
1

6

What is a Computer Program?
 Description of algorithms and data structures

to achieve a specific objective
 Could be done in any language, even a

natural language like English
 Programming language: A Standard notation

for writing programs
 Examples: C, Java, Intel assembly language
 An extreme example: Machine language
 Hence the need for program translators
 Example: gcc

High level vs Low Level
English:
“To calculate the simple interest, multiply the

principal amount by the rate of interest by the
number of years”

C:
W = X * Y * Z;

Even better C statement:
SimpIeInterest = Principal * Rate * Years;

High level vs Low Level …
Machine language:
(transformed to a human readable form)

movss x(%rip), %xmm1
movss y(%rip), %xmm0
mulss %xmm0, %xmm1
movss z(%rip), %xmm0
mulss %xmm1, %xmm0
movss %xmm0, w(%rip)

C program is made up of statements
Machine language program is made up of machine

instructions

9

What does gcc do for you?
% gcc hello.c

hello.c a.out
gcc

“source”: Program
that you wrote in
the C language and
typed into the file
hello.c

“executable”: File
generated by gcc. The
a.out file contains an
equivalent program in
machine language that
can be executed on a
computer system

10

Basic Computer Organization

Memory

I/O

Bus

I/OI/O

Processor or CPU

The `brains’
of the

computer
system

Where things
are

remembered –
program, data

11

Program = Instructions + Data
 We will next learn more about data

2

12

There are different kinds of data
How does one piece of data differ from another?
 Constant vs Variable
 Basic vs Structured
 Of different types
 Character
 Integer (unsigned, signed)
 Real
 Others (boolean, complex, …)

13

Data differing in their lifetimes
 Lifetime: Interval between time of creation and

end of existence
 How long can the lifetime of a datum be?
 We will consider 3 possible lifetimes

14

1. Lifetime = Execution time of program
 Initialized/uninitialized data
 Must be indicated in executable file
 The space in memory for all of this data can be

assigned when program execution starts (Static
Allocation)

Program Data: Different Lifetimes.

15

Program Data: Different Lifetimes.
1. Lifetime = Execution time of program
2. Lifetime = Time between explicit creation of

data & explicit deletion of data
 Dynamic memory allocation
 In C you create new data using a function like

malloc()
 The memory space for this data is managed

dynamically when the malloc/free is executed (Heap
allocation)

16

1. Lifetime = Execution time of program
2. Lifetime = Time between explicit creation of

data & explicit deletion of data
3. Lifetime = During execution of a function (i.e.,

time between function call and return)
 Local variables, parameters of the function
 The memory space for this data is assigned when the

function is called and reclaimed on return from the
function (Stack allocation)

 Stack: Like a pile of books on a table

Program Data: Different Lifetimes..

17

Stack allocated: Function Local Variables

Local Variables of main Top of Stack Pointer

When the program starts executing

What if main() then calls function func1()?

3

18

Stack allocated: Function Local Variables.

Local Variables of main

Local variables of func1
Top of Stack Pointer

While executing in function func1()

What happens on return from the call to func1()?

Local Variables of main

19

Stack allocated: Function Local Variables..

Executing in main() once again

Local Variables of main Top of Stack Pointer

Recursion vs Iteration
Example: Compute N! , N > 0

int factorial (int j)

{ if (j == 0) return(1);

return (j * factorial(j-
1));

}

{ int N, fact, j;

for (fact=1, j=1; j <= N;
j++)

fact = fact * j;

}

100

j

fact
N

void main()

{ int N;

factorial(N);

}

100N J=100
J=99
J=98
…J=1
J=0

21

During program execution
Code (machine language program)
Data (initialized and uninitialized)
Code and Data don’t change in size

while the program is executing
Heap (for dynamically allocated data)
Stack (for function local variables)
Heap and Stack change in size as

program executes

Code

Initialized

Uninitialized

Heap

Stack

22

Digital Computers
As opposed to mechanical computers or analog

computers

Babbage’s Analytical Engine

Mechanical computers used mechanical parts
like gears and levers to calculate

wikipedia

4

Analog Computer

http://userwww.sfsu.edu/~hl/c.heath.analog.html

Analog computers used continuously varying
quantities like voltage

In digital computers, discretely varying values
are used instead

25

Digital Computers..
In current digital computers, values vary

between 2 discrete values
0 and 1
high and low
0 Volts and 3 Volts

26

Digital Circuits
Electrical circuits in which voltages only take on

a discrete number of values
There are digital circuits that can do

calculations, others that can be used to
remember values, etc

Example: Binary Addition
• Binary: Base 2 number system
• You can generalize the decimal number system,

which uses 10 digits (0,1,…,9) to work with any
radix or base

• Binary digits (called bits): 0 and 1

• Example: Decimal 47 is Binary 101111

0
0

1
1

2
2

2
2

1
101221 101010...1010)...( 




 dddddddddd n
n

n
ntennn







1

0

10
ni

i

i
id

0
0

1
1

2
2

2
2

1
101221 222...22)...( 




 bbbbbbbbbb n
n

n
ntwonn







1

0
2

ni

i

i
ib

Binary Addition .. 1 bit adder
• A circuit that can add one bit to another bit
• The different cases

1 bit
adder

One bit adder has 2 inputs and 2 outputs

a

b

s

c

0

0

1

1

+ 0

+ 1

+ 0

+ 1

= 0

= 1

= 1

???

= 0 0

= 0 1

= 0 1

= 1 0

Binary Addition .. 2 bit adder
A circuit that can add one 2 bit value (a1a0) to

another 2 bit value (b1b0)

1 bit
adder

a0
b0

s0

c

1 bit
adder

a1
b1

s1

s2

This idea can be extended to design a 32 bit
adder or a 64 bit adder

Full
adder

a0
b0

a1
b1+

s0s1s2

5

30

How is Data Represented?
 On a digital computer
 Binary
 Base 2 number system
 Two values: 0 and 1
 Bit (Notation: b); Byte (Notation: B) 8 bits
 Other notation: K, M, G, T, P etc
 K: 210 , M: 220 , G: 230, etc
 1G = 1,073,741,824
 “2 GB of RAM”, “1 TB hard disk drive”

31

Character Data
 Typically represented using the ASCII code
 ASCII: American Standard Code for

Information Interchange
 Each character is represented by a unique 8

bit ASCII code word
 Example: ‘a’ is represented by 01100001, ‘1’

is represented by 00110001

32

How is Data Represented?
 Character data: ASCII code
 Integer data

 In computer systems, you usually find support for
both “signed integers” and “unsigned integers”
 e.g., C programming

int x; Can take +ve or -ve whole number values
unsigned int y; Can take on +ve whole number values

33

Unsigned Integer Data
 Representation: Binary number system

 e.g., Decimal 1000 is represented as 1111101000
 i.e. 0000001111101000 in 16 bits
 00000000000000000000001111101000 in 32 bits

0
0

1
1

2
2

2
2

1
101221 222...22)...( 




 bbbbbbbbbb n
n

n
ntwonn







1

0

2
ni

i

i
ib

34

Aside: <<
 C << operator
 e.g., y = x << 3;

 “Left Shift by 3 bits”
 Shifts each bit bi to the left by 3 bits
 The 3 bits on the extreme left go away
 3 Zero’s come in at the right extreme end

 e.g., in 8 bits, 11001101 << 3 is 01101000
 Claim: Shifting an unsigned int left by one bit

is the same as multiplication by 2
 Qualification: If the product can be computed
 i.e., all of the bits that go away are Zero

Aside: << ..
Proof: Consider n bit value I =
Shifted left by 1 bit and bn-1 = 0 we get

twonn bbbbb)...(01221 

twonn bbbb)0...(0132 







2

0

12
ni

i

i
ib







2

0

22
ni

i

i
ib

I2

6

36

Signed Integer Data

xxx nn 021
...



2s Complement Representation

represents the signed integer value











2

0

1

1 22
n

i

i
i

n
n xx

least significant bit

Example: In 8 bits

13 is represented as 00001101

-13 is represented as 11110011

-128 + 64 + 32 + 16 + 2 + 1

The n bit quantity

37

How is Data Represented?
 Character data: ASCII code
 Signed Integer data: 2s complement
 Real data

38

Real data
 Real numbers: points on the infinitely long

real number line
 There are an infinitely many points between any

two points on the real number line

39

Real Data: Floating Point Representation

IEEE Floating Point Standard (IEEE 754)
32 bit value with 3 components (s, e, f)

1. s (1 bit sign)
2. e (8 bit exponent)
3. f (23 bit fraction)

represents the value
1272.1)1( es f

40

Consider the decimal value 0.5

 Equal to 0.1 in binary

 s: 0, e: 126, f: 000…000

 In 32 bits,
0 01111110 00000000000000000000000

120.1 
1272.1)1( es f

Example: IEEE Single Float

41

Basic Computer Organization
 Main parts of a computer system:
 Processor: Executes programs
 Main memory: Holds program and data
 I/O devices: For communication with outside

 Machine instruction: Description of primitive
operation that machine hardware is able to
execute

 Instruction Set: Complete specification of all
the kinds of instructions that the processor
hardware was built to execute

e.g. ADD these two integers

7

42

Basic Computer Organization

Memory

I/O

Bus

I/OI/O

Processor or CPU

43

Aside: About Memory
 What is memory?
 Devices that can remember things

 There are different kinds of memory in a
computer system
 Some remember by the state an electrical circuit

is in
 Others remember by the amount of electrical

charge stored in a capacitor
 Yet others remember by magnetic or optical

properties
 They can vary substantially in their speed

and capacity

e.g., DRAM – “Memory”

e.g., SRAM

e.g., Hard disk drive/Mag Tape, CD/DVD

44

Main Memory.
 Holds instructions and data
 View it as a sequence of

fixed sized locations, each
referred to by a unique
memory address

 In many computers, the
size of each memory
location is 1 Byte

8 bits

0 01100101
1
2
3

1,073,741,823
(if memory is of size 1GB)

Main Memory..
Values that occupy more than 8 bits

would occupy more than one,
neighbouring memory locations

e.g., 32 bit signed integer
01100101111111110000000011100111
would occupy 4 neighbouring
memory locations, maybe as
shown

8 bits

0

01100101

1
2
3

1,073,741,823

11111111
00000000
11100111

Data Structures: Arrays

b
b+1
b+2
b+3

A[0]
A[1]
A[2]
A[3]

char B[4][2]

b
b+1
b+2
b+3

B[0][0]
B[0][1]
B[1][0]
B[1][1]
B[2][0]
B[2][1]
B[3][0]
B[3][1]

b+4
b+5
b+6
b+7

char A[4]

columns

ro
w

s

0

3

0 1

2

1

B[0][0] B[0][1]

B[1][1]B[1][0]

B[2][0] B[2][1]

B[3][1]B[3][0]

Data Structures: Linked Lists

struct node

{ char data;

struct node *next;

}

struct node *head;

b

x

x ‘<’

z ‘>’

/ a character: 8 bits in size

/ a pointer: 32 bits in size

/ a pointer: 32 bits in size
/ in memory at address b

z

