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Abstract decision. As indicated by Arrow’s impossibility theorem

for satisfactory voting systems [2], this is a thorny problem.

In this paper, we show how to desitgathful (dominant It is further complicated by the possibility that the partici-

strategy) mechanisms for several combinatorial problems pants (usually calleglayersor agent3 might try to manip-

where each agent’s secret data is naturally expressed by aulate the system by misrepresenting their preferences. The

single positive real number. Thgoal of the mechanisms field of mechanism desigrecognizes this game theoretic
we consider is to allocatadsplaced on the agents, and aspect and aims to arrange things so that a rational player

an agent’s secret data is the cost she incurs per unit load. will never find it in her self-interest to lie. Mechanisms that

We give an exact characterization for the algorithms that do this are calledtrategyproofor truthful.

can be used to design truthful mechanisms for such load Because of some stifling negative results that apply when

balancing problems using appropriate side payments. the agents’ preferences can be arbitrary, it is common to re-

We use our characterization to design polynomial time strict the domain of preferences by assunadgitive sepa-
truthful mechanisms for several problems in combinato- rability. Each agentis assumed to incur some intrinsic ben-
rial optimization to which the celebrated VCG mechanism efit or loss (called itwaluatior) depending on the outcome
does not apply. For scheduling related parallel machines of the mechanism, and this valuation is expressible in some

(Q]|Cmax), We give a 3-approximation mechanism based common unit of currency. The mechanism also mal@s

on randomized rounding of the optimal fractional solution. mentsto the agents in this currency, and each agent aims to

This problem is NP-complete, and the standard approxima-maximize the sum of her valuation and payment. The most

tion algorithms (greedy load-balancing or the PTAS) can- famous positive result in this area is the Vickrey-Clarke-

not be used in truthful mechanisms. We show our mecha-Groves (VCG) mechanism [31, 4, 12].

nism to befrugal, in that the total payment needed is only  Nisan and Ronen [24] considered discrete optimization

a logarithmic factor more than the actual costs incurred problems in this game theoretic context, where the correct

by the machines, unless one machine dominates the totafiata is not directly available to the algorithm. Instead, there

processing power. We also give truthful mechanisms for gre several economic agents who each know some of the
maximum flowQ|| 3= C; (scheduling related machines to  data and report it to the algorithm, but they might lie. Nisan
minimize the sum of completion times), optimizing an affineand Ronen apply this framework to some standard prob-
function over a fixed set, and special cases of uncapacitatedems in computer science, including shortest paths, mini-
facility location. Inaddition, forQ|| 3 w;C; (minimizing  mum spanning trees, and scheduling on unrelated machines.
the weighted sum of completion times), we prove a lowerThey make a significant conceptual departure from the bulk
bound Of% for the best approximation ratio achievable by of the economicéiterature in that the mechanism’s objec-

a truthful mechanism. tive function may have nothing to do with social welfare.
Here, the agents’ preferences are relevant to the goal of the
mechanism only because both are tied to the agents’ secret

1 Introduction data, and because they determine the agents’ strategies.

In this paper, we show how to design truthful (domi-

In economics, social choice theory addresses the prob_nant strategy) mechanisms for problems where each agent’s

lem of aggregating individuals’ preferences to makeagroupsecret data is naturallly expressed by a sm.gle. posmve. real
number. Our mechanisms allow general objective functions
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agents (e.g. the total size of jobs assigned to a machine, In Section 5 we show several applications of our char-
or the total flow through a network link). An agent's se- acterization of output functions that can be used to de-
cret data will always be the cost she incurs per unit load, sign truthful mechanisms. Designing a truthful mecha-
and this data will generally also have some physical signifi- nism now reduces to designing allocation algorithms with
cance (e.g. processing speed of the machine, or capacity oflecreasing load curves. Our main application is for the
the link). Her goal is to maximize her profit, which is her problem@Q||Cy..x discussed above, where we give a ran-
payment minus her cost. domized 3-approximation mechanism. The problem is NP-

In Section 4 we characterize which output functions can complete, but a greedy load-balancing scheme provides a
be used to design truthful mechanisms. Our mechanismg2-approximation, and there is also a PTAfsed on round-
use side payments to induce the agents to tell the truth. Thdng and dynamic programming [16]. However, these types
idea is that if revealing the true parameter would result in ©f combinatorial approximation algorithms do not provide
an increased load for the agent, we can compensate for thignonotone work-curves, as the effect of changing the param-
increased load by a payment. However, for some output€ter of a single agent is hard to control throughout the algo-
functions, no side payments can make the resulting mech{ithm. Our 3-approximation mechanism is based on ran-
anism truthful. We prove that the output functions that can domized rounding using an optimal solution for the corre-
be used in truthful mechanisms are exactly those in whichsponding fractional problem. We also give an optimal truth-
the load assigned to an agent decreases monotonically af!l mechanism using unlimited computational power.
her announced cost increases, and the payment is given by We use our characterization to design polynomial time
an explicit formula involving an integral of the load curve. truthful mechanisms for several other combinatorial prob-
We will use this characterization to design truthful mech- lems. We design optimal mechanisms for maximum flow,
anisms for some nontilitarian objective functions. Our Q|| >° C; (scheduling related machines to minimize the
characterization can also be used to design polynomial timesum of completion times), optimizing an affine function
truthful approximation mechanisms for utilitarian objective Over a fixed set, and special cases of uncapacitated facility

functions, when the VCG mechanism is impractical becauselocation. We also get a constant approximation mechanism
the optimal output is hard to compute. for the general uncapacitated facility location problem, pro-

vided the facility costs come froml@unded interval.

Our main example is the problem of scheduling jobs on ) .
In contrast to our optimal truthful mechanism for

related parallel machines to minimize makespan. This prob- o i Section 6 th hil h
lem is commonly denote@||C.,,.x in the scheduling liter- Q|| C;, we prove in Section 6 that no truthful mecha-

ature, and is NP-hard. Each jgthas a processing require- MM ¢an achieve an .apprOX|mat|on ra't|o better.tli%r'for
mentp; (the amount of work it represents), and each ma- €|l 2- w;C; (scheduling related machines to minimize the
chinei runs at some speeg. If job j is scheduled on ma-  Weighted sum of completion times).

chinei, it takesp; /s; units of time to complete. The goal is In the problems discussed above and throughout the pa-
to allocate the jobs to machines so that the last job finisheg?er of Nisan and Ronen [24], the mechanism cares only
as soon as possible. Each machine is a distinct economi@Pout the outcome, and the payments exist only to induce
agent, which incurs a cost proportional to the total time it ruth-telling by the agents. In Section 7, we consider the

value ofs;. the total payment low, by some measure. The shortest path

mechanism of Nisan and Ronen behaves poorly in this re-
gard, as some cases force the mechanism téaytimes
the cost of the shortest path, even when there is an alter-

know the allocation algorithm and payment scheme in ad- hate path of similar cost. Surprisingly, we show in [1] that
veryreasonable mechanism for this problem exhibits this

vance, and we assume each machine wants to choose itg d behavior. In contrast. we show here that our mech
strategy (i.e. what speed it reports) in order to maximize its ad behavior. contrast, we show here thal our mecha

profit (the payment it receives minus the cost it incurs from nism for (]| Cinax pays out only a logarithmic factor more

running the jobs assigned to it). Our challenge as the mech-than the actual costs incurred by the machines, so long as

anism designer is to find an allocation algorithm and pay- no single machine dominates the total processing power.
ment scheme that yields a good makespan according to the . .

reported rates and motivates rational agents to report their? 1€rminology and notation

true rates. Notice that truthful mechanisms are not easy to

design even with unlimited computational power. However, ~ We now introduce our notation. There areagents, rep-

we also want to be able to compute the allocation and pay-resented by the index sét Each agent has some private

m_ents in p0|yn0m?al time- Sin(@”Cme‘ is NP-hard, we LA PTAS is a family of algorithms that, for fixeelyields al + ¢ ap-
will use an approximation algorithm to find the allocation.  proximation in polynomial time.

Our mechanism will ask each agertb report its speed
s;, then allocate the jobs to machines using some algorithm
and hand a paymer®; to each machine. The machines




data consisting of a single parametee R that describes  strategies We would then try to design mechanisms where
the agent. We call this the ageritae dataor true value In each agent has a dominant strategy. However, it is easy to
the literature, it is sometimes called the agetyjse Only see that we lose no generality by restricting to mechansims
agent knowst;. Everything else is public knowledge. Each in which agents directly reveal their parameters [22].

agent will report some valuig to the mechanism. We call

this the agent'did. ITett denote the vector of true values, 3 Related work

andb the vector of bids.

There is some allowable set of outcom@sthat the
mechanism is allowed to choose. The mechanismtput
algorithm computes a function(b) € O according to the
agents’ bids. The mechanism tries to maximize or minimize
some functiony(o, t), but of course it does not knoidi-
rectly. An algorithm that computes an output whose value is
guaranteed to be within anfactor of the optimum is called
ana-approximation algorithmAn a-approximation mech-
anismis one whose output algorithm is arapproximation.

Each agentincurs some monetagost cost;(¢;, o), de-

The economics and game theditgrature contains an
enormous body of work on mechanism design, also called
implementation theorgr thetheory of incentivesSee [22,
ch. 23] or [26, ch. 10] for an introduction to the field, or
the surveys [20, 13]. The Gibbard-Satterthwaite theorem
[8, 28] is the main negative result, which states that truthful
non-dictatorial mechanisms do not exist, when the players’
domain of possible preferences is sufficiently rich.

In light of this, it is common to specialize by allow-

. . i ing side payments to the players, and assuming each player
pending on the output and its private data. In order to off- tries to maximize the sum of her payment plus her intrinsic

set thgse costs, the mechanism makesymentP;(b) to valuation of the outcome. The celebrated Vickrey-Clarke-
agenti ( nega_tlve payment means the agent pays MON&YGroves (VCG) mechanism [31, 4, 12] is the main general
to the mechams.m)'. We assume that each agedways positive result here. It handles arbitrary valuation functions,
attempts to maximize heprofit, profit;(f;,b) = P;(b) — but only the utilitarian objective function, which maximizes
COSti(ti,’ O.(b))' N(?Uce that agent_ cares about the other the sum of the agents’ valuations. Nevertheless, this objec-
agents’ bids onlylmspfar as they Influence‘ the outcome andtive function captures some interesting combinatorial prob-
the p"?‘yme”.t- While; is known only to agen, the function lems [24], in addition to the more usual social welfare func-
cost; is public. _ _ tions. For example, the shortest path in a graph with re-
In this paper we will assume that the costs have a partic-gpect 10 edge costs maximizes social welfare because it min-
ularly nice form. Namely, our outcomeswill assign some  jyjzes the total cost incurred. For the utilitarian objective

amount ofoad or workw; (o) to each agent and we will  fnction, [11] proves that VCG is the only optimal truthful
assumeost;(t;,0) = tiw;(0). Thus, agent's private data  echanism. In the case of one-parameter agents with some
t; measures her cost per unit work. differentiability assumptions, [19] gives a simplified proof.

Letb_; denote the vector of bids, not including agent  Much work has addressed computational issues sur-
i. We sometimes writé as (b_;,b;). We say thatruth-  younding VCG mechanisms. The main difficulty is that

telling is adominant strategfor agent. if bidding¢; always iy many settings, the VCG mechanism is NP-hard to com-
maximizes her perit,’ regardless of what the other agentspute, since it requires finding an optimal output. One ap-
bid. Thatis profit, (ti, (b—i, t:)) > profit;(ti, (b—i.bi)) for — proach is to compute the output using a fast heuristic, and
all b_,; andb;. We are interested in designing mechanisms sti|| try to use the VCG payment scheme. Such mecha-
such that truth-telling is a dominant strategy éach agent.  nisms are studied in [18], which gives three properties of
We call such a mechanistruthful. the allocation algorithm that will allow the VCG payments
Formally, the mechanisimt consists of the paiM = to induce truth-tking. However, [25] exhibits a broad class

(0, P), whereo is the output function an® is the payment  of problems for which no mechanism that uses VCG pay-
schemegi.e. the vector of payment functiod$. We say that  ments is truthful, if its output algorithm is suboptimal. On
an output functiomdmitsa truthful payment scheme ifthere  the bright side, it also shows that if the mechanism lets the
exist payments” such that the mechanismt = (o, P) is agents suggest ways to improve the output, these mecha-
truthful. Some output functions admit a truthful payment nisms can be made to satisfy a modified notion of truthful-
scheme, and some do not. Our goal is to choose an outpuhess. A different approach, taken in [21], is to use a heuris-
function that both admits a truthful payment scheme and tic for the output and use a non-VCG payment scheme to

achieves (or approximates) the optimal valugy@f,b). In induce truth-téing. They consider a simple type of auc-
addition, we will usually require that we can compute the tion in which computing the socially optimal assignment of
output and payments in polynomial time. goods is hard, and propose a greedy allocation algorithm

One could consider games in which the agents act in awith a non-VCG payment scheme. Even though their bids
more complicated way than just submitting a bid, instead are two-dimensional, their problem essentially boils down
selecting their courses of action from some broader class otto a one-parameter problem that is a special case of ours, as



we show in the full version of this paper. While all of these R||Cy,.x €xactly, but only in a much stronger model in
papers depart from the standard VCG mechanism, they stillwhich the mechanism is allowed to observe the machines
aim to maximize the utilitarian objective, whereas we look process their jobs and compute the paymerftsrwards
at general objective functions. which makes it easy to penalize lying agents.

Both [14] and [3] consider cases where the VCG mecha- While revenue is heavily studied in auctions, the im-
nism can be computed in polynomial time, and address howPortant corresponding issue of frdigafor task allocation
to speed up this run time. While we are interested in poly- problems is not addressed in [24]. We contribute the first
time computable mechanisms, we make no attempt to opti-positive frugality result in this area.
mize the run time.

Nisan and Ronen [24] applied the mechanism design4 Characterization of truthful mechanisms
framework to some standard optimization problems in com-
puter science, suggesting general objective functions. Some Here we completely characterize which output functions
subsequent algorithmically-oriented work involves cost- do and do not admit truthful payment schemes for mech-
sharing mechanisms for multicast trees [7, 17], auctions for anism design problems where the cost to agéstof the
digital goods [10], and the use of auctions to elicit informa- form ti’wi(()), its privately-known cost per unit work times
tion [30]. The digital goods paper [10] is notable because the amount of work assigned. We also characterize the ac-
it explicitly choosesiotto maximize the social welfare. In - companying truthful payment schemes.
their model, the marginal cost of creating an extra copy of  |n order to motivate our theorem, we first assume all
the good is negligible, so the socially optimal allocationis to our functions are smooth, and use calculus to derive a for-
sell this good to everyone, but they do not do this because itmula for the payments and a condition on the output algo-
generates no revenue. Highlighting the fact that revenue is &ithm. Theorem 4.2 below shows that these conditions are
major concern, [27] suggests looking at auctions of a singleactually necessary and sufficient to obtain a truthful mech-
good that do not necessarily maximize the social welfare, anism, whether or not the functions are smooth. Let us
and characterizes all truthful mechanisms for this problem. agssume that mechanisvt = (0, P) is truthful and each
His characterization is a special case of ours, for 0-1 loadpaymentP;(b_;, b;) and loadw;(b_;, b;) is twice differen-
functions, and it also appears implicitly in [21] and [10]. tiable with respect td;, for all values ofb_;. We fix some
The paper [30] also ignores the social welfare, instead at-agent and derive a formula foP;. Fixing the other agents’
tempting to compute various functions of the agent's valua- bids »_;, we can consider the payment, work w;, and
tions (such as the order statistics) using auctions of minimalprofit to be functions of just ageris bid b;. Since agent

communication complexity. i's profit is always maximized by bidding truthfully, the
The paper of Nisan and Ronen [24] is closest in spirit to derivative is zero and the second derivative is non-positive
our work. While our main example is the problem| C,ax, att;. Since this holds no matter what the value ois, we

scheduling on machines with speeds, their main focus is acan integrate to obtain an expression f§r Specifically,
similar NP-hard problen®||C\,.x, Scheduling on unrelated  profit; = P; — t;w;, so the first order condition gives
machines. In that problem, each machine hagms of
private data, the amounts of time it would take for it to pro- ;
cess each job (so our one-parameter results do not apply). db; db;
The output is an allocation of jobs to machines, and the cost . .
to a machine equals the total time it spends processing itsfor all values oft;. Integrating by parts gives
jobs. Nisan and Ronen provide a simple truthful mecha- b;
nism (consisting of a separate Vickrey auction for each job) Pi(b;) = P;(0) + byw;(b;) — / w;(u)du. @3]
that yields anm-approximation. They conjecture thab 0
truthful mechanism has a better approximation guarantee,The second order condition say (t;) — tiw” (t;) < 0.
although the best lower bound they prove is 2. With strong Using (1), this reduces ta’(t;) < 0. Thus, in order to
additional restrictions on the types of payment schemes al-pe truthful, the mechanism should have decreasing "work
lowed, they prove a lower bound of. Note the large gap  curvesw;, and the payments should be given by (2).
between the best approximation factors known for a poly-
time algorithm (2) and for a truthful mechanism). We Definition 4.1 With the other agents’ bids_; fixed, con-
have a similar gap fo€)||Ciax between the PTAS of [16]  siderw;,(b_;, b;) as a single-variable function of. We call
and the truthful 3-approximation of Theorem 5.4. this thework curveor work profile for agenti. We say
The lower bound of 2 foR?||Cmax Stands in contrastto  the output functiow is decreasingf each of the associated
our truthful (non-polytime) mechanism that exactly solves work curves is decreasing (i.ev;(b_;,b;) is a decreasing
Q||Cmax- Ronen and Nisan do give a mechanism that solvesfunction ofb;, for all < andb_,).
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Figure 1. This graph shows why we cannot
allow the work curve to increase.
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Figure 2. This picture shows why agent i
never gains by overbidding.

Theorem 4.2 The output functioro(b) admits a truthful
payment scheme if and only if it is decreasing. In this

By Theorem 4.2, the only flexibility we have when de-
signing a truthful payment scheme is in the additive con-
stant termsh;(b_,). Consider the profit for a truth-telling
agent if we set all of these terms to zero. Her cost is
t;w;(t;), which exactly cancels out the second term in the
payment formula (3). On net, she incurs a loss equal to the
area under her work curve from zerotto Since the agents
cannot even hope for a profit under this scheme, they pre-
sumably would not participate in such a mechanism unless
they were coerced. This motivates the following definition.

Definition 4.3 A mechanism satisfies theluntary partici-
pation condition if agents who bid truthfully never incur a
net loss, i.eprofit,(t;, (b_;. t;)) > 0 for all agentsi, true
valuest;, and other agents’ bids_;.

We want to desigh mechanisms satisfying voluntary par-
ticipation. To do this, we need to sef(b_;) to a constant
that is larger than the area under the work curve to the left
of t;, no matter what the value of is. If the total area un-
der the work curve is infinite then no such constant exists.
If the area is finite then we can sef(b_;) to be this area,
in which case a truth-telling agehts guaranteed a profit
equal to the area under the work curve to the right; of

Theorem 4.4 A decreasing output function admits a truth-
ful payment scheme satisfying voluntary participation if and
only if.j'0°° w;(b—;, u)du < oo forall 7,b_;. In this case, we

case, the mechanism is truthful if and only if the paymentscan take the payments to be

P;(b_;,b;) are of the form

b;
hi(b—;) + bjw;(b_;, b;) — / w;(b_;, u)du )
0

where theh; are arbitrary functions.

Proof sketch: We explain the pictorial proofs of Figures 1
and 2. In Figure 1A and B denote the areas of the rect-
angles they label. If's true value igy, she would save cost
A+ B by biddingz. If her true value isz, she would incur
an extra cost ofd by biddingy. To motivate truth-telling,
the extra payment for bidding instead ofxz should be at
leastA+ B and at mos#, which is impossible sincB > 0.
Therefore, the work curve must decrease monotonically.

In Figure 2, the work curve is decreasing and the pay-
ments are given by (3). Geometrically, the paymentifo

“ 00

P;(b_,b;) Zbi'wi(b—i:bi)‘F/ wi(b_s,u)du.  (4)

b;

Remarks Our characterization of truthful mechanisms in
terms of monotone decreasing outputs should not be con-
fused with other uses of the word "monotone.” In particular,
a theorem in [6] characterizes truthful mechanisms in terms
of "independent person-by-person monotonicity” (IPM). In
our context, IPM would be a property of the output and pay-
ments together, whereas the beauty of Theorem 4.2 is that it
allows us to focus only on the output function.

Our result yields the low-bid Vickrey auction as a special
case. Here, the agents are bidding their costs to perform
some job, so the load is either 0 or 1. The auction assigns
the job to the lowest bidder, and pays her the amount of the

she bidsz is a constant minus the area between the work S€cond lowest bid. This is the same payment given by (4).

curve and the horizontal line at height(x). If agenti’s
true value ig; and she bids: > t¢;, then her cost decreases

We also note that the obvious analog of Theorem 4.2
holds for the case whetrg denotes ageriits benefitper unit

by A from the decreased load, but her payment decreases byPad: I-8- whererofit; (:,0) = P;(b) + tjw;(0).

A + B. SinceB > 0, she never benefits from overbidding.
Similarly, she never benefits from underbidding.

To prove that all truthful payment schemes take the
form (2) even whenw; is not smooth, we follow essentially
the same reasoning as in the calculus derivation. m

5 Designing truthful mechanisms

In this section we utilize Theorem 4.2 to design truth-
ful mechanisms for several problems with one-parameter



agents. Theorem 4.2 neatly separates the problem of dethe bottleneck, s@; is easily computed. Moreover, a suffi-
signing the output function and the payment scheme — weciently slow machine receives no work, so by Theorem 4.4
just have to design an output that assigns decreasing workve can choos® to satisfy voluntary participation. |

to agent: as her announced cost per unit work increases.

Thus, the challenge is to find an output functiothat op- We now move to polytime mechanisms. We cannot sim-
timizes (exactly or approximately) our function of interest, |y yse any existing approximation algorithm because the
9(o(b),b), such that the work curves are all decreasing.  work assigned to agenttypically changes in complicated
ways as her bid; changes. In particular, the PTAS in [16]
5.1 Scheduling to Minimize Makespan relies on dynamic programming and rounding the job sizes.

If a machine were to announce a slightly slower speed, caus-

We consider the proble®||Cr,.x, Which we mentioned  ing it to receive a different set of jobs, the load could ac-
in the introduction. This problemis NP-hard, although there tually increase because of the rounding. The greedy load
is a PTAS [16]. We are given jobs andn machines. The  balancing algorithm also fails to be monotone. Consider
jobs represent amounts of wapk > ... > p,,. The out- scheduling three jobs on two machines of almost equal
put is an assignment of jobs to machines. Machimens speeds, wherp; = 2 andp, = ps = 1 + €. First job
at some speed;, so it must spend< units of time pro- 1 is assigned to the faster machine, then jobs 2 and 3 both
cessing each jolj assigned to it. The load on machine go on the slower machine, so it gets more work. We need to
i is w;(b) = Y pj, where the sum runs over joljsas- construct an approximation algorithm with decreasing work
signed toi. Each machine incurs a cost proportional to the curves.

time it spends processing its jobs. For simplicity of pre- e first note that our problem is equivalent to bin pack-
sentation, we choose our unit of currency so that the con-ing with uneven bins, which leads to a lower bound on
stant ?f proportioniity is one? We take the true data to be ¢ | the optimal makespan. This bound is implicit in the

t; = - so that the machines’ costs are of the correct form, %-approximaﬂon algorithm of [29]. Given a gueBst the
costi(t;, 0(b)) = t;w;(b). The mechanism’s goal is to mini-  value of C,,,, we create a bin of siz&/b; for each ma-

max?

mize the completion time of the last job on the last machine, chinei. The size of a machine’s bin is the maximum load
i.e. g(0(D),t) = Crax = max; t;w;(b). we can assign to it if the machine is to finish all its jobs
The mechanism design problem fQ4|C..x contrasts by time 7. ThenT > €, if and only if there exists an
sharply with the mostly negative results of Nisan and Ro- assignment of jobs to bins such that each bin is at least as
nen [24] (see Section 3). We show that truthfulness alonejarge as the total size of all the jobs assigned to it. We can
does not prohibit achieving the optimal allocation. Then we relax this requirement by allowing fractional assignments.

give a randomized polytime truthful mechanism that yields A fractional assignmentf jobs to bins consists of a parti-

a 3-approximation fo€,, .. tion of each joby into pieces whose sizes sumipand an
assignment of these pieces to the bins. A fractional assign-
Definition 5.1 A vector (wy,... ,w,,) is smaller than  mentisvalid if each bin is at least as large as the total size
(w1,... ,wy) lexicographicallyif, for some:, w; < w; of all fractional jobs assigned to it, and every bin receiving a
andwy, = @y, forall k <. piece of a job is large enough to contain that entire job. The

smallestT’ for which there exists a valid fractional assign-
Proposition 5.2 There is a truthful mechanism (not poly- ment is a lower bound 0@"; ... We now derive a formula
time) that outputs an optimal solution fQ{|C\,.x and sat- for this lower bound.
isfies voluntary participation. If a valid fractional assignment exists, the following
Proof sketch: Among the optimal allocations of jobs, greedy algorithm clearly finds it. Number both the bins
our algorithm selects the one in which the load vector and jobs from largest to smallest, i.e. < ... < b,, and
(w1,... ,wy) is lexicographically minimum. Clearly, a p1 > ... > p,. Assign jobsl,2,....(k — 1) to bin 1,
machine raising its bid; (i.e. announcing it is slower) will  wheref is the first job that would cause the bin to overflow.
not cause the allocation to change unless that machine is th& hen assign to bin 1 a piece of jébexactly as large as the
bottleneck. In this case raisirtg will only cause machine  remaining capacity in bin 1. Continue by assigning jobs to
1 to get less work. Thus, the output functions decreas-  bin 2, starting with the rest of job, and so on.
ing, so by Theorem 4.2 it admits a truthful payment scheme  Under what conditions is the greedy assignment valid?
given by (3). As we just argued;(b—;,-) is constant ex-  For each joby, leti(;) denote the last bin that is at least as
cept for jumps at the breakpoints where mactiibecomes  |arge as joly. The greedy assignment is valid if and only if,

2Everything that follows still works if we let the constant vary from for eachy, the total capacity of the ﬂrs(]) bins is at least

machine to machine, so long as the constants are known to the mechanisn?;uhe to_tal size Pf the ﬁrsjjo_bs- So if the_ gre_edy a§5ignment
(not part of the private data). is valid and: is the last bin to which joly is partially as-




signed, thel” > max{bip;, > 7._, pr/ >;—; 1/bi}. Thus, participation, and deterministically yields a polytinge
, approximation mechanism f@p||C\yax-
i:ﬂﬂk ) Proof: Since the fractional assignment is valid and the
>y bLl rounding gives each machine at most 2 extra jobs, each
bin is at most triply full. Thus, our allocation is a 3-
is our lower bound o’} .. For each joly, i(j) is atleast  approximation, no matter how the random choices turn out.

Trpp = maxminmax {biqu
7 3

as large as thethat attains the min for jopin equation (5), We now show that the expected load on each machine
so the firsti(j) bins are large enough to accommodate the decreases asbids higher (i.e. claims to be slower). The
first j jobs, and the greedy assignment is valid. expected load onis precisely the load in the greedy frac-

tional assignment. For full bins this &, 5 /b;, for the (at
Lemma 5.3 Sizing the bins according 0,5, the greedy  most) one partially full bin it is the work left over from the
algorithm yields a valid fractional assignment such that fyll ones, and for the empty bins it is 0. Suppose some ma-
each bin contains some number of full jobs plus at mostchine claims she is slower, replacing her bjdwith ab;,
two partial jobs. wherea > 1. This yields a new lower bouritl; , from (5).

i ' ; Al
Now a natural algorithm suggests itself. Starting with the ClearlyT; p > T1p, butalsol',; < oI p, since shrink

greedy assignment, round each split job to the faster of its"9 bin 7 by a factor (.)fa the.n blowmg upall bins by a
. L would allow for a valid fractional assignment. Thus, the
two machines. The load on each machine is now the total i L
: ) . o : overall effect of increasing’s bid is to enlarge the other
size of the jobs fully assigned to that bin in the fractional . : s o ; :
. . . . bins while shrinking bir, so the greedy fractional assign-
assignment, plus at most one more job. Since the fractional

: : : . ment gives less work. The expected loag;(b_;,b;) is a
assignment is valid, the rounded one overflows each bin bydecreasin function &€, so by Theorem 4.2, we can design
at most a factor of 2, so this algorithm is a 2-approximation. 9 ' y - 9

. . . atruthful payment scheme. Since machines bidding suffi-
Unfortunately, the algorithm does not yield decreasing . . : .
) : ciently high receive no jobs, we can choose the payments to
work curves. Supposkp; is the bottleneck term in (5) . N
o . I . - satisfy voluntary participation, by Theorem 4.4.
with i > 1, j < n, and jobj exactly finishing off bini. If To compute the payments, we must compute the function
1 perturbs its bid upwards théfy, 5 increases, so jop+ 1 P bay ' P

gets split across binsandi+ 1 then rounded té, increasing éué(nb&g 'c))uarr}gv\tg? tl)rgﬁg{ja\l{;’ﬁeﬁi;b;;&im' ;ﬁé :Cﬁ: (oLt&
+'s load. It seems difficult to overcome this problem with a . . 9 v ot
N . ) ers bidb_;. For small bids (fast speeds) hinis full, so
deterministic algorithm, so we turn to randomized ones. " b i.z) = Tyn(z)/z. For large bids the load is zero
There is flexibility in defining what it means for a ran- wib—i,») = Tpp(z)/. ge bid '
domized alaorithm to be truthful. Here we assume that eaChForthe interval inbetween, the load is just the leftover work
' alg o X . from the larger bins. Thus, we just need to fifigls (). On
agent aims to maximize haxpectedorofit. Thus, truth-

o . L . different intervals it is either constant, of the form, or of
telling is a dominant strategy for agent bidding #; maxi- the form——< — (where: andd are constants), depending on
mizes her expected profit regardless of what the other agents d+1/ ¢ , dep 9

bid, and a mechanism is truthful if truth-telling is always a which term is the bottleneck in formula (5). Biegoints oc-

dominant strategy for each agéntie now interprets; as cur only whenz coincides with another agent’s bid or when
theexpectedoad on agent. By Theorem 4.2, our ran/dom- two of the terms inside the braces in (5) (considered as a
ized output algorithm admits a truthful payment scheme if function ofz) cross. Thus the number of intervals is poly-

and only if the expected load aris a decreasing function nomial and the integral over each interval is a closed-form
of i's bid b;. We choose our payment scheme to be given expression, so the mechanism is polytime computabim.

by formula (3) deterministically, but notice thatitwould be  Thjs mechanism has the peculiar feature that we intro-
enough for our payments to be random variables whose exyced the randomness not to improve the objective function,

pectation is given by this formula. but to cause the expected load to decrease monotonically as
We use randomization to obtain a monotone work curve. ihe pid increases.

Starting with our greedy fractional assignment of jobs to

bins, we randomly assign jobs as follows. Jab assigned 52  Affine Functions of the Loads: LP and Unca-
to machinei with probability equal to the portion of ; pacitated Facility Location
that is fractionally assigned to bin

Here we consider a general class of problems admitting

Theorem 5.4 The randomized allocation described above . inf1 mechanisms. The main result is the existence of a

admits a truthful payment scheme satisfying voluntary

4The closed form expressions giving the payments in the mechanism

3A more restrictive definition used in [24] requires truth-telling to be  described above may contain natural logarithms, so our model of compu-
the best strategy, regardless of the outcome of the algorithm’s random cointation must allow us to compute these if we wish to obtain a numerical
flips. answer for the payment.



truthful mechanism; at this level of generality wancat say each payment easily, as it just involves finding the threshold
whether we can compute it. Suppose the mechanism wishe®id at which a facility would nodnger be open (i.e. where

to minimize some affine function of the loads w;(b_;,-) jumps from 1 to 0).
We can use the algorithm of [23] as the basis for a truth-
g(0,b) = d(o) + Y _ ci(bi)wi(b), (6) ful mechanism for facility location in an arbitrary metric
iel space. Since it considers eachiliac one at a time and

opens it with probability inversely pportional to its cost,

whered is some function of the output not depending on the load curve decreases with the bid.

the bids,c;(b;) is an increasing function for each agent
and the set of allowable outputsdoes not depend on the ) o
bids. One special case is linear programming, where somel N€orem 5.7 There is a constant-approximation truthful
of the decision variables are the loads d(o) is the partof ~ Mechanism for uncapacitated féiy location where every
the objective depending on the other variables, the cost co-customer pointis also a potential facility, and all the facility
efficient onw; depends ori's bid b;, and the feasible setis CoSts are known to lie in an intervh , c,], wherec, /e, is
given by linear inequalitiesot depending on the bids. An- Pounded by a constant.
other special case is uncapacitated facility location, where
each fadity is an agent whose private data is the facility 5.3 Sum of Completion Times and Max Flow
cost, andi(o) is the (publicly known) transportation cost.

Assume that, for every set of bids, there exists an optimal ~ Here we briefly mention two other problems to which we
solution. Fix an ordering of the agents. can apply Theorems 4.2 and 4.4.

The problem of scheduling on related machines to min-

Theorem 5.5 For the problem stated above, if each coeffi- imize the sum of completion times, commonly denoted
ciente;(b;) is strictly increasing irb;, then any optimal out- Q|| C;, can be solved optimally by a simple algo-
put functiono(b) admits a truthful payment scheme. Oth- rithm [5]. We can prove that this algorithm results in work
erwise, any output function that gives an optimal solution curves that decrease monotonically to zero. Thus, by Theo-

whose vector of load&w, ... ,w,,) is lexicographically =~ rems 4.2 and 4.4, we obtain a truthful mechanismthat solves
minimal admits a truthful payment scheme. Q|| > C; exactly and satisfies voluntary participation.

Proof sketch: Raising:’s bid only raises the cost af;, ) ,

which can only lower the optimak;, since the set of feasi- ~_ NOW we consider the maximum flow problem. We are
ble outputs s fixed. - given a directed graph with source and sink nodes. Each

edgee is an agent and has a finite non-zero capacity

We can apply this theorem to the uncapacitated facility known only to itself. The mechanism wishes to find a max-
location problem. In the standard problem, we are given imum flow from source to sink respecting the capacity con-
a set of facilities and a set of customers. We need to se-Straints on all edges. We assume that each edge incurs a cost
lect some subset of the facilities to open, and then assigredual to the congestion on that edge. That is, if we send
each customer to be served by some opeilittac Each ~ units of flow on an edge, that agent incurs a cosf.9t..
facility has afacility costassociated with opening it, and In order for this problem to fit the form we have been con-
for each customef and facility , there is aransportation ~ sidering (i.e. cost equalsw,, the private data times the
costincurred if customey is assigned to facility. There  load), we take the private data tohe= 1/c., and the load
are no capacities, so an open facility may serve an arbitraryon edgee to bew. = f.. Thus, in truthful mechanisms
number of customers. The goal is to minimize the sum of the flow on edge must decrease as its announced capacity
the facility costs and the transportation costs. As explaineddecreases.
above, we can apply Theorem 5.5. We can guarantee this property by using max flows

that are lexicographically minimal (in the sense of Theo-
Theorem 5.6 Any algorithm that solves the uncapacitated €M 5.5). We can compute such a flow usingnax flows

facility location problem optimally admits a truthful pay- (Wherem is the number of edges). There is a closed-form
ment scheme. expression for the payments in terms of the flow, so we can

solve max flow exactly in polynomial time. Unfortunately,
Uncapacitated facility location is NP-hard, so we can- the work curves have infinite integrals, so we cannot satisfy
not expect to find a polynomial time algorithm to solve it. voluntary participation. However, we could choose to ig-
However, there are some special cases that can be solvedore edges of capacity belayim, in which case the work
in polynomial time, such as if the fdities and customers  curves would drop to zero at that point, so we could satisfy
lie on a line, circle, or tree. Slight generalizations of these voluntary participation and obtain a flow within an additive
cases are solved in [9]. In these cases, we can also computeof optimal.



6 Lower bounds only job 1 to machine 2. Therefore, the truthful mechanism
is suboptimal either when= - orwhens = 1+w. We

We can use our characterization theorem to prove lowerdiScuss the first case. The second is symmetric.

bounds on approximdlty by truthful mechanisms. In par- .Smcelwe are assuming the truthful rlnechamsm does not
ticular we consider scheduling on machines with speeds toSPIit the jobs the optimal way when= 1, the best pos-
minimize the weighted sum of completion times, usually sible schedule it can use is to split the jobs the other way.
denoted|| 3 w,C;. The idea behind the lower bound is Thus, the mechanism gives a schedule with objective func-
that in an optimal allocation, the fast machines should gettion value atleagtw + (1 +w), while the optimal schedule
the important jobs, whereas in a truthful allocation the fast Nas valué 4 pw(1 +w). For any fixedp, the ratio of these
machines should get the bulk of the work. If we arrange the two values is maximized when = % gfi“fp_ The ratio

job weightsw; so that these two principles conflict, then the

increases 1, approaching a limit of%. [ ]
truthful allocation will be suboptimal. sl PP g V3

. 7 Frugal mechanisms
Theorem 6.1 No truthful mechanism fo@|| - w;C; can g

achieve an approximation ratio better tha\n%, evenonin-

stances with just two jobs and two machines, To this point, we have viewed payments only as an in-

ducement to the agents to bid truthfully, while the mech-
Proof:  Consider an instance with two jobs and two ma- anism cared about minimizing some unrelated objective
chines. Job 1 has weight and processing requirement 1function. We are also interested in mechanisms whose pay-
while job 2 has weight and processing requiremept  ments are small by some measure. We describe these qual-
wherep > 1. Suppose machine 1 runs at speed 1, anditatively asfrugal. Since subtracting a constant from the
machine 2 runs at speed In order for our mechanismto  payment functions preserves truthfulness, it is only inter-
be truthful, the load on machine 2 must increase monoton-esting to consider mechanisms satifying voluntary partici-
ically as its bid decreases (i.e. as its speed increases). Tgation. The total cost incurred by the agents is then a lower
show that any truthful mechanism is suboptimal, we must bound on the total payment.
selectp andw so that in the optimal schedule, the load on e show in [1] that the shortest path mechanism of [24]
machine 2 is non-monotone i To this end, we seiand  can be forced to pag(n) times the cost of the shortest
w such thapw < 1. path, even when there is an alternate path of similar cost.
In the optimal schedule, for smadl both jobs will be  Surprisingly, this pitfall is intrinsic to the problem, since we
assigned to machine 1. As we raisethe jobs will even-  also prove thatveryreasonable mechanism exhibits this
tually be split between machines, the machines will swap bad behavior. In contrast, our 3-approximation algorithm
jobs, then eventually machine 2 will get both jobs, for for Q||C,,., never pays more than a logarithmic factor more
large enoughs. When the jobs are split, the job with than the expected costs incurred by the machines, provided

larger weight-processing product goes on the faster ma-no single machine dominates the processing power.
chine. Sincepw < 1, job 2 goes to the slower machine.

Thus, the load on machine 2 is non-monotone in the optimalTheorem 7.1 The payment to each machine> 2 is at
assignment. It is easy to check that the optimal assignmen}nosgvm(1+2 In £, wherer = by (pi +. .. +pn_)/pn and
is to give both jobs to machine 1 where (0, -X), putjob 77 is given by(5). The payment to machireis at most

1 on machine 1 and job 2 on machine 2 whea (25, 1), TLB(le—f + 2z—jln ), wherez; = bs(p1 + ... + pn)/Pn-

swap the jobs whes € (1,1 + 1), and put both jobs on  Proof sketch: The payment to machineconsists of two

machine 2 fors € (1 + %, oc). Whenever both jobs are on  terms (formula (4)). The first terrbw;(b;) exactly com-

the same machine, job 1 goes first (by Smith’s rule). pensates machinefor its expected cost, which 8,5 for
Now we reason about the behavior of any truthful mech- all machines that are full in the greedy fractional assignment

anism, ass increases from 0 toc. If the mechanismis  of Lemma 5.3. The second ternfj,” w;(u)du, is the (ex-

to achieve a finite approximation ratio, then it must assign pected) profit. We always have;(u) < Tpg(u)/u, where

both jobs to machine 1 when« 1 and both jobs to ma- T p(u) is the lower bound on the optimal makesgan.,

chine 2 whens >>> 1. For intermediate values afit may computed in formula (5). Equality holds as long as bis

split the jobs. The key is that if machine 2 gets job 2 for full in the fractional assignment. But (far> 1) T p(u)

some value ok, then it must keep job 2 for all larger val-  stays approximately constant, since machioenstitutes at

ues ofs, since the load may only increase gng- 1. The most half of the processing power, so decreasing its speed

optimal schedule violates this. Becayse < 1, we have can at most doubl&yp(u). Thatis,Trp(x) < 2TLp.

— c (l—)_{—l, 1). Thus, whens = ——, the optimal sched-  Moreover,w;(u) drops to zero at some poipt Thus, the

14w 1+_w’
ule gives job 2 to machine 2, but when= 1 + w, it gives integral is at mos2Trp In .



This argument breaks for machine 1 if it is much faster [11] J. Green and J.-J. Laffont. Characterization of satisfac-
than all the rest combined, since the load on this machine tory mechanisms for the revelation of preferences for public
stays nearly constant as its announced speed decreases to  goods.Econometrica45(2):427-438, 1977.
that of the second fastest machine. Therefore, our bound[12] T Groves. Incentives in team&conometrica41(4):617-

; ; : 631, 1973.

?ans'zéssfi\?vgtrig?:ﬁ?ndesson the ratio between the speeds of the[13] T. Groves. On theories of incentive compatible choice with

. . compensation. In Hildenbrand [15], 1-29.
It then remains to boungl. If machine: > 1 has speed [14] J. Hershberger and S. Suri. Vickrey pricing in network rout-

1/z = pu/(bi(p1+...+pu)), then placing even the small- ing: Fast payment computation. FOCS 2001.

est job oni would take longer than processing all jobs on [15] W. Hildenbrand, ed Advances in Economic Theoram-

machine 1. Thus, whenbidsz, it gets no work, s@ < z. bridge UP, 1982.

Similarly, when machine 1 bids, , it gets no work. ] [16] D.Hochbaum and D. Shmoys. A polynomial approximation
scheme for scheduling on uniform processors: Using the

Corollary 7.2 If the sizes of alh jobs differ by a factor of ggél" i‘ggg’x'mat'on approactsIAM J. Comp.17(3):539~

at most;, and the speeds of the two fastest machines differ
by a factor ofr,, then the payment given by the mechanism
exceeds the total expected cost incurred by all the agents by[lg]

[17] K. Jain and V. Vazirani. Applications of approximation al-
gorithms to cooperative games. %TOG 364-372, 2001.
N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Mecha-

a factor of at mosO(rz In(rin)). nism design for resource bounded agentsinth Conf. on
Proof: We bound the ratio of payment to expected cost, MultiAgent System£000.

machine by machine. For each machinehose bin is full [19] J.-J. Laffontand E. Maskin. A differential approach to domi-
in the greedy fractional assignment, the cogFis;. There nant strategy mechanisnisconometrica48(6):1507-1520,

1980.
[20] J.-J. Laffont and E. Maskin. The theory of incentives: An
overview. In Hildenbrand [15], 31-94.
D. Lehmann, L. O’'Callaghan, and Y. Shoham. Truth reve-

is at most one machine with a partially full bin. We cannot
bound its ratio, but clearly its payment is no greater than
that of the next faster machine. For machine 1, the ratio is [21]

at mostry(1 + 2 In(rin)), jand for each other full machine lation in rapid, approximately efficient combinatorial auc-
the ratio is at most + In(7*). ] tions. In ACM Conf. on Electronic Commerc®6-102,
1999.
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