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Recall: Trees

http://www.wpclipart.com

• The name of an important class of data objects
• Why is it called a tree?

• Pieces of information are related by `branches’

• Special cases for special purposes
• Binary trees, Binary search trees

Trees
• What about a generalization?

• i.e., something of which Trees is a special case
• Graphs

• A graph is a collection of nodes along with a 
collection of branches

• a branch connects 2 nodes
• Terminology used:

• Vertex (instead of node)
• Edge (instead of branch)

• A graph is a set of vertices along with a set of 
edges on those vertices

Graphs .
• Note: Every tree is a graph

• Vertices: { B, D, E, H, I, J, O, P, Q }
• Edges: { (B,D), (B,E), (D,H), (H,O), (H,P), (E,I), (E,J), 

(J,Q) }
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Graphs .
• Note: Not every graph is a tree

O P

H

Q

I J

D E

B

K O L

A V

Vertex set: {A, K, L, O, V}
Edge set: {(A,K), (V,L)}

Directed graphs (Digraphs)
• Graphs where each edge is ordered (directed)

• Arc: an edge with a direction

• As opposed to Undirected graphs
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Vertex set: {A, K, L, O, V}

Edge set: {(A,K), (L,V)}
Note: Each edge is an ordered pair of vertices

Directed graphs .
• Terminology for directed graph (V, E)

• Path: A sequence of vertices v1 , v2 , …, vn such that 
edges (v1,v2), (v2, v3), …, (vn-1, vn) ϵ E

• Length of path: the number of arcs
• Simple path: all vertices are distinct
• Simple cycle: all vertices distinct other than v1, vn
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Directed graphs .
• Terminology for directed graph (V, E)

• Path: A sequence of vertices v1 , v2 , …, vn such that 
edges (v1,v2), (v2, v3), …, (vn-1, vn) ϵ E

• Length of path: the number of arcs
• Simple path: all vertices are distinct
• Simple cycle: all vertices distinct other than v1, vn
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H, B, N, H, A, C, K, G

This is not a simple 
path – vertex H is 

repeated

Directed graphs .
• Terminology for directed graph (V, E)

• Path: A sequence of vertices v1 , v2 , …, vn such that 
edges (v1,v2), (v2, v3), …, (vn-1, vn) ϵ E

• Length of path: the number of arcs
• Simple path: all vertices are distinct
• Simple cycle: all vertices distinct other than v1, vn
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I, P, M, O, N, H, A, I

This is a 
simple cycle

Representation?
• For binary trees we discussed a pointer 

based representation
• Each node had at most 2 branches
• Not applicable to directed graphs in general

• For graphs, array based representations are 
therefore generally used instead

1. Adjacency matrix representation
2. Adjacency list representation

Adjacency Matrix 
Representation• For the graph G = (V, E) where | V | = n

int AM [n, n]
• One row for each vertex
if (vi , vk ) ϵ E, AM[i, k] = 1

1 3 2

0 4

Vertex set: {0, 1, 2, 3, 4}
Edge set: {(0,1), (0,3), (1,2), (2,3), (2,4)}
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Adjacency List 
Representation

1 3 2

0 4

Vertex set: {0, 1, 2, 3, 4}
Edge set: {(0,1), (0,3), (1,2), (2,3), (2,4)}
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A Graph Problem
• Given a road network

Thériault, Vandersmissen, Lee-Gosselin, Leroux, Journal of Geographic 
Information and Decision Analysis, 3(1):41-55, 1999
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A Graph Problem .
• We can construct a graph of the road network

• A vertex for each road intersection
• One arc for each of the roads at the intersection, going from 

that intersection to the next intersection

• We can associate a value with each arc of the graph
• “cost”, “weight”, “distance”
• We will assume that these values are all non-negative

• And ask the following question:
“What is the shortest distance from one particular vertex to all

the other vertices in the graph?”

Shortest Paths Problem
• “What is the shortest distance from a given 

vertex to all the other vertices in the graph?”
• Single Source Shortest Paths Problem
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Single Source Shortest Paths 
Problem
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Single Source Shortest Paths 
Problem.• We completed one vertex in each `iteration’

• by moving to the vertex with the smallest 
additional distance from all completed vertices

• This is an example of a greedy algorithm
• Greedy: Do what seems best right now and hope 

that this yields a globally optimal result

• We have `discovered’ Dijkstra’s Algorithm
• Edsger Dijkstra (1930-2002)

• 1972 Turing Award winner

Dijsktra’s Single Source 
Shortest PathsLet V = {1, 2, 3, …, n}, with source being vertex 1

E specified with costs in adjacency matrix M[n, 
n] 
Initialize set Completed = {1},  D[i] = M[1, i], n ≥ i > 1
for ( i = 2; i <= n; i++) {

Determine vertex v ϵ V – Completed with minimum 
D[v] Insert v into Completed

for each vertex x ϵ V – Completed
D[x] = min ( D[x], D[v]+M[v, x] )

}

Number of comparisons? O ( | V |2 )

Food for thought
Given a graph G = (V, E) where | V | = n
Adjacency matrix M(n, n)

entries are distances
non-existent edges represented by 0s

What is M2 ?
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Undirected Graphs
• G = (V, E) where each edge is an unordered 

pair of vertices
• Adjacency matrix is a symmetric matrix

• Additional terminology:
• Connected graph: A graph is said to be connected

if every pair of vertices is connected
• For every pair of vertices, there is (at least one) path 

connecting them

• Subgraph: G' = (V', E') is a subgraph of G = (V, E)
•
• E' contains some edges                 for which both

VV '
Evu ),( ', Vvu 

Subgraph

10

12

7

15
17

1

21

1 2

11
10 1

37

35

14

12

10

12

11

M

P

A

I

C

R T

K

GL

B

N H

QO
14

Trees (again)
• A tree is an undirected graph

• any two vertices are connected by exactly one 
simple path (connected)

• without cycles (acyclic)

• If you add an edge to a tree, a cycle is created

A

B C D

E F G

H

A simple path that 
starts and ends 
with the same 

vertex

A Graph Problem
Given a connected, undirected graph G in 

which each edge has an associated cost
find a subgraph of G that

• includes all the vertices of G
• is a tree (i.e., a connected, acyclic graph)
• has the lowest total cost

`Minimum Spanning Tree Problem’
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A graph can have more than 
one MST

Claim
`If (u, v) is an edge of lowest cost, then there 

exists an MST that includes it as an edge.’

We can construct the MST by greedily add 
edges using this property
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Minimum Spanning Tree 
Problem
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Minimum Spanning Tree Algorithm (Prim)

Let V = {1, 2, 3, …, n}
E specified with costs in adjacency matrix M[n, n] 

while (U ≠ V ) {
Determine lowest cost (u, v) s. t. u ϵ U and v ϵ V -

U

}

Initialize sets U = {1}, MST = {}

)},{( vuMSTMST 
)},{( vuUU 

A Graph Problem
Given a connected, undirected graph G in 

which each edge has an associated cost
and a  specified starting vertex, v
find a Hamiltonian path of minimal total cost 

that starts and ends at vertex v 
i.e., a simple cycle that includes each vertex 
of G exactly once

`Travelling Salesman Problem’

Travelling Salesman Problem
• Until now, we have used greedy algorithms for 

our graph problems
• Known greedy algorithms for the Travelling 

Salesman Problem are not guaranteed to give 
optimal solutions
• or even to work for all graphs

A Greedy Approach to TSP?
Sort the edges (on increasing cost)
Consider the edges one by one

What would happen if it is added to the path?
Does it make any vertex degree > 2?
Does it complete a cycle?

If not, add it and continue
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Example graph
Pre-processing:             
Vertices with exactly 2 edges
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Vertices with exactly 2 edges
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Travelling Salesman Problem
• Until now, we have used greedy algorithms for 

our graph problems
• Known greedy algorithms for the Travelling 

Salesman Problem are not guaranteed to give 
optimal solutions
• or even to work for all graphs

• We could enumerate and compare all possible 
solutions
• Expensive

• So, we will use another technique: Branch and 
bound
• A general technique to find optimal solutions for 

optimization problems

O(n!)

Branch and Bound
• Systematically enumerate all solutions

• Through a solution tree

• Need: a lower bound for the cost of solutions 
in a branch of the solution tree

All solutions

Solutions with
edge AB

Solutions without
edge AB

etc etc

TSP: Lower bound on 
solution costCost of any solution S = 

Se

e)(Cost

S in  vertex  throughedges 2  theof Costs
2
1




Vv

v





Vv

v vertex  throughedgescost lowest  2 of Costs
2
1

Upper and Lower Bounds
In TSP, we want to find the minimum cost 
solution i.e., it is a minimization problem

cost 

0

Optimal solution

Upper bound (from a 
discovered solution)

Lower bound (of a node 
in the solution tree)
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All solutions
Cost ≥ 55.5
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Sum across of all vertices of 2 lowest cost edges at that

vertex 5.55
2

111


All solutions
Cost ≥ 55.5

All solutions
including edge MK

Cost ≥ 56

All solutions
without edge MK

Cost ≥ 56.5

All solutions
Cost ≥ 55.5

All solutions
including edge XY

56 ≥ Cost ≥ 55

All solutions
without edge XY

Cost ≥ 56.5

A node for which LB is greater 
than the UB for some other node

NO NEED TO EXPAND THIS NODE ANY 
MORE
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All solutions
Cost ≥ 55.5

All solutions
including edge MK

Cost = 62

All solutions
without edge MK

Cost ≥ 56.5

AMKNOPLICDFGQJRHEBA

All
Cost ≥ 55.5

With MK
Cost = 62

Without MK
Cost ≥ 56.5

With ML Without ML

With LP
Cost = 65

Without LP
Cost = 67

With DF
NONE

Without DF
Cost = 64

AMKNOPLICDFGQJRHEBA

AMLIPKNOGQJRHFDCEBA AMNKPLICDOFGQJRHEBAAMLPKNODFGQJRHECIBA

Travelling Salesman Problem
• Known greedy algorithms for the Travelling 

Salesman Problem are not guaranteed to give 
optimal solutions
• Or to work for all graphs

• We could enumerate and compare all possible 
solutions: Brute Force Approach
• Expensive

• So, we could use another technique: Branch 
and bound

• Or yet another: Dynamic Programming

Idea of Dynamic 
Programming• Consider single source shortest paths 

problem in directed acyclic graphs
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Idea of Dynamic 
Programming .
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Can be linearized: vertices can be 
organized on a line with all edges 
going from left to right

Idea of Dynamic 
Programming .

10

12

17 1

21

1

2

11

1 35

14

13

10

12

11
M

P

A

I

C RTK GL

B

N

H

QO 14

10

12

17
1

21

1 2

11
1

35

14

13

1
0

12

11

M

P

A

I

C

R T

K

GL

B

N H

QO

14



11

Idea of Dynamic 
Programming .
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Shortest path to vertex Q
D(Q) = min ( D(P)+21, D(O)+14 ) 

Idea of Dynamic 
Programming ..

Initialize distances: D(source) = 0, all others D[i] = ∞
for (each vertex v, in linearized order)

D[v] = min(u,v) in E ( D[u] + cost(u,v) )

Solving a collection of subproblems
• starting with the simplest subproblem
• using the answers of simpler subproblems to     

solve later subproblems

Dynamic Programming for 
TSP• What are the subproblems?

• Suppose that we started with vertex 1 and 
have reached vertex  j in our solution
• What information is needed to extend this tour?

• The vertices that have been visited so far
• For a subset of vertices S      {1, 2, …, n} 

including 1, and j S, let C(S, j) be the length of 
the shortest path visiting each vertex in S exactly 
once, starting at 1 and ending at j




Dynamic Programming for 
TSP.• Smaller subproblem?

• What should be picked as the previous (to j) 
vertex?

• Some vertex i S such that
C(S, j) = mini in S, i ≠ j C(S - { j }, i) + cost(i, j)

• Smallest subproblem?
C({1}, 1) = 0

• Order the subproblems
on cardinality of S



C(S, j): the length of the 
shortest path visiting 
each vertex in S exactly 
once, starting at 1 and 
ending at j

Dynamic Programming for 
TSP..C ( {1}, 1) = 0

for s = 2 to n {
for all subsets S    {1, 2, …, n) of size s containing 

1 {


C( S, 1) = ∞
for all j     S,  j ≠ 1

C(S, j) = min{ C(S - {j}, i) + cost(i, j): i   
S, i ≠ j}



return  minj C({1,…., n}, j) + cost(j, 1)
C(S, j): the length of the 
shortest path visiting 
each vertex in S exactly 
once, starting at 1 and 
ending at j

}
}
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s = 2
C({1, 2}, 2) = 4
C({1, 3}, 3) = 7

s = 3

C({1, 2, 5}, 5) = 7
C({1, 2, 4}, 4) = 8

C({1, 2, 7}, 7) = 6
C({1, 3, 6}, 6) = 9
C({1, 3, 10}, 10) = 13

C({1, 2, 5, 7}, 7) = 8

C({1, 2, 4, 6}, 6) = 10

C({1, 2, 7, 9}, 9) = 7
C({1, 3, 4, 6}, 4) = 11

C({1, 3, 10, 11}, 11) = 17

C({1, 2, 4, 9}, 9) = 10

C({1, 2, 5, 8}, 8) = 10

C({1, 2, 5, 7}, 5) = 7

C({1, 3, 6, 9}, 9) = 10
C({1, 3, 6, 11}, 11) = 12

C({1, 3, 10, 15}, 15) = 19

s = 4

s = 5

C({1, 2, 3, 4, 6}, 2) = 15

C({1, 2, 3, 4, 6}, 3) = 12

C({1, 2, 4, 6, 9}, 6) = 11
C({1, 2, 4, 6, 9}, 9) = 11
C({1, 2, 4, 6, 11}, 11) = 13

C({1, 2, 4, 7, 9}, 7) = 11

C({1, 2, 4, 7, 9}, 4) = 9

C({1, 2, 4, 8, 9}, 8) = 11

C({1, 2, 5, 7, 9}, 9) = 9

C({1, 2, 5, 8, 9}, 9) = 11
C({1, 2, 5, 8, 12}, 12) = 14
C({1, 2, 5, 8, 13}, 13) = 15
C({1, 2, 5, 8, 14}, 14) = 12
C({1, 2, 6, 7, 9}, 6) = 8
C({1, 2, 7, 8, 9}, 8) = 8
C({1, 2, 3, 4, 6}, 2) = 15
C({1, 2, 3, 4, 6}, 3) = 12
C({1, 3, 4, 6, 9}, 4) = 12
C({1, 3, 4, 6, 9}, 9) = 13
C({1, 3, 6,7, 9}, 7) = 11
C({1, 3, 6,8, 9}, 8) = 11
C({1, 3, 6, 10,11}, 6) = 20
C({1, 3, 6, 10,11}, 10) = 16
C({1, 3, 6, 11, 12}, 12) = 13
C({1, 3, 10,11, 12}, 12) = 18

C(S, j): the length of the shortest path 
visiting each vertex in S exactly once, 
starting at 1 and ending at j

C(S, j) = min{ C(S - {j}, i) + cost(i, j): i   S, i ≠ j}
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Dynamic Programming for 
TSP..C ( {1}, 1) = 0

for s = 2 to n {
for all subsets S    {1, 2, …, n) of size s containing 

1 {


C( S, 1) = ∞
for all j     S,  j ≠ 1

C(S, j) = min{ C(S - {j}, i) + cost(i, j): i   
S, i ≠ j}



return  minj C({1,…., n}, j) + cost(j, 1)
}

}

Time complexity: )2(O 2 nn
Space complexity: )2(O nn


