and rate 1, the
flow at Nash equilibrium puts the entire unit of flow on the lower link (with a total
latency of 1) while the minimum-latency flow spreads flow evenly across the two
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links, thereby incurring a cost of34. Thus,ρ = 4
3 in this simple instance as well.

(In the next section we prove that this is the worst possible ratio for instances with
linear latency functions.)

Unfortunately, the ratio can be much worse when nonlinear latency functions
are allowed. For a positive integerp, consider modifying the example of Figure 3
by giving the lower link a latency function of̀(x) = xp (everything else remains
unchanged). The flow at Nash equilibrium again places the entire unit on the lower
link, incurring a cost of 1, while the optimal flow assigns (p+ 1)−1/p units to the
lower link and the remainder to the upper link. This solution has a total latency of
1− p·(p+1)−(p+1)/p, which tends to 0 asp→∞. Thus, assuming only continuity
and monotonicity of the edge latency functions,ρ cannot be bounded above (even
as a function of the network size).

On the other hand, this example does not rule out interestingbicriteria results.
Toward this end, we compare the cost of a flow at Nash equilibrium to an optimal
flow feasible forincreased rates. In the example above, an optimal flow feasible for
rater ≥ 1 assigns the additional flow to the upper link, now incurring a cost that
tends tor −1 asp→∞. In particular, for anyp an optimal flow feasible for twice
the rate (r = 2) has total latency at least that of the flow at Nash equilibrium (feasible
for the original rates). Our main result of this section is a proof of the generalization
of this result toanynetwork with continuous, nondecreasing edge latencies.

THEOREM 3.1. If f is a flow at Nash equilibrium for(G, r, `) and f∗ is feasible
for (G, 2r, `), then C( f ) ≤ C( f ∗).

PROOF. Supposef, f ∗ satisfy the hypotheses of the theorem. Fori = 1, . . . , k,
let Li ( f ) be the latency of ansi -ti flow path (of f ), so thatC( f ) =∑i Li ( f )ri (see
Lemma 2.3). We seek a set of latency functions¯̀that on one hand approximates the
original ones (in the sense that the cost of a flow with respect to latency functions¯̀
is close to its original cost) and, on the other hand, allows us to easily lower bound
the cost (with respect tò̄) of any feasible flow. With this goal in mind, we define
new latency functions̀̄ as follows:

¯̀e(x) =
{
`e( fe) if x ≤ fe

`e(x) if x ≥ fe.

Figure 4 illustrates this construction.
First, we compare the cost of the flowf ∗ under the new latency functions̄` to its

original costC( f ∗). For any edgee, ¯̀e(x)− `e(x) is zero forx ≥ fe and bounded
above bỳ e( fe) for x < fe, sox( ¯̀e(x) − `e(x)) ≤ `e( fe) fe for all x ≥ 0. Notice
that the left-hand side (the discrepancy betweenx ¯̀e(x) andx`e(x)) is maximized
whenx is slightly smaller thanfe and wheǹ e(x) = 0; in this case, the value of
the left-hand side is essentially the area of the rectangle enclosed by dashed lines
in Figure 4(a). The difference between the new cost (with respect to¯̀) and the old
cost (with respect tò) can now be bounded as follows:∑

e

¯̀e( f ∗e ) f ∗e − C( f ∗) =
∑
e∈E

f ∗e ( ¯̀e( f ∗e )− `e( f ∗e ))

≤
∑
e∈E

`e( fe) fe

= C( f ).
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(a) Graph of latency functioǹe and its value at
flow value fe

(b) Graph of latency functioǹ̄e

FIG. 4. Construction in the proof of Theorem 3.1 of modified latency function¯̀
e given original

latency functioǹ e and Nash flow valuefe. Solid lines denote graphs of functions.

In other words, evaluatingf ∗ with latency functions̄̀ (rather thaǹ ) increases its
cost by at most an additiveC( f ) factor.

On the other hand, iff0 denotes the zero flow inG, then by constructioǹ̄P( f0) ≥
Li ( f ) for any pathP ∈ Pi . Since¯̀e is nondecreasing for each edgee, it follows
that ¯̀P( f ∗) ≥ Li ( f ) for each pathP ∈ Pi . Thus, the cost off ∗ with respect tṑ
can be bounded below in the following manner:∑

P

¯̀P( f ∗) f ∗P ≥
∑

i

∑
P∈Pi

Li ( f ) f ∗P

=
∑

i

2Li ( f )ri = 2C( f ).

Combining these two results, we obtain the theorem:

C( f ∗) ≥
∑

P

¯̀P( f ∗) f ∗P − C( f )

≥ 2C( f )− C( f ) = C( f ).

The same proof also shows the following more general result.

THEOREM 3.2. If f is a flow at Nash equilibrium for(G, r, `) and f∗ is feasible
for (G, (1+ γ )r, `), then C( f ) ≤ 1

γ
C( f ∗).

Referring back to the bad example at the beginning of the section (the network of
Figure 3 with latency functions̀(x) = 1 and`(x) = xp), we see that Theorem 3.2
is essentially tight for all values ofγ . More precisely, by takingp sufficiently
large we can obtain an instance admitting an optimal flow feasible for a traffic rate
arbitrarily close to (1+ γ ) with cost strictly less thanγ (recall the cost of the flow
at Nash equilibrium for the original rater = 1 is 1) and an optimal flow feasible
for rate 1+ γ with cost arbitrarily close toγ .

Theorem 3.1 has an alternative interpretation for networks with edges that are
in some sense “capacitated”: In lieu of centralized control, the price of routing
selfishly can be offset by a moderate increase in network capacity. One way of
making this statement precise is the following. Suppose (G, r, `) is an instance in
which each latency functioǹe has the form̀ e(x) = (ue− x)−1, whereue denotes
the capacity of edgee. Such functions arise as the delay functions of M/M/1 queues
and occur frequently in networking contexts [Bertsekas and Gallager 1992]. Letting
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˜̀e(x) = (2ue− x)−1, the following statement is an easy corollary of Theorem 3.1
(see [Roughgarden 2002b]): the cost of a flow at Nash equilibrium for the instance
(G, r, ˜̀) is at most the cost of an optimal flow for the original instance (G, r, `).
Thus, for a network with M/M/1 delay functions, our results offer the following
advice: to match the performance of a centrally controlled network with selfish
routing, simplydouble the capacity of every edge.

4. Worst-Case Ratio of43 with Linear Latency Functions

In this section, we consider the scenario where the latency of each edgee is linear in
the edge congestion—that is, where for each edgee∈ E, `e(x) = aex+be for some
ae, be ≥ 0. This is the setting in which Braess’s paradox was originally discovered
[Braess 1968; Murchland 1970], and several subsequent papers focused entirely on
this model [Frank 1981; Steinberg and Zangwill 1983]. In addition, linear latency
functions are important for other applications: we will see later in this section that
the mechanical networks of strings and springs mentioned in the Introduction can
be modeled as traffic networks with linear latency functions, and Friedman [2001]
shows how linear latency functions naturally arise in a simple model of selfish
users transferring files over a network employing a congestion control protocol
(such as TCP).

We have already seen (Figures 1 and 3) two examples with linear latency functions
for which ρ, the ratio of the cost of a flow at Nash equilibrium and the cost of an
optimal flow, is 4

3. Our main result for this section (Theorem 4.5) is a matching
upper bound for networks with linear latency functions. Our proof techniques build
on those of the previous two sections, the primary extension being a more refined
approach to lower bounding the cost of an optimal flow.

The results of Section 2 have particularly simple and useful forms in the special
case of linear latency functions. First, the total latencyC( f ) of a flow f is given
by C( f ) =∑e ae f 2

e + be fe; sinceae ≥ 0 for all e, the non-linear program (NLP)
of Section 2.3 is a convex (quadratic) program and thus Lemma 2.5 characterizes
its optimal solutions. Also, in the notation of Section 2.3, if the latency function`e
of edgee is `e(x) = aex + be, then the marginal cost functioǹ∗e of e is simply
`∗e(x) = 2aex + be. For convenience, we summarize this discussion together with
specialized versions of Lemmas 2.2 and 2.5 in the following lemma.

LEMMA 4.1. Let (G, r, `) be an instance with edge latency functions`e(x) =
aex + be for each e∈ E. Then,

(a) a flow f is at Nash equilibrium in G if and only if for each source-sink pair i
and P, P′ ∈ Pi with fP > 0,∑

e∈P

ae fe+ be ≤
∑
e∈P′

ae fe+ be

(b) a flow f∗ is (globally) optimal in G if and only if for each source-sink pair i
and P, P′ ∈ Pi with f ∗P > 0,∑

e∈P

2ae f ∗e + be ≤
∑
e∈P′

2ae f ∗e + be.

As an aside, we note that Lemma 4.1 immediately gives a simple proof of the
following nontrivial result regarding networks in which the latency of each edge is
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proportional to its congestion; this result is implicit in the work of Dafermos and
Sparrow [1969], and other properties of this special case have been investigated in
the context of electrical networks [Bott and Duffin 1953; Cohn 1950].

COROLLARY 4.2. Let G be a network in which each edge latency function`e
is of the form̀ e(x) = aex. Then for any rate vector r, a flow feasible for(G, r, `)
is optimal if and only if it is at Nash equilibrium.

PROOF. A feasible flow for such an instance satisfies the conditions of
Lemma 4.1(a) if and only if it satisfies the conditions of Lemma 4.1(b).

A second corollary of Lemma 4.1 will play a crucial role in our proof of the main
theorem of this section.

LEMMA 4.3. Suppose(G, r, `) has linear latency functions and f is a flow at
Nash equilibrium. Then,

(a) the flow f/2 is optimal for(G, r/2, `)
(b) the marginal cost of increasing the flow on a path P with respect to f/2 equals

the latency of P with respect to f .

PROOF. For part (a), simply note that iff satisfies the conditions of
Lemma 4.1(a) for (G, r, `), then f/2 satisfies the conditions of Lemma 4.1(b)
for (G, r/2, `). For the second part, recall that if edgee has latency function
`e(x) = aex + be thene has marginal cost functioǹ∗e(x) = 2aex + be. Thus,
`∗e( fe/2) = `e( fe) for each edgee and hencè ∗P( f/2) = `P( f ) for each
pathP.

An outline of the proof of the main theorem is as follows. It will be useful to think
about creating an optimal flow for the instance (G, r, `) via a two-step process: In
the first step, a flow optimal for the instance (G, r/2, `) is sent throughG, and in
the second step, this flow is augmented to one optimal for (G, r, `) (note that this
augmentation may increaseor decreasethe amount of flow on any given arc). We
show that the first flow has cost at least1

4C( f ) and that the augmentation has cost
at least12C( f ), where f is some flow at Nash equilibrium.

The first lower bound follows easily from Lemma 4.3(a) (see Theorem 4.5). The
second (for the cost of the augmentation, given that the first flow has already been
routed) requires more work, and in particular the following lemma. Intuitively, the
lemma simply claims that the per-unit cost of increasing the amount of flow through
a network is at least the marginal cost of increasing flow on any path with respect
to the current optimal flow.

LEMMA 4.4. Suppose(G, r, `) is an instance with linear latency functions for
which f∗ is an optimal flow. Let L∗i ( f ∗) be the minimum marginal cost of increasing
flow on an si -ti path with respect to f∗. Then, for anyδ > 0, a feasible flow for the
problem instance(G, (1+ δ)r, `) has cost at least

C( f ∗)+ δ
k∑

i=1

L∗i ( f ∗)ri .

PROOF. First, note that if eachL∗i is nondecreasing inri , then routingδri
additional units of flow fromsi to ti would cost at leastδL∗i ( f ∗)ri and the lemma
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would then follow easily by summing oversi -ti pairs. Although it is intuitively
plausible that marginal costs are increasing in the amount of flow (it is certainly
true for each edge individually), the proof requires a little work.

Formally, fixδ > 0 and supposef is feasible for (G, (1+ δ)r, `). In generalfe
may be larger or smaller thanf ∗e . For any edgee ∈ E, convexity of the function
x · `e(x) = aex2+ bex implies that

`e( fe) fe ≥ `e( f ∗e ) f ∗e + ( fe− f ∗e )`∗e( f ∗e ).

In essence, this inequality states that estimating the cost of changing the flow value
on edgeefrom f ∗e to fe by ( fe− f ∗e )`∗e( f ∗) (i.e., by the marginal cost of flow increase
at f ∗e times the size of the perturbation) only underestimates the actual cost of an
increase (whenfe > f ∗e ) and overestimates the actual benefit of a decrease (when
fe < f ∗e ). We may thus derive

C( f ) =
∑
e∈E

`e( fe) fe

≥
∑
e∈E

`e( f ∗e ) f ∗e +
∑
e∈E

( fe− f ∗e )`∗e( f ∗e )

= C( f ∗)+
k∑

i=1

∑
P∈Pi

`∗P( f ∗)( fP − f ∗P).

Since we haveL∗i ( f ∗) ≤ `∗P( f ∗) for eachi and eachP ∈ Pi and equality holds
unlessf ∗P = 0 (see Lemma 4.1(b)), we obtain

C( f ) ≥ C( f ∗)+
k∑

i=1

L∗i ( f ∗)
∑
P∈Pi

( fP − f ∗P)

= C( f ∗)+ δ
k∑

i=1

L∗i ( f ∗)ri ,

completing the proof.

We remark that Lemma 4.4 and its proof remain valid in much more general
settings; all that is required is convexity of the functionx · `e(x) for each edgee
(which holds when, for example, each edge latency function`e is convex).

We are now prepared to prove the main theorem.

THEOREM 4.5. If (G, r, `) has linear latency functions, thenρ(G, r, `) ≤ 4
3.

PROOF. Let f be a flow inG at Nash equilibrium. LetLi ( f ) be the latency of
ansi -ti flow path, so thatC( f ) =∑i Li ( f )ri (see Lemma 2.3). By Lemma 4.3(a),
f/2 is an optimal solution to the instance (G, r/2, `). Moreover, by Lemma 4.3(b),
L∗i ( f/2) = Li ( f ) for eachi (in words, marginal costs with respect tof/2 and
latencies with respect tof coincide); this establishes the necessary connection
between the cost of augmentingf/2 to a flow feasible for (G, r, `) and the cost of
a flow at Nash equilibrium.
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Taking δ = 1 in Lemma 4.4, we find that the cost of any flowf ∗ feasible for
(G, r, `) satisfies

C( f ∗) ≥ C( f/2)+
k∑

i=1

L∗i ( f/2)
ri

2

= C( f/2)+ 1

2

k∑
i=1

Li ( f )ri

= C( f/2)+ 1

2
C( f ).

Finally, it’s easy to lower bound the cost off/2:

C( f/2) =
∑

e

1

4
ae f 2

e +
1

2
be fe

≥ 1

4

∑
e

ae f 2
e + be fe

= 1

4
C( f )

and thusC( f ∗) ≥ 3
4C( f ).

We note that the analysis of this section can easily be extended to prove that in
any instance (G, r, `) where for somep, `e(x) = aexp + be (with ae, be ≥ 0) for
each edgee, ρ(G, r, `) ≤ (1− p · (p+1)−(p+1)/p)−1 = 2(p/ln p). The example at
the beginning of Section 3 shows that this result is tight. Roughgarden [2002a] has
recently shown (via a different analysis) that this upper bound holds more generally
for instances with polynomial latency functions with nonnegative coefficients and
any number of terms with degree at mostp.

4.1. CONSEQUENCES FORSTRINGS AND SPRINGS. We now return to the me-
chanical networks of strings and springs discussed in the Introduction and Figure 2.
Viewing the support as a source and the suspended weight as a sink, with each string
and spring as an arc, the equilibrium position of the mechanical device can be mod-
eled as a Nash equilibrium in a traffic networkG, with the support-weight distance
corresponding to the common latency of any source-sink flow path. Strings (as
perfectly inelastic objects) are modeled as links with constant latency functions
while (perfectly elastic) springs correspond to links with latency functions that in-
clude a term of the formax. Severing a string or spring corresponds to deleting
an edge from a traffic network; thus any realizable equilibrium of the mechanical
network (after possibly destroying some of its constituent parts) corresponds to a
Nash equilibrium in a subgraph of the corresponding traffic networkG.

Although Theorem 4.5 is concerned with the total latency of flows (a concept
with no natural analogue in our mechanical networks), we can use the result in the
following way. By Theorem 4.5, every traffic flow inG (and in particular every flow
at Nash equilibrium in a subgraph ofG) has total latency at least3

4 times that of a
Nash flow f in G. By Lemma 2.3, it follows that if the common latency of every
flow path of f is L and f̂ is a flow at Nash equilibrium in a subgraph ofG, then the
common latency of every flow path of̂f is at least34 L. Reinterpreting this result for
networks of strings and springs, we obtain the following corollary of Theorem 4.5.
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COROLLARY 4.6. In any network of strings and springs carrying a single weight
with support-weight distance D, the support-weight distance after severing an
arbitrary collection of strings and springs is at least3

4 D.

5. Extensions

The basic traffic model of this paper suffers from several deficiencies; in this sec-
tion we attempt to rectify some of them by extending the basic model in several
different ways. First, agents can often only evaluate path latency approximately,
rather than exactly. Section 5.1 extends the notion of a flow at Nash equilibrium
and Theorem 3.1 to this setting. Second, our basic model represents a scenario with
infinitely many agents each controlling an infinitesimal amount of flow, while we
typically expect to encounter a finite number of agents, each controlling a strictly
positive amount of flow. In Section 5.2, we prove an analogue of Theorem 3.1 for
the case of finitely many agents, provided each agent can route its flow fractionally
over any number of paths. In Section 5.3, we show that such an assumption is
essentially necessary, in that no bicriteria result analogous to Theorem 3.1 holds
when there are only finitely many agents, each of whom must route its flow on a
single path; however, a version of Theorem 3.1 does hold if agents do not control
too much flow and the edge latency functions are not too steep. Finally, we remark
that Theorems 3.1 and 4.5 can be extended to a broader class of games (including
games without the structure provided by a network); this direction of research is
pursued in a companion paper [Roughgarden and Tardos 2002].

5.1. FLOWS AT APPROXIMATE NASH EQUILIBRIUM . It is unreasonable to
expect agents to be able to evaluate the latency of different paths with arbitrary
precision. We next investigate the sensitivity of our results to this assumption. We
suppose that an agent can only distinguish between paths that differ significantly
in their latency (say by more than a (1+ ε) factor for someε > 0). Our definition
of a flow atε-approximate Nash equilibriumis then an obvious modification of
Definition 2.1:

Definition 5.1. A flow f feasible for instance (G, r, `) is at ε-approximate
Nash equilibriumif for all i ∈ {1, . . . , k}, P1, P2 ∈ Pi , andδ ∈ (0, fP1], we have
`P1( f ) ≤ (1+ ε)`P2( f̃ ), where

f̃ P =


fP − δ if P = P1

fP + δ if P = P2

fP if P /∈ {P1, P2}.
The analogue of Lemma 2.2 is then:

LEMMA 5.2. A flow f is atε-approximate Nash equilibrium if and only if for
every i∈ {1, . . . , k} and P1, P2 ∈ Pi with fP1 > 0, `P1( f ) ≤ (1+ ε)`P2( f ).

The next theorem provides an analogue of Theorem 3.1 for flows atε-
approximate Nash equilibrium.

THEOREM 5.3. If f is at ε-approximate Nash equilibrium withε < 1 for
(G, r, `) and f∗ is feasible for(G, 2r, `), then C( f ) ≤ C( f ∗) · (1+ ε)/(1− ε).
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The proof closely follows the proof of Theorem 3.1 and is omitted. A simple
example on a network similar to that of Braess’s Paradox (Figure 1(b)) shows that
the (1+ ε)/(1− ε) factor in Theorem 5.3 cannot be improved.

We can also adapt the arguments of Section 4 to prove an approximate version
of Theorem 4.5 for networks with linear latency functions. Precisely, iff is a flow
at ε-approximate Nash equilibrium for an instance with linear latency functions
and f ∗ is an optimal flow, thenC( f ) ≤ C( f ∗) · (4+ 4ε)/(3− ε). This result is
again best possible (see [Roughgarden 2002b] for details).

5.2. FINITELY MANY AGENTS: SPLITTABLE FLOW. Our basic model makes the
often unrealistic assumption that there are an infinite number of noncooperative
agents, each controlling a negligible fraction of the overall traffic. In this section,
we extend the basic model to the case of finitely many agents, each of whom controls
a strictly positive amount of flow. In this section, we allow an agent to split flow
along any number of paths; the next section investigates the case where each agent
must route all of its flow on a single path.

We are given a networkG with continuous nondecreasing latency functions` as
before, and in additionk agents. We assume that agenti intends to sendri units
of flow from sourcesi to destinationti . Distinct agents may have identical source-
destination pairs. We continue to denote an instance by (G, r, `), and we call the
instancefinite splittable. A flow f now consists ofk functions, with one function
f (i ) : Pi → R+ for each agenti . For a flow f , we denote byCi ( f ) the total
latency experienced by agenti ; thus,Ci ( f ) =∑P∈Pi

`P( f ) f (i )
P . As usual, a flow is

at Nash equilibriumif no agent can decrease the latency it experiences by rerouting
its flow. In this setting, a flowf is at Nash equilibrium if and only if for eachi , f (i )

minimizesCi ( f ) given f ( j ) for j 6= i . We will focus on the case where for each
edgee, x ·`e(x) is a convex function; under this assumption, results of Rosen [1965],
imply that a flow at Nash equilibrium must exist and will be essentially unique.

Our main result for this model is an analogue of Theorem 3.1.

THEOREM 5.4. If f is at Nash equilibrium for the finite splittable instance
(G, r, `) with x · `e(x) convex for each e, and f∗ is feasible for the finite splittable
instance(G, 2r, `), then C( f ) ≤ C( f ∗).

PROOF. Fix f, f ∗ and define latency functions̀̄as in the proof of Theorem 3.1.
As in that proof, evaluatingf ∗ with latency functions̄̀ (rather thaǹ ) increases its
cost by at most an additiveC( f ) factor.

We claim thatf is optimal for the instance (G, r, ¯̀). We proceed by contradiction,
showing that if f is not optimal for (G, r, ¯̀) then f fails to be at Nash equilibrium
for (G, r, `). Supposef is not optimal; since the instance (G, r, ¯̀) defines a convex
optimization problem of the form (NLP) (see Section 2.3), by Lemma 2.5, there
are two pathsP1, P2, an agenti such thatP1, P2 ∈ Pi with f (i )

P1
> 0, and a suffi-

ciently smallδ ∈ (0, f (i )
P1

] such that movingδ units of flow fromP1 to P2 yields a
new flow with cost (with respect tò̄) strictly less than that off . Our goal is to
show that the same local move will be beneficial for agenti in the instance (G, r, `).
We may assume thatP1, P2 are disjoint (otherwise, the following argument may
be applied to the symmetric difference ofP1 and P2). The benefit (with respect
to ¯̀) of removingδ units of flow from pathP1 is thenδ · ¯̀P1( f ) = δ · `P1( f ) (since
¯̀e(x) = `e( fe) whenx ≤ fe) while the cost (with respect tò̄) of addingδ units of
flow to P2 is

∑
e∈P2

[`e( fe+δ)( fe+δ)−`e( fe) fe]; we are assuming that the former
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exceeds the latter. On the other hand, agenti is capable of making an identical local
change tof (i ) in the instance (G, r, `), and doing so provides a benefit to agenti
of at leastδ · `P1( f ) with respect tò (since latency functions are nondecreasing)
and a cost (with respect tò) of∑

e∈P2

[
`e( fe+ δ)

(
f (i )
e + δ

)− `e( fe) f (i )
e

]
which is at most ∑

e∈P2

[`e( fe+ δ)( fe+ δ)− `e( fe) fe]

since`e is nondecreasing andf (i )
e ≤ fe for each edgee. Thus, movingδ units of

flow from pathP1 to pathP2 yields a better outcome for agenti in the instance
(G, r, `), so f fails to be at Nash equilibrium for (G, r, `).

We have determined that any flow feasible for (G, r, ¯̀) must have cost at least
C( f ). Since every latency function is nondecreasing, it follows that any flow feasible
for (G, 2r, ¯̀) (and in particularf ∗) must have cost at least 2C( f ) (such a flow may
be expressed as the sum of two flows feasible for (G, r, ¯̀), and the cost of their sum
is at least the sum of their individual costs). Since the cost off ∗ with respect tṑ
exceeds its cost with respect to` by at mostC( f ), the theorem follows.

Theorem 3.1 can be regarded as the limiting case of the above theorem, as the
number of agents tends to infinity and the amount of flow controlled by each agent
tends to 0.

5.3. FINITELY MANY AGENTS: UNSPLITTABLE FLOW. In this section we con-
tinue our investigation of selfish routing with finitely many agents, each controlling
a nonnegligible amount of flow. It is easy to imagine scenarios in which agents
cannot route flow on several different paths, but instead must select a single path
for routing. Our previous results have made crucial use of the “infinitely divisible”
nature of flow, and we next show that this assumption is essentially necessary.

Consider an instance (G, r, `) as in the previous subsection (withk agents and
the i th agent controllingri units of flow), but with the additional constraint that
each agent selects asinglepath on which to route all of its flow. We call such an
instancefinite unsplittable. Adapting the definition of the previous subsection to
this new setting, a flowf (now consisting only ofk paths) is at Nash equilibrium
if and only if for eachi , agenti routes its flow on a path minimizing̀P( f ) (with
P ranging over all paths inPi ), given the paths chosen by the otherk− 1 agents.

We first consider a simple example showing that a flow at Nash equilibrium
may have cost arbitrarily larger than that of an optimal flow. Consider the network
given in Figure 5, and suppose there are two agents, each of whom has sources,
destinationt , and one unit of flow to send;ε > 0 is arbitrary. In the optimal solution,
one agent chooses paths → v → t and the others → w → t ; the cost of this
solution is less than 4 (for anyε > 0). On the other hand, a solution with one agent
choosing paths→ v→ w → t and the other routing on thes→ t link is a flow
at Nash equilibrium with cost greater than 1/ε; by choosingε arbitrarily small this
cost is arbitrarily large, and hence arbitrarily more costly than optimal.

In light of the example at the beginning of Section 3, such a result is hardly
surprising; however, we can extend this example to show that bicriteria statements
analogous to Theorems 3.1 and 5.4 are false when we require agents to route flow
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FIG. 5. A bad example for unsplittable flow.

unsplittably. For a positive integerq, consider the networkGq consisting of 2q+2
vertices arranged in a paths, v1, v2, . . . , v2q, t with edges along the path alternately
having latency functions̀(x) = 1/(2+ ε − x) and`(x) = 0, a directs-t link with
constant latency functioǹ(x) = 1/ε, and arcs froms to v2i and fromv2i−1 to t
with constant latency functions̀(x) = 1 (observe that this construction produces
the network of Figure 5 whenq = 1). As in the previous paragraph, there is a
flow at Nash equilibrium with two agents, each controlling one unit of flow, with
cost greater than 1/ε. On the other hand, it is possible forq + 1 agents to each
send one unit of flow throughGq at total cost at most 3q (the first agent uses
paths→ v1 → t , the lasts→ v2q → t , and otherwise thei th agent uses path
s → v2i−2 → v2i−1 → t). Letting ε tend to 0 for each fixed value ofq, we see
that a flow at Nash equilibrium for a finite unsplittable instance (G, r, `) can be
arbitrarily more costly than an optimal flow for an instance obtained from (G, r, `)
by replicating each agent an arbitrary number of times. A minor modification of this
example shows the following even stronger statement: a flow at Nash equilibrium
for (G, r, `) can be arbitrarily more costly than an optimal flow for an instance
obtained from (G, r, `) by increasing the amount of flow each agent must route by
an arbitrary factor (see [Roughgarden 2002b] for details).

In the above bad example, the network has latency functions with unbounded
derivatives; in this situation, routing a strictly positive amount of additional flow on
an edge may increase the latency of that edge by an arbitrarily large amount. This
example is of particular interest because functions of the form`(x) = 1/(u − x)
arise as the delay functions ofM/M/1 queues with capacity or service rateu (see,
e.g., Bertsekas and Gallager [1992]) and are therefore common in the networking
literature [Bertsekas and Gallager 1992; Korilis et al. 1997, 1999; Lazar et al. 1997;
Orda et al. 1993]. However, in networks where the largest possible change in edge
latency resulting from a single agent rerouting its flow is not too large, we can apply
the results of Section 5.1 to derive the following.

THEOREM 5.5. Suppose f is at Nash equilibrium in the finite unsplittable in-
stance(G, r, `), and for someα < 2, we havè e(x + ri ) ≤ α · `e(x) for all agents
i ∈ {1, . . . , k}, edges e∈ E, and x∈ [0,

∑
j 6=i r j ]. Then, for any flow f∗ feasible

for (G, 2r, `), C( f ) ≤ C( f ∗) · α/(2− α).

PROOF. We may interpretf and f ∗ as (fractional) flows feasible for instances
(G, r ′, `) and (G, 2r ′, `) of the original type (that is, instances in the sense of
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Sections 2 to 4), wherer ′i is the total amount of flow controlled by agents with
sourcesi and destinationti in the original instance. The hypotheses ensure thatf is
at (α − 1)-approximate Nash equilibrium for (G, r ′, `), so the result follows from
Theorem 5.3.

For example, in an instance with linear latency functions (say`e(x) = aex+ be)
with be > 0 for all edgese, we may apply Theorem 5.5 withα = 1+ maxi r i ·
maxe ae/be.

6. Recent Work

Since the publication of a preliminary version of this article [Roughgarden and
Tardos 2000], several new results have been discovered. Closest in spirit to this work
is the recent paper of Roughgarden [2002a], who proves that for almost any class of
allowable latency functions, single-commodity instances on two-node networks of
parallel links furnish the worst possible examples for the cost of selfish routing. The
matching lower and upper bounds for linear latency functions given in Figure 3 and
Theorem 4.5 of this paper are thus a special case of the more general statement in
Roughgarden [2002a]. This result permits the computation of the worst-case ratio
between the cost of a Nash flow and of an optimal flow with respect to an arbitrary
class of allowable latency functions; for example, it is shown in Roughgarden
[2002a] that the cost of selfish routing with polynomial latency functions (for any
fixed degree bound) is maximized by the two-node, two-link examples of Section 3.

Also, Friedman [2001] has recently shown that in any network, for “most” traffic
rate vectors the cost of selfish routing is much smaller than the worst-case value.
To state his result more precisely, fix a networkG with latency functions̀ , and
let N(r ) be the cost of a Nash flow for instance (G, r, `). Friedman uses the ratio
0(r ) = N(r )/N(r/2) as a sensitivity measure of the problem instance (G, r, `).
Applying Theorem 3.1 to (G, r/2, `) shows that the ratioρ(G, r, `) between the
cost of the Nash and optimal flows for (G, r, `) is bounded above by0(r ). Friedman
[2001] shows that for “most” traffic rate vectors in [r/2, r ], the cost of selfish routing
is only O(log0(r )).

Finally, we mention two recent efforts to control the inefficiency inherent in
selfishly-defined equilibria. In the first, Roughgarden [2001b] shows that if a frac-
tion of the network traffic is centrally controlled and is carefully routed by a network
manager, then the corresponding induced equilibrium (with selfish users taking into
account the congestion caused by the centrally routed traffic) is less inefficient then
a flow at Nash equilibrium. In particular, with no assumptions on the edge latency
functions (a setting in which Nash flows may be arbitrarily more costly than optimal
flows, recall Section 3), a network manager controlling a constant fraction of the
network traffic can induce an equilibrium that is only a constant-factor more costly
than an optimal assignment of all of the traffic. Unfortunately, only the restricted
setting of networks of parallel links (or, equivalently, of machine scheduling) is
considered in Roughgarden [2001b].

In a different direction, Roughgarden [2001a] studies the problem of design-
ing networks that admit efficient Nash flows. In particular, the following simple
network design problem is considered in Roughgarden [2001a]: given an instance
(G, r, `) with a single source-sink pair, find the subnetworkH of G minimizing
the latency experienced by all traffic in a Nash flow of (H, r, `). Braess’s Paradox
shows that in general a proper subgraph ofG will be the optimal solution to such
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a network design problem. Sadly, the results of Roughgarden [2001a] are nega-
tive: the obvious heuristic that always returns the entire networkG (in essence,
ignoring the possibility of Braess’s Paradox) is a (4/3)-approximation algorithm5

for networks with linear latency functions and abn/2c-approximation algorithm
for networks with arbitrary latency functions (wheren is the number of nodes of
G), and no better approximation is possible in polynomial time unlessP = NP.
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ROUGHGARDEN, T.,AND TARDOS, É 2000. How bad is selfish routing? InProceedings of the 41st Annual

Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.,
pp. 93–102.
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