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Abstract—Recent spectrum auctions in the United King-
dom, and some proposals for future auctions of spectrum in
the United States, are based on preliminary price discovery
rounds, followed by calculation of final prices for the winning
buyers. For example, the prices could be the projection of
Vikrey prices onto the core of reported prices. The use of
Vikrey prices should lead to more straightforward bidding,
but the projection reverses some of the incentive for bidders
to report truthfully. Still, we conjecture that the price paid
by a winning buyer increases no faster than the bid, as in
a first price auction. It would be rather disturbing if the
conjecture is false. The conjecture is established for a buyer
interacting with disjoint groups of other buyers in a star
network setting. It is also shown that for any core-selecting
payment rule and any integer w greater than or equal to
two, there is a market setting with w winning buyers such
that the price paid by some winning buyer increases at least
(1-1/w) times as fast as the price bid.

I. INTRODUCTION

A practical auction design must satisfy a variety of
constraints resulting from legal or political policies; the
resulting allocation and payments must be fair in some
sense. However, the central approach in auction theory has
been to first enforce truthful reporting of the information
privately held by the agents and then try to achieve
the objectives of revenue or social welfare maximization.
Consequently, the payment rules suggested by some clas-
sical auction mechanisms are deemed unfair. For example,
for a Vikrey auction under complementarity, the winning
buyers may end up paying a price lower than the offers
made by the losing buyers [2]. Core-selecting auctions
(henceforth, CSAs) are a way to alleviate problems such
as unfair pricing or low revenue [5]. In a CSA, there
is no group of losing buyers whose original bids could
be combined with the payments of some subset of the
winning buyers to increase the revenue of the seller. Such
outcome is competitive and is said to be in core. CSAs
have been taken seriously by policymakers, e.g., in the
recent spectrum auctions in the UK [3].

In general, it is impossible to design an auction that
satisfies both truthful reporting of the preferences and the
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outcome in core [7]. In a CSA, the outcome is in core
with respect to the reported preferences and not necessarily
with respect to the true preferences. Furthermore, a core
outcome does not uniquely determine the payments of
the winning buyers. Hence, a core selecting auction must
specify a rule for deciding the payments of the winning
buyers; see [4], [6], and [1] for some simple core-selecting
payment rules. The choice of the payment rule affects the
bidding strategy and the incentives for truthful reporting
of the preferences (see, e.g., [1]).

This paper analyzes the incentive to deviate from truth-
ful bidding for CSAs. The metric we use is the marginal
incentive to deviate (henceforth, MID). The MID measures
how much a buyer’s payment increases per unit increase
in his bid for a small increase in the bid, keeping the
bids of others constant. This metric is inspired by [6]; as
argued there, buyers are unlikely to find the best possible
deviation from truthful bidding, but may have a clearer
view of where and how to gain from smaller deviations.
We, however, consider the MID for each buyer rather
than the sum of MIDs across the buyers. Moreover, the
analysis in [6] is for a simple example; we consider a
benchmark class of combinatorial auctions with a single-
parameter environment and a star-network setting (to be
made precise in Section III). We treat MID smaller than
one as a basic requirement for any reasonable payment
rule; however, there are no results in the existing literature
on the same. Our particular focus is on the payment rule
that minimizes the Euclidean distance between the Vikrey
price vector and the set of core payment vectors (referred
to as the quadratic payment rule); and a variant of it where
among the core payment vectors with the minimum sum
(referred to as the minimum revenue core (MRC)), the one
closest to the Vikrey payment vector is selected (see [4]
for further details). Our main results are:

1) We show for the star network setting that the MID
for the quadratic payment rule and its MRC variant
is at most one. We conjecture that the MID smaller
than one is true in general for the quadratic payment
rule. Our results provide strong theoretical evidence
in support of this conjecture.

ar
X

iv
:1

20
9.

21
31

v1
  [

cs
.G

T
] 

 1
0 

Se
p 

20
12



2) We show that the worst case MID for any core-
selecting payment rule over all environments when
there are w winners is at least 1− 1

w . This quantifies
the loss in the incentives for truthful bidding if core-
selecting outcome is imposed as a constraint.

The rest of the paper is organized as follows. Section II
gives notation and preliminaries. Section III describes the
star network setting and presents the bounds on the MID.
Section IV presents a lower bound on the worst-case MID
for a general core-selecting payment rule. We conclude in
Section V with some directions for future research.

II. MODEL AND PRELIMINARIES

Consider an auction with multiple buyers, multiple
items to be sold, and a single seller. Let M denote the
set of items to be sold and N denote the set of buyers.
We limit discussion in this paper to the case of single-
parameter buyers, meaning that each buyer j submits only
a single bid bj for a particular bundle Sj , with Sj ⊆M. A
given buyer j will either be allocated the set Sj of items,
or will be allocated no items.

A coalition of buyers is simply a subset T of M. A
coalition T is called feasible if the bundles in T are
mutually disjoint; i.e., Sj ∩ Sk = ∅ for all i, j ∈ T such
that i 6= j. Let T denote the set of feasible coalitions.

The outcome of the auction is a pair (W,p). Here, W
is the set of winners (hence, a feasible coalition) and p ,
(pj : j ∈W ) is a vector of prices; buyer j pays the seller
pj for the bundle of items Sj . The outcome is said to be
efficient if the winning coalition W ∈ T is a solution of
the following winner determination problem:∑

j∈W
bj = max

T∈T

∑
j∈T

bj . (1)

The Vikrey price vector v for an efficient outcome W
is the vector v , (vj : j ∈W ), defined by:

vj =

{
max

T∈T :j 6∈T

∑
i∈T

bi

}
−

∑
i∈W−j

bi. (2)

In rest of this paper, the Vikrey auction is denoted by the
outcome (W,v).

The following example illustrates the motivation behind
core selecting auctions. There are two small buyers, one
big buyer, and two items. Each small buyer wants a single
item and has value $8. The big buyer wants both items
and has value $10. Under the Vikrey price vector, the two
small buyers win an item each at price $2. The seller’s
total revenue is $4 which is smaller than the bid of the big
buyer. The big buyer might consider this outcome unfair.

An outcome (W,p) is said to be blocked by a coalition
C if ∑

i∈W
pi <

∑
i∈C

(bi1{i 6∈W} + pi1{i∈W}),

which means that the seller could raise more revenue by
switching the set of winners from W to C, and charging bi

to those buyers in C/W, and keeping the prices equal to pi
for buyers i in C∩W. Equivalently, the outcome (W,p) is
blocked by a coalition C if

∑
i∈W/C pi <

∑
j∈C/W bj . An

outcome (W,p) is said to satisfy the coalition core con-
straints if there are no blocking coalitions, or equivalently,
if
∑
i∈W/C pi ≥

∑
j∈C/W bj for all feasible coalitions C.

Note that if C has the form C =W − j for some j ∈W,
then the constraint for C becomes pj ≥ 0. The overall
core region is defined by the coalition core constraints
and individual rationality (IR) constraints, pi ≤ bi for all
i ∈W .

The coalition core constraints can be written as Ap ≥
β. Here, A is the matrix such that for each coalition C,
there is a row of A that is the binary indicator vector for
the set W/C; the corresponding coordinate of the column
vector β is: βC =

∑
i∈C/W bi. In summary, the core

region for the reported bid vector b and winner set W is
the set of price vectors p satisfying Ap ≥ β and p ≤ b.
The core region includes the vector formed by the bids of
the winning buyers.

For a price vector r, the quadratic rule for payment
determination [4] with reference price vector r is:

QUADRATIC(A,b, r,β):

minimize
p

(p− r)T (p− r),

subject to: Ap ≥ β and p ≤ b.

We focus on the auction mechanism that uses the
quadratic rule for payment with the Vikrey price vector
as the reference price vector. The Lagrangian function for
the optimization problem QUADRATIC with the Vikrey
price vector as the reference price vector is given by:

L(p,λ,µ)

= (p− v)T (p− v) + λT (β −Ap) + µT (p− b),

where λ is the vector of Lagrange multipliers for the
constraint Ap ≥ β and µ is the vector of Lagrange
multipliers for the constraint p ≤ b. Since the objective
function in QUADRATIC is strictly convex and the con-
straints are linear, there exists a unique solution and there
exists corresponding values of the Lagrange multipliers
satisfying the Karush-Kuhn-Tucker conditions. The result
is that p is the solution of QUADRATIC(A,b,v,β) if and
only if there exist values of the vectors λ and µ satisfying:

Ap ≥ β,

p ≤ b,

λ ≥ 0,

µ ≥ 0,

p = v +ATλ− µ,

λT (β −Ap) = 0,

µT (p− b) = 0.



III. STAR NETWORK SETTING

This section describes the star network setting that we
consider and obtains bounds on the MID.

A. Quadratic payment rule and the MID

Suppose there are 1+
∑J
j=1 nj items, for some positive

integers J, n1, . . . , nJ , labeled as follows. There is an item
labeled zero, and for 1 ≤ j ≤ J and 1 ≤ k ≤ nj there
is an item labeled (j, k). Define a buyer to be a single-
item buyer if the bundle the buyer is bidding for contains
exactly one item. Suppose there are 2(1 +

∑J
j=1 nj) + J

buyers, with corresponding bundles described as follows.
For each item there are two single-item buyers with desired
bundle consisting of exactly that item. Such single-item
buyers comprise 2(1+

∑J
j=1 nj) of the buyers. In addition,

there are J buyers, indexed by 1 ≤ j ≤ J, such that
Sj = {0, (j, 1), . . . , (j, nj)}.

Suppose the set of winning buyers W includes exactly
one of the single-item buyers for each of the items. Thus,
there are 1+

∑J
j=1 nj winning buyers and 1+J+

∑J
j=1 nj

losing buyers. We focus on the winning buyers (i.e. those
in W ) and refer to them by the item that they bid for –
thus, the winning buyers consist of buyer zero and buyers
(j, k) for 1 ≤ j ≤ J and 1 ≤ k ≤ nj .

Suppose values of the following variables are fixed:
• bj,k denotes the bid of (winning) buyer (j, k).
• bj,k denotes the bid of the losing single-item buyer

that bid for item (j, k).
• 4j,k = bj,k − bj,k. Since W is assumed to be a

solution of the winner determination problem,4j,k ≥
0 for 1 ≤ j ≤ J and 1 ≤ k ≤ nj .

• b0 denotes the bid of the losing single-item buyer that
bid for item zero.

• Cj denotes the (losing) bid of buyer j, for package
Sj = {0, (j, 1), . . . , (j, nj)}.

The values of the following variables are thus also
determined:
• v0 = max{b0,maxj{Cj −

∑nj
k=1 bj,k}}. This is the

minimum value that buyer zero (i.e. the winning
single-item buyer bidding for item zero) must bid in
order to be a winning buyer, as assumed. It is also
the Vikrey price of buyer zero.

• ηj = v0+
(∑nj

k=1 bj,k
)
−Cj for 1 ≤ j ≤ J. The fixed

value ηj has the following interpretation. If buyer zero
were to submit the minimum possible winning bid,
v0, then ηj is the minimum amount buyer j would
need to increase her bid in order to be eligible for
winning. Note that ηj ≥ 0 for 1 ≤ j ≤ J by the
choice of v0.

The above variables do not include the bid, b0, of buyer
zero (the winning single-item buyer that bids for item
zero) because we allow b0 to vary in the range [v0,+∞).
For convenience, we parameterize b0 by b0 = v0 + θ,
and we consider values of θ with θ ≥ 0. Note that the
Vikrey price for buyer zero, v0, does not depend on θ.

Let p0,θ denote the price paid by buyer zero, for the price
vector determined by the QUARDATIC rule for payment
determination, with the Vikrey price vector used as the
reference point.

Our main result is Proposition III.1 below; it shows
that for the star network setting we consider, the MID for
the quadratic payment rule is at most one. We treat MID
smaller than one as a basic requirement for any reasonable
payment rule. In this sense, we establish that the quadratic
payment rule passes this basic check.

Proposition III.1. The price for buyer zero, p0,θ, is
piecewise linear in θ with slope less than or equal to one
for all θ ≥ 0.

The proof follows from a sequence of lemmas. We start
with some notation. Let vj,k,θ denote the Vikrey price of
buyer (j, k). It is given by:

vj,k,θ = max{bj,k − ηj − θ, bj,k}.

Equivalently,

bj,k − vj,k,θ = min{ηj + θ,4j,k}. (3)

In words, (3) tells us that the price reduction in going from
the bid of buyer (j, k) to the Vikrey price of buyer (j, k)
is the minimum of ηj + θ (insures that buyer j, who bid
for Sj , would still lose if buyer (j, k) switched her bid
to vj,k) and 4j,k (insures that the buyer bidding bj,k for
item (j, k) indeed loses.) The entire Vikrey price vector
can thus be denoted by: vθ , (v0, [vj,k,θ]1≤j≤J,1≤k≤nj ).

To ensure there is no blocking coalition C, it suffices
to consider two types of coalitions C, one for which the
buyers bidding for individual items in Sj are replaced by
buyer j bidding for bundle Sj , and one for which a single
winning buyer is replaced by the losing buyer bidding
for the same item. Therefore, in the notation we have
introduced, the core region for the star network setting
is the set of vectors p satisfying

p0 +
∑
k

pj,k ≥ Cj (4)

pj,k ∈ [bj,k, bj,k] (5)
p0 ∈ [v0, v0 + θ] (6)

We remark that the constraints (4) and (5) imply that p0 ≥
maxj{Cj−

∑nj
k=1 bj,k}, so we can use (6) instead of p0 ∈

[b0, v0 + θ] in the description of the core region.
One of the key ideas of the proof is to consider

a relaxation of the optimization problem QUADRATIC.
Specifically, we drop the IR constraint for buyer zero (i.e.
the requirement p0,θ ≤ v0 + θ), while retaining all other
constraints, to obtain the expanded core region, which is
the set of p satisfying

p0 +
∑
k

pj,k ≥ Cj (7)

pj,k ∈ [bj,k, bj,k] (8)
p0 ≥ v0 (9)



Note that the expanded core region does not de-
pend on θ. The relaxation of the optimization prob-
lem QUADRATIC that we consider is to project the
Vikrey vector vθ onto the expanded core region. Let
p̃θ , (p̃0,θ, [p̃j,k,θ]1≤j≤J,1≤k≤nj ), denote the resulting
price vector. That is, let p̃θ minimize (p− vθ)

T (p− vθ)
over p subject to (7) - (9).

Note that, on one hand, if p̃0,θ ≤ v0 + θ, then the IR
constraint on buyer 0 is not active for the determination
of pθ. On the other hand, if p̃0,θ > v0 + θ, then the IR
constraint on buyer 0 is active for the determination of
pθ, in which case p0,θ = v0 + θ. Therefore, in general,
p0,θ = min{v0 + θ, p̃0,θ}. So to prove Proposition III.1
it suffices to prove that p̃0,θ is piecewise linear, and, over
the set of θ such that p̃0,θ ≤ v0 + θ, its slope is less than
or equal to one. The remainder of this proof deals with
the relaxed optimization problem. The relaxation leads to
new values of the Lagrange multipliers, but for brevity and
by abuse of notation, we omit tilde’s over the Lagrange
multipliers.

If for some j, 4j,k = 0 for all k, then the
prices of the buyers (j, 1), . . . , (j, nj) are frozen at the
prices bid, and, after a possible adjustment to b0, the
buyers(j, 1), . . . , (j, nj) could be removed. To avoid trivi-
alities, we can therefore assume without loss of generality
that maxk4j,k > 0 for each j. Such assumption is in
force for the remainder of this section.

Lemma III.2. The following hold:
(a) For any θ ≥ 0, the price vector p̃θ and corresponding
vector of Lagrange multipliers λθ

4
= (λ1,θ, λ2,θ, . . . , λJ,θ)

are uniquely determined by the following conditions
(where j ranges over 1 ≤ j ≤ J, and for each j, k ranges
over 1 ≤ k ≤ nj):

λj,θ ≥ 0, (10)

p̃0,θ = v0 +

J∑
j=1

λj,θ, (11)

p̃j,k,θ = min{vj,k,θ + λj,θ, bj,k}, (12)

J∑
i=1

λi,θ + ηj ≥
nj∑
k=1

max{min{ηj + θ,4j,k} − λj,θ, 0},

(13)
equality holds in (13) for j with λj,θ > 0 (14)

(b) For each j, λj,θ < maxk4j,k for all θ ≥ 0.
(c) If θ > 0, then ηj + θ > λj,θ for 1 ≤ j ≤ J.
(d) The variables λj,θ for each j, and σθ, are piecewise
linear functions of θ.
(e) The variable σθ is nondecreasing in θ.

Proof: To begin we first check that (10)-(14) are
translations of the KKT conditions for the optimization
problem defining p̃θ. For each j, λj,θ is the Lagrange
multiplier for the constraint (7). For each (j, k), since
vj,k,θ ≥ bj,k, the constraint pj,k,θ ≥ bj,k is not active.

Similarly, the constraint p0 ≥ v0 is not active. So no
Lagrange multipliers are introduced for those constraints.
We could introduce a Lagrange multiplier µj,k for each
constraint pj,k ≤ bj,k, and then p̃j,k,θ = vj,k,θ+λj,θ−µj,k,
but since this is a scalar constraint, the variable µj,k can
be eliminated, resulting in (12). Since p̃θ satisfies the
constraint (7),

p̃0,θ +

nj∑
k=1

p̃j,k,θ ≥ Cj , (15)

which must hold with equality if λj,θ > 0. Condition (12)
can be rewritten, using (3), as

bj,k − p̃j,k,θ
= max{bj,k − vj,k,θ − λj,θ, 0}
= max{min{ηj + θ,4j,k} − λj,θ, 0}. (16)

Equation (16) has a natural interpretation. The left-hand
side is the amount by which the final price (computed
using the relaxation) for buyer (j, k) is reduced from the
original bid. It is nominally smaller, by the amount λj,θ,
than the original Vikrey price reduction given by (3).
The term λj,θ indicates how much of the original price
reduction buyer (j, k) needs to give back to the seller to
help meet the core constraint corresponding to Sj . The
amount given back cannot be negative, however, because
of the IR constraint for buyer (j, k).

For each j, by (11), the definition of ηj , and the
constraint (15),(∑

i

λi,θ

)
+ ηj

= (p̃0,θ − v0) + v0 + bj,1 + · · ·+ bj,nj − Cj
(17)

≥
p̃0,θ − v0 + v0 + bj,1 + · · ·+ bj,nj
− p̃0,θ − p̃j,1,θ − · · · − pj,nj ,θ

with equality if λj,θ > 0

=

nj∑
k=1

(bj,k − p̃j.k.θ) (18)

Substituting (16) into (18) yields (13) and (14).
Keeping in mind the interpretation of (16), there is also

a natural interpretation of (13) and (14). In order to meet
the core constraint imposed by the losing buyer j bidding
for Sj , the sum of the price reductions for buyers (j, 1)
through (j, nj) should be no more than the original slack
ηj in the constraint, plus the amount that buyer zero bids
above her Vikrey price. Moreover, equality should hold if
that core constraint is tight. This concludes the proof that
(10)-(14) are translations of the KKT conditions for the
optimization problem defining p̃θ.

Next, we prove the uniqueness part of Lemma III.2(a).
Let s ≥ 0 and l ≥ 0 be independent variables, and consider



for fixed j with 1 ≤ j ≤ J the condition

s+ ηj ≥
∑nj
k=1 max{min{ηj + θ,4j,k} − l, 0},

with equality if l > 0.
(19)

If s+ηj > 0, (19) uniquely determines l. If s+ηj = 0 (i.e.
s = ηj = 0) then the set of l satisfying (19) is the interval
[min{θ,max{4j,k : 1 ≤ k ≤ nj}},+∞). Therefore, (19)
determines a continuous, piecewise linear nonincreasing
function φj : [0,∞)→ [0,∞) so that for each s, the value
l given by l = φj(s) satisfies (19), and no other l satisfies
(19) unless s = ηj = 0, in which case l is the minimum
solution to (19). An illustration of the function φj is shown
in Figure 1. Note that for s ≥ 0, φj(s) = 0 if and only if

j
s

(s)

0 b b b1

jd

 

slope=1

slope=2

slope=3

2 3

Fig. 1. Illustration of a function φj , where δk in the figure is given by
δk = min{ηj + θ,4j,k} for 1 ≤ k ≤ 3.

s+ηj ≥
∑nj
k=1 min{ηj+θ,4j,k}. so that φj is identically

zero if and only if ηj ≥
∑nj
k=1 min{ηj + θ,4j,k}.

Fix any solution p̃θ and λθ of (10)-(14), and let σθ =∑J
j=1 λj,θ. If σθ > 0, conditions (13) and (14) require

λj,θ = φj(σθ) for each j, yielding that σθ satisfies the
following fixed point equation:

σθ =

J∑
j=1

φj(σθ) (20)

If σθ = 0 then λj,θ = 0 for each j and (13) yields that
ηj ≥

∑nj
k=1 min{ηj + θ,4j,k} for all j, so that φj is

identically zero for all j, and therefore σθ again satisfies
the fixed point equation (20).

The right-hand side of (20) is a piecewise linear non-
increasing function of σθ, so there is a unique solu-
tion σθ. Thus, σθ is uniquely determined by (10)-(14).
Furthermore, the λ’s are uniquely determined because
λj,θ = φj(σθ), and hence p̃θ is also uniquely determined.
This completes the proof of Lemma III.2(a).

Lemma III.2(b) is proved by argument by contra-
diction. If the statement is false for some j, then
λj,θ ≥ maxk4j,k. In particular (using the assumption
maxk4j,k > 0) λj,θ > 0 so equality holds in (13). But
also, the right-hand side of (13) is equal to zero, implying

that λj,θ = 0, which is a contradiction. The proof of
Lemma III.2(b) is complete.

Lemma III.2(c) is also proved by argument by contra-
diction. If ηjo+θ ≤ λjo,θ for some jo, then the right-hand
side of (13) for j = jo is equal to zero. But also λjo,θ > 0,
so equality must hold in (13), so the left-hand side of (13)
must equal zero for j = jo, which contradicts the fact that
σθ ≥ λjo,θ > 0. Lemma III.2(c) is proved.

The price vector p̃θ is the projection of vθ, which is
piecewise linear with respect to θ, onto the expanded core
region, which is a closed, convex polytope region not
depending on θ. Therefore p̃θ is piecewise linear with
respect to θ. By parts (b) and (c) already proved, for each
j, there is some k so that λj,θ < min{ηj + θ,4j,k} so
that by (16), λj,θ can be expressed as a piecewise linear
function of θ and p̃j,k,θ, so that λj,θ is also piecewise
linear in θ. Since sums of piecewise linear functions are
piecewise linear, it follows that σθ is also piecewise linear
in θ. Lemma III.2(d) is proved.

The function φj is nondecreasing in θ for each j, which,
given that σθ is determined by (20), establishes that σθ is
nondecreasing in θ. Lemma III.2(e) is proved.

The next step of the proof of Proposition III.1 is to
derive an expression for the derivative of σθ. By Lemma
III.2(d), σθ and λj,θ for each j have right-hand derivatives
with respect to θ. We use the notation d+

dθ to denote right-
hand differentiation. It is simpler and sufficient to find an
expression for the derivative of σθ that holds except for
a finite exceptional set of θ values, than to identify the
right-hand derivative of σθ everywhere. For θ ≥ 0, let
J(θ) =

{
j :

d+λj,θ
dθ 6= 0

}
.

Lemma III.3. There is a finite set E (described in the
proof) so that for all θ ≥ 0 with θ 6∈ E

d+σθ
dθ

=

∑
j∈J(θ)

|{k:4j,k>ηj+θ}|
|{k:4j,k>λj}|

1 +
∑
j∈J(θ)

1
|{k:4j,k>λj}|

. (21)

Proof: For 1 ≤ j ≤ J, define the function χj by:

χj(θ, λj)
4
=

nj∑
k=1

max{min{ηj + θ,4j,k} − λj , 0}.

A geometric interpretation is that χj(θ, λj) is the area of
the shaded region shown in Fig. 2. Note that χj(θ, λj) is
linear within each connected region of the (θ, λj) plane
when said plane is partitioned by the grid

Gj = {(θ, λj) : ηj + θ ∈ {4j,1, . . . ,4j,nj}‘or
λj ∈ {4j,1, . . . ,4j,nj}}.

Let D+
θ χj denote the right-hand partial derivative of

χj with respect to its first argument, let D+
λ χj denote

the right-hand partial derivative of χj with respect to
its second argument, and let D−λ χj denote the left-hand



1 2 3

j,1
j,2

j,3

jj,n h

d  +ej

n j. . . 

j

Fig. 2. The area of the shaded region is χj(θ, λj). Figure assumes
ordering: 4j,1 ≥ 4j.2 ≥ · · · ≥ 4j,nj .

partial derivative of χj with respect to its second argument.
Then over the region {(θ, λj) : θ ≥ 0, 0 ≤ λj < ηj + θ},

D+
θ χj(θ, λj) = |{k : 4j,k > ηj + θ}| (22)

D+
λ χj(θ, λj) = |{k : 4j,k > λj}| (23)

and over the region {(θ, λj) : θ ≥ 0, 0 ≤ λj < ηj + θ},

D−λ χj(θ, λj) = |{k : 4j,k ≥ λj}|. (24)

For j ∈ J(θ), (13) holds with equality at all θ′ with
θ′ > θ and θ′ − θ sufficiently small, so differentiating
each side of (13) yields

d+σθ
dθ

= D+
θ χj(θ, λj,θ) +D±λ χj(θ, λj,θ)

d+λi,θ
dθ

(25)

where

D±θ χj(θ, λj,θ) =

{
D+
θ χj(θ, λj,θ) if d+λi,θ

dθ ≥ 0

D−θ χj(θ, λj,θ) if d+λi,θ
dθ < 0.

Let Ej be the finite set defined by

Ej =
{
θ ≥ 0 :

d+λi,θ
dθ

< 0 and λj,θ ∈ {4j,1, . . . ,4j,nj}
}
.

Since D+
λ χj(θ, λj) = D−λ χj(θ, λj) unless λj,θ ∈

{4j,1, . . . ,4j,nj},

D±λ χj(θ, λj)
d+λi,θ
dθ

= D+
λ χj(θ, λj)

d+λi,θ
dθ

if θ 6∈ Ej .

Hence, (25) implies

d+σθ
dθ

= D+
θ χj(θ, λj,θ)+D

+
λ χj(θ, λj,θ)

d+λi,θ
dθ

if θ 6∈ Ej .
(26)

Dividing each side of (26) by the nonzero quantity
D+
λ χj(θ, λj,θ) and rearranging terms yields

d+σθ
dθ −D

+
θ χj(θ, λj,θ)

D+
λ χj(θ, λj,θ)

=
d+λj,θ
dθ

if θ 6∈ Ej . (27)

Letting E = ∪jEj and summing each side of (27) over
j ∈ J(θ) yields

d+σθ
dθ

 ∑
j∈J(θ)

1

D+
λ χj(θ, λj,θ)


−

∑
j∈J(θ)

D+
θ χj(θ, λj,θ)

D+
λ χj(θ, λj,θ)

=
d+σθ
dθ

if θ 6∈ E . (28)

Solving (28) for d+σθ
dθ and using the expressions (22) and

(23) for the derivatives yields (21) for θ ≥ 0 with θ 6∈ E .
Lemma III.3 is proved.

Lemma III.3 is used to establish the following lemma.
Since p̃θ,0 = v0 + σθ, the condition d+p̃0,θ

dθ ≤ 1 for all
θ > 0 such that p̃0,θ ≤ v0 + θ, is equivalent to d+σθ

dθ ≤ 1
for all θ > 0 such that σθ ≤ θ. Therefore, the following
lemma completes the proof of Proposition III.1 .

Lemma III.4. If θ > 0 and σθ ≤ θ, then d+σθ
dθ ≤ 1.

We remark that the condition θ > 0 is needed in Lemma
III.4.

Proof: Since σθ is piecewise linear, by Lemma III.3, it
is sufficient to prove that the right-hand side of (21) is less
than or equal to one for all θ > 0 such that σθ ≤ θ. Using
reasoning similar to that behind the Markov inequality of
probability theory, inspection of Figure 2 yields that for
any j ∈ J and θ > 0,

|{k : 4j,k > ηj + θ}| ≤ χj(θ, λj,θ)

ηj + θ − λj,θ
. (29)

Using (13) (which is equivalent to σθ + ηj ≥ χj(θ, λj,θ))
in (29) and then invoking the assumption that σθ ≤ θ
yields

|{k : 4j,k > ηj + θ}| ≤ σθ + ηj
ηj + θ − λj,θ

≤ θ + ηj
θ + ηj − λj,θ

(if σθ ≤ θ).

(30)

Let Ĵ(θ) = J(θ) ∩ {j : |{k : 4j,k > ηj + θ}| ≥ 1}.
Assuming that σθ ≤ θ, we apply (30), the fact ηj ≥ 0 for



all j, and the assumption σθ ≤ θ once again to derive:

|Ĵ(θ)|
1 +

∑
j∈Ĵ(θ)

1
|{k:4j,k>ηj+θ}|

≤ |Ĵ(θ)|
1 +

∑
j∈Ĵ(θ)

θ+ηj−λj,θ
θ+ηj

=
|Ĵ(θ)|

1 + |Ĵ(θ)| −
∑
j∈Ĵ(θ)

λj,θ
θ+ηj

≤ |Ĵ(θ)|
1 + |Ĵ(θ)| −

∑
j∈Ĵ(θ)

λj,θ
θ

≤ |Ĵ(θ)|
1 + |Ĵ(θ)| − σθ

θ

≤ 1 (if σθ ≤ θ). (31)

Now (31) can be rewritten as∑
j∈Ĵ(θ) 1

1 +
∑
j∈Ĵ(θ)

1
|{k:4j,k>ηj+θ}|

≤ 1 (if σθ ≤ θ). (32)

If a ratio of sums of positive numbers is less than one,
and if some number in the numerator and a number in the
denominator that is smaller than the one in the numerator
are both multiplied by the same factor that is less than one,
then the new resulting ratio of sums is still less than one.
Specifically in this case, take a unit term in the numerator
of the ratio in (32) and a term 1

|{k:4j,k>ηj+θ}| from the
denominator (note that it is less than or equal to one) and
multiply them both by the ratio |{k:4j,k>ηj+θ}||{k:4j,k>λθ,j}| , which is

less than or equal to one. Repeat for all j ∈ Ĵ(θ). The
result is:∑

j∈Ĵ(θ)
|{k:4j,k>ηj+θ}|
|{k:4j,k>λj}|

1 +
∑
j∈Ĵ(θ)

1
|{k:4j,k>λj}|

≤ 1 (if σθ ≤ θ). (33)

Finally, if Ĵ(θ) is replaced by J(θ) in (33), the numerator
of the ratio is not changed because the additional terms
are all zero, whereas the denominator does not decrease.
In view of (21), this completes the proof of Lemma III.4.

B. Minimum revenue core and the MID

It is shown in [5] that among all core-payment vectors,
ones that minimize the seller’s revenue – referred to as
the minimum revenue core (MRC) vectors – minimize the
sum over the buyers of each buyer’s maximum possible
gain from unilaterally deviating from bidding his actual
value. In general, MRC is a set of payment vectors and
not necessarily a unique point. A variant of the quadratic
payment rule is selecting the payment vector from MRC
which is nearest to the Vikrey payment vector under
Euclidean distance [4]. We show in this section that our
results on the MID for the quadratic payment rule also
apply to its MRC variant.

The MRC is the subset of the core with the minimum
sum of prices, pT1, where 1 is the vector of all ones.
We shall consider the unique price vector resulting when
the QUADRATIC selection rule is used to select a price
vector from the MRC, with reference price vector equal to
the Vikrey price vector vθ. The star network setting from
Section III-A is used. Let pMRC

θ denote the resulting price
vector in the MRC, for bid b0 = v0+ θ by buyer zero, for
θ ≥ 0.

Proposition III.5 below extends Proposition III.1 to the
case where the payment vector is taken to be the point in
MRC nearest to the Vikrey payment vector.

Proposition III.5. The price for buyer zero, pMRC
0,θ , is

piecewise linear in θ with slope less than or equal to one
for all θ ≥ 0.

In the remainder of this section, a superscript C on a
variable denotes that it is a variable defined in the analysis
of projection onto the core, as opposed to projection onto
the MRC. The proposition is proved below by deriving
an expression for pMRC

0,θ in terms of pC0,θ, and applying
Proposition III.1. Recall that for θ (equivalently, b0) fixed,
the core constraints are given by (4)-(6). Since p0 appears
in the sum constraint (4) for each j, the following is true.
If a vector p is in the core with p0 < b0, and two or
more of the sum constraints hold with strict inequality,
say for j and j′, and if for some k and k′, pj,k > bj,k
and pj′,k′ > bj′,k′ , there is another vector in the core
with smaller revenue. Such a vector can be obtained
by increasing p0 by some sufficiently small ε > 0 and
decreasing both pj,k and pj′,k′ by the same ε.

Therefore, the MRC is the subset of the core such that
either p0 = b0, or p0 is so large that at most one of the
sum constraints is violated if pj,k = bj,k for all (j, k). To
put this another way, for 1 ≤ j ≤ J, let Vj = max{Cj −∑
k bj,k, 0}, which is the smallest nonnegative value such

that if p0 ≥ Vj , then the jth sum constraint for the core
is satisfied if pj,k = bj,k for 1 ≤ k ≤ nj . Let j∗ denote a
value of j that maximizes Vj , and let V[2] = max{Vj : j 6=
j∗} (set V[2] = −∞ if J = 1). Then the MRC is precisely
the subset of the core satisfying the additional constraint
p0 ≥ min{b0, V[2]}. That is, p0 either is equal to b0 (which
can’t be exceeded due to the IR constraint of buyer zero)
or is so large that at most one of the sum constraints is
violated when all buyers (j, k) bid bj,k. Since it is also a
requirement that p0 ≤ b0, it follows that pMRC

0 = b0 for
v0 ≤ b0 ≤ V[2].

To cover the remaining possibility, suppose θ is such
that b0 > V[2]. Then for any vector p in the MRC,
p0 ≥ V[2], and therefore pj,k,θ = vj,k,θ = bj,k,θ for all
(j, k) with j 6= j∗. The only coordinates of pθ that remain
to be determined are p0,θ and pj∗,k,θ for 1 ≤ k ≤ nj∗ . This
reduces to a projection of the nj∗+1 dimensional reference
vector (v0, (vj∗,k,θ : 1 ≤ k ≤ nj∗)) onto the set of vectors
(p0, (pj∗,k : 1 ≤ k ≤ nj∗)) such that p0 ∈ [b0.b0],
pj∗,k ∈ [bj∗,k, bj∗,k] and Cj∗ ≤ p0 +

∑nj∗

k=1 pj∗,k. Let



ν denote the Lagrange multiplier for this sum constraint.
Proceeding as in the previous section yields that pMRC

0,θ =
min{max{v0+ν, V[2]}, b0}, where ν is determined by the
conditions

ν + ηj∗ ≥
nj∗∑
k=1

max{min{ηj∗ + θ,4j∗,k} − ν, 0}, (34)

with equality if ν > 0. (35)

Writing σCθ for the variable σθ in the previous section, and
applying the fact λCj∗ ≤ σCθ to (13) yields

σCθ + ηj∗ ≥
nj∗∑
k=1

max{min{ηj∗ + θ,4j∗,k} − σCθ , 0} (36)

Comparing (34) and (35) to (36) shows that ν ≤ σCθ . Thus,
on one hand, if pC0,θ ≤ V[2], then v0+ν ≤ vo+σCθ ≤ V[2],
so pMRC

0,θ = V[2] = max{pC0,θ, V[2]}. On the other hand, if
pC0,θ > V[2], then v0+σCθ > V[2] so for any j the left-hand
side of (13) is strictly greater than V[2] − v0 + ηj , which
if j 6= j∗ is greater than or equal to

∑nj∗

k=14j,k, which is
greater than or equal to the right-hand side of (13). Hence,
if j 6= j∗, equality cannot hold in (13) and λCθ,j = 0 for
j 6= j∗. Therefore, σCθ is equal to λCj∗,θ, and it satisfies the
same conditions (34) and (35) as η and is hence equal to
η, implying that pMRC

0,θ = pC0,θ = max{pC0,θ, V[2]}. Thus,
whenever b0 > V[2], p

MRC
0,θ = max{pC0,θ, V[2]}.

The previous two paragraphs imply the following:

Lemma III.6. Let pC0,θ denote the price for buyer zero
for projection of vθ onto the core, and pMRC

0,θ denote the
price for buyer zero for projection of vθ onto the MRC.
Then

pMRC
0,θ =

{
b0 if v0 ≤ b0 ≤ V[2]

max{pC0,θ, V[2]} if b0 ≥ V[2]
Proposition III.5 is a corollary of Lemma III.6 and

Proposition III.1.

IV. THE MID FOR GENERAL CORE SELECTING
PAYMENT RULES

We now obtain a lower bound on the worst case MID
for any core-selecting payment rule, where the worst case
is over market environments. It is assumed that the winner
determination rule is efficient. This bound quantifies the
loss in the incentives for truthful bidding if core-selecting
outcome is imposed as a constraint. Notice that the result
applies to any core-selecting payment rule, and not nec-
essarily the quadratic payment rule, and not necessarily a
payment rule involving a reference price vector such as
the Vikrey price vector.

Proposition IV.1. Let w be an integer with w ≥ 2. For any
core-selecting payment rule, the worst case MID, over all
scenarios for which there are w winners, is at least 1− 1

w .

Proof: Select δ with 0 < δ ≤ 1
w−1 . Consider an

auction of w items and w + 1 buyers (i.e., |M | = w and

|N | = w+1), as follows. There are w small buyers, with
each interested in a distinct item, and one large buyer,
interested in all items. Consider two scenarios, presented
in reverse order. In scenario two, the small buyers each
bid 1 + δ; the large buyer bids w; the small buyers win.
In order for the price vector of the winners (p1, . . . , pw)
to be in the core, it is necessary that the sum of the prices
be at least w. Thus, for some i∗, pi∗ ≥ 1. In scenario
one, suppose buyer i∗ bids 1− (N − 1)δ, and the bids of
the other buyers are the same as in scenario two, i.e. the
other small buyers bid 1 + δ and the large buyer bids w.
The sum of bids of the small buyers is w, equal to the
bid of the large buyer. Suppose the tie is broken in favor
of the small buyers. Due to the IR constraints and the
requirement of price vector being in the core of reported
bids, the price vector in scenario one must equal the bid
vector. In particular, the price paid by buyer i∗ in scenario
one is 1− (w − 1)δ.

Observe that in progressing from scenario one to sce-
nario two, buyer i∗ increases his bid from 1− (w−1)δ to
1+ δ, an increase of wδ. The bids of the other buyers and
the set of winners is the same in the two scenarios. The
price of buyer i∗ increases from 1− (w − 1)δ to at least
one, an increase of at least (w− 1)δ. Thus, by increasing
his already winning bid, buyer i∗ causes his payment to
increase by at least 1 − 1

w times the amount of the bid
increase.

V. CONCLUSIONS AND FUTURE WORK

The marginal incentive to deviate (MID) is a metric to
measure the incentive to deviate from truthful bidding if
core-selecting outcome is imposed as a constraint in an
auction. We obtain lower and upper bounds on the MID.

An immediate direction for future work is to extend
our results to general combinatorial auctions. Our focus
has mostly been on quadratic payment rule. Analysis of
the incentive properties of some other commonly used
core-selecting payment rules is needed. For many practical
scenarios, strategy-proof behavior is incompatible with
other design objectives. A broader research question is
how to design approximate strategyproof mechanisms and
compare them.
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