Recall: Trees
¥

« Special cases for special purposes
« Binary trees, Binary search trees

ttp:/hwww.wpclipart.com

Trees

« What about a generalization?
« i.e., something of which Trees is a special case
¢ Graphs
« Agraphis a collection of nodes along with a
collection of branches
« a branch connects 2 nodes
« Terminology used:
« Vertex (instead of node)
« Edge (instead of branch)

« Agraphis a set of vertices along with a set of
edges on those vertices

Graphs .

¢ Note: Every tree is a graph

e Vertices: {B,D,E,H,1,J,0,P,Q}
« Edges: { (B,D), (B,E), (D,H), (H,0), (H,P), (E,), (E,J),
(J3.Q}

Graphs .

¢ Note: Not every graph is a tree

© o 00
@ 0O O
©]0) @
Vertex set: {A, K, L, O, V}
Edge set: {(A,K), (V,L)}

Directed graphs (Digraphs)

¢ Graphs where each edge is ordered (directed)
« Arc: an edge with a direction

0%

Vertex set: {A, K, L, O, V}

Edge set: {(AK), (L,V)}
Note: Each edge is an ordered pair of vertices

¢ As opposed to Undirected graphs

Directed graphs .

¢ Terminology for directed graph (V, E)
» Path: A sequence of vertices v, , v,, ..., v, such that
edges (vy,V,), (Vy, V3), ..oy (Vops V) €E
¢ Length of path: the number of arcs
« Simple path: all vertices are distinct
» Simple cycle: all vertices distinct other than vy, v,

Directed graphs .

« Terminology for directed (H: B, N, H, A C, K, G
« Path: A sequence of vertices v,

edges (v;,V,), (Vy, V), ..., (v
¢ Length of path: the num
¢ Simple path: all vertices

.., V, such that

This is not a simple
path — vertex H is
repeated

Directed graphs .

« Terminology for directed I, P, M, O, N H A I

« Path: A sequence of vertices v, , v, , such that
edges (V;,V,), (V. V), -y (Vg Vi) 2 Thisisa
¢ Length of path: the number of, simple cycle

® S
L

© @ 0

K

D
©

Representation?

¢ For binary trees we discussed a pointer
based representation
« Each node had at most 2 branches
« Not applicable to directed graphs in general

¢ For graphs, array based representations are
therefore generally used instead
1. Adjacency matrix representation
2. Adjacency list representation

Adjacency Matrix
¢ Forthe gr%ﬂﬁ!%ﬂ%ﬁi@{%re |[V]=n

int AM [n, n]
* One row for each vertex
if (v, v,) €E, AM[i, K] =

0 2 3 4
0 1 1
© 0 X :
©
Q) - (I 2 1|1
3
Vertex set: {0, 1, 2, 3, 4}
Edge set: {(0,1), (0,3), (1.2), (2.3), (24)} 4

Adjacency Llst

Vertex set: {0, 1, 2, 3, 4}
Edge set: {(0,1), (0,3), (1,2), (2,3), (2,4)}

A W N B O
|
H

A Graph Problem

¢ Given a road network

Thériault, Vandersmissen, Lee-Gosselin, nal of Geographic
Information and Deckion Analysis, 3(1)41 5 g

A Graph Problem .

« We can construct a graph of the road network
« A vertex for each road intersection

« One arc for each of the roads at the intersection, going from
that intersection to the next intersection

« We can associate a value with each arc of the graph
« ‘“cost”, “weight”, “distance”
« We will assume that these values are all non-negative

¢ And ask the following question:

“What is the shortest distance from one particular vertex to all
the other vertices in the graph?”

Shortest Paths Problem

* “What is the shortest distance from a given
vertex to all the other vertices in the graph?”
« Single Source Shortest Paths Problem

Single Source Shortest Paths
Problem

***iH'*I"A}'(* * Kk K Kk Kk %k %k

A C G L M NOP QR T
[33 e8] o3| 22] 382 [92]37 [10]38 [36] 520] o4

Single Source Shortest Paths

* We complgtgglal%’()ertex in each iteration’

« by moving to the vertex with the smallest
additional distance from all completed vertices

« This is an example of a greedy algorithm
« Greedy: Do what seems best right now and hope
that this yields a globally optimal result
» We have “discovered’ Dijkstra’s Algorithm
« Edsger Dijkstra (1930-2002) ;
¢ 1972 Turing Award winner

Dijsktra’s Single Source

LetV ={1, 2§h0 r F?%lg%t}%e being vertex 1

E specified with costs in adjacency matrix M[n,
n]

Initialize set Completed = {1}, D[i]=M[1,i],n>i>1
for(i=2;i<=n;i++) {
Determine vertex v e V — Completed with minimum
D[v] Insertv into Completed
for each vertex x e V — Completed
D[x] = min (D[x], D[v]+M[v, x])
}

Number of comparisons? O (|V|?)

Food for thought

Given a graph G = (V, E) where |V |=n
Adjacency matrix M(n, n)

entries are distances

non-existent edges represented by 0s
What is M2 ?

Undirected Graphs

* G =(V, E) where each edge is an unordered
pair of vertices
« Adjacency matrix is a symmetric matrix
 Additional terminology:
« Connected graph: A graph is said to be connected
if every pair of vertices is connected

« For every pair of vertices, there is (at least one) path
connecting them

¢ Subgraph: G' = (V', E') is a subgraph of G = (V, E)
« V'cV
» E' contains some edges (u,v) e E for which both U,V eV’

Subgraph

A simple path that
starts and ends
with the same

vertex

Trees (again)

» Atree is an undirected graph

« any two vertices are connected by exactly one
simple path (conne@ed)
o
« without cycles (acyclic)

(A)
® © O
O O
&)

« If you add an edge to a tree, a cycle is created

A graph can have more than

A Graph Problem

Given a connected, undirected graph G in
which each edge has an associated cost
find a subgraph of G that
« includes all the vertices of G
« is atree (i.e., a connected, acyclic graph)
« has the lowest total cost

"Minimum Spanning Tree Problem’

Claim

°If (u, v) is an edge of lowest cost, then there
exists an MST that includes it as an edge.’

We can construct the MST by greedily add
edges using this property

Minimum Spanning Tree

v ABHIMNOPOQ
U ABHI MNOPQ
MST (Q,P)(P,M) (M, O) (P, 1) (O,N) (N, B)(B, H) (H, A)

A Graph Problem

Given a connected, undirected graph G in
which each edge has an associated cost

and a specified starting vertex, v

find a Hamiltonian path of minimal total cost
that starts and ends at vertex v

i.e., a simple cycle that includes each vertex
of G exactly once

“Travelling Salesman Problem’

A Greedy Approach to TSP?

Sort the edges (on increasing cost)
Consider the edges one by one
What would happen if it is added to the path?
Does it make any vertex degree > 2?
Does it complete a cycle?
If not, add it and continue

Minimum Spanning Tree Algorithm (Prim)

LetV={1,23,...,n}
E specified with costs in adjacency matrix M[n, n]
Initialize sets U = {1}, MST = {}

while (U #V) {
Determine lowest cost (u, V) s.t.ueUandveV-
U MST = MST Y{(u,v)}
U=UY{u,v)}

Travelling Salesman Problem
 Until now, we have used greedy algorithms for
our graph problems

» Known greedy algorithms for the Travelling
Salesman Problem are not guaranteed to give
optimal solutions

« or even to work for all graphs

Example graph
Pre-processing:

Vertices with exactly 2 edges
3

Towards solution

Total Cost =67
AMLIPKNOGQJRHFDCEBA
3

Travelling Salesman Problem

¢ Until now, we have used greedy algorithms for
our graph problems

¢ Known greedy algorithms for the Travelling
Salesman Problem are not guaranteed to give
optimal solutions
« or even to work for all graphs

« We could enumerate and compare all possible
solutions
« Expensive O(n!)

¢ So, we will use another technique: Branch and
bound

« A general technique to find optimal solutions for
optimization problems

Branch and Bound

¢ Systematically enumerate all solutions
« Through a solution tree

All solutions

Solutions without
edge AB

Solutions with

edge AB

etc etc

* Need: a lower bound for the cost of solutions
in a branch of the solution tree

TSP: Lower bound on

Cost of any so Iﬁ%wéoﬁmt(e)

1 ZCosts of the 2 edges through vertex vin S

veV

1
>= z Costs of 2 lowest cost edges through vertex v
veV

Upper and Lower Bounds

In TSP, we want to find the minimum cost
solution i.e., it is a minimization problem

cost
o0

Upper bound (from a
l discovered solution)

Optimal solution

Lower bound (of a node
in the solution tree)

0

Sum across of all vertices of 2 lowest cost edges at that

vertex = 1—;1 =555

A|B|C|D|E|E.LGlH KL M N/ OIP|Q|R
et T ——
<4r2114113121221112
{6326245231233214&
714 |46 1Z5T6T2 =774 3 |3 |1
3 8|37 4 4|2
5 5

All solutions
Cost>55.5

All solutions
without edge XY

Cost > 56.5

All solutions
including edge XY
56 > Cost > 55

AMKNOPLICDFGQJRHEBA

AMKNOPLICDFGQJRHEBA

JAMLPKNODFGQJRHECIBA AMLIPKNOGQJRHFDCEBA AMNKPLICDOFGQJRHEBA|

Travelling Salesman Problem

¢ Known greedy algorithms for the Travelling
Salesman Problem are not guaranteed to give
optimal solutions
¢ Or to work for all graphs

¢ We could enumerate and compare all possible
solutions: Brute Force Approach
¢ Expensive

¢ So, we could use another technique: Branch
and bound

¢ Or yet another: Dynamic Programming

Idea of Dynamic
« Consider é?r@g AU i'Q\Qrtest paths

problem in directed acyclic graphs

Idea of Dynamic

ﬂmmgv,ertices can be
10 organized on a line with all edges
going from left to right

Idea of Dynamic -

10

Idea of Dynamic

Programming .
10 Shortest path to vertex Q

D(Q) = min (D(P)+21, D(0)+14)

Idea of Dynamic
Programming ..
Initialize distances: D(source) = 0, all others D[i] = «
for (each vertex v, in linearized order)
D[v] = ming) ine (D[U] + cost(u,v))

Solving a collection of subproblems
« starting with the simplest subproblem

« using the answers of simpler subproblems to
solve later subproblems

Dynamic Programming for

* What are t-}ll_égjbproblems?

» Suppose that we started with vertex 1 and
have reached vertex j in our solution
* What information is needed to extend this tour?
« The vertices that have been visited so far

« For a subset of vertices S € {1, 2, ..., n}
including 1, and j € S, let C(S, j) be the length of
the shortest path visiting each vertex in S exactly
once, starting at 1 and ending at j

Dynamic Programming for

* Smaller su-Eéerlem?
« What should be picked as the previous (to j)
vertex?
* Some vertex i € S such that
C(S,) =min;jys 4 C(S -{i}, 1) + cost(i, j)
» Smallest subproblem?
cdrn=o0
 Order the subproblems
on cardinality of S

C(S, j): the length of the
shortest path visiting
each vertex in S exactly
once, starting at 1 and
ending at j

Dynamic Programming for
C({1}.D=0rgp_

fors=2ton{
for all subsetsS {1, 2, ..., n) of size s containing
1{ C(S,)=
foeallj S, j#1
C(S, j) =min{ C(S - {j}, i) + cest(i, j): i
S, i#j}}
}

return min; C({1,...., n}, j) + cost(j, 1)

C(S,) the length of the shortestpath |- (S)= MIN{C(S={} 1) +-costll, Pt S 1+
visiting each vertex in S exactly once, -5 =5

starting at 1 and ending at j C{L2.3,4,642) =15

C{1,2,3,4,6}, 3 =12
C({1,2,4,6,9}, 6) =11
C({1,2,4,6,9}, 9 =11
C({1,2,4,6,11},11) =13
C({1,2,4,7,9, 4 =9
C{1,2,4,7,9,7)=11
C({1,2,4,8,9},8=11
C({1,2,5,7,9%, 9 =9
C({1,2,5,8,9},9=11
C({1,2,5,8,12},12) = 14
C({1.2,5,8,13},13) = 15
C({1,2,5,8,14}, 14) = 12
C({1,2,6,7,9%,6)=8

C(S, j): the length of the
shortest path visiting
each vertex in S exactly
once, starting at 1 and
ending at j

C{L,2.4,6},6)=10 C{1.27.89,8=8
s=2 s=3 C{1,2,4,95,9)=10 C{L23.46},2=15
C{L257.5)=7 C{L2346,9=12
C({1,2},2)=4 C({1,2,4},4=8 C{L257.7)=8 gtg 348 g; ggjg
C({1,3},3)=7 C({1,2,5}5=7 g({f %g g}' g)fl CL 3,67, 9, 7)=11
C{1,2,73,7)=6 cEfli 32 eii 432 11 (L3689 8=11
C{1,3,6},6=9 C{L3699=10 361000
S 3 10h 10 = 13 CHL 36 11y 11)=12 C({1,3,6,10,11}, 10) = 16
({1, 3,10}, 10) = CEEL 310,115, 17 =17 C{1.3.6,11,12),12) =13

C({1.3.10.153 15) =19 C({1,3, 10,11 12} 12) =18

11

Dynamic Programming for
C({hn=0Tgp,

fors=2ton{
for all subsetssS {1, 2, ..., n) of size s containing
1{ C(S,1)=w
foeallj S, j#1
C(S, j) =min{ C(S - {j}, i) + cest(i, j): i
SHESTH
}

return min, C({1,...., n}, j) + cost(j, 1)

Time complexity: O(n*2")
Space complexity: O(n2")

12

