
1

Trees

http://www.wpclipart.com

• The name of an important class of data objects
• Why is it called a tree?

• Pieces of information are related by `branches’
• Example: Family tree

Family Tree

• Relationships between individuals can be
expressed using such a family tree

• Examples: Parent, child, sibling (i.e.,
brother/sister), ancestor, descendant

Definition of Tree
A tree is a finite set of one or more nodes such that

• There is a specially designated node called the root
• The remaining nodes are partitioned into n ≥ 0

disjoint sets T1 ,…, Tn , where each of these sets is a
tree

• T1 ,…, Tn are called the subtrees of the root

Definition of Tree
A tree is a finite set of one or more nodes such that

• There is a specially designated node called the root
• The remaining nodes are partitioned into n ≥ 0

disjoint sets T1 ,…, Tn , where each of these sets is a
tree

• T1 ,…, Tn are called the subtrees of the root
A

B C D

E F G

H
E

B C

n = 3
n = 1 n = 0 n = 2

D

F G

H

2

Terminology
• Node: basic component of a tree
• Parent, child, sibling, ancestor, descendant:

as in family tree
• Root or root node: The only node without a

parent
• Every node (other than the root) has exactly

one parent
• Leaf or Leaf node or Terminal node: Any

node that does not have any children
• Other nodes are referred to as internal nodes

Remember the picture of the
tree

Terminology ..
• Path: A sequence of nodes n1, n2,. … , nk, such

that ni is the parent of ni+1 for i = 1, 2, …, k-1
• Length of a path: 1 less than the number of nodes

in the path
• Height of a node: Length of the longest path from

the node to a leaf
• Height of a tree: Height of its root
• Similarly, depth of a node (length of unique path

from root to the node)

Paths

A

B C D

E F G

H

Path: A sequence of nodes n1, n2,. … , nk, such that ni
is the parent of ni+1 for i = 1, 2, …, k-1

Length of a path: 1 less than the number of nodes in
the path

Paths of length 0: A, B, C, D, E, F, G,H
Paths of length 1: AB, BE, AC, AD, DF, DG, FH
Paths of length 2: ABE, ADF, ADG, DFH
Paths of length 3: ADFH

3

Heights

A

B C D

E F G

H

• Height of a node: Length of the longest path from the
node to a leaf

• Height of a tree: Height of its root

Nodes of height 0: E, C, H, G
Nodes of height 1: B, F
Nodes of height 2: D
Nodes of height 3: A

Binary Tree
Definition: A binary tree is either empty or consists of a

node called the root together with 2 binary trees
called the left subtree and the right subtree.

Notes
1. Unlike a general tree, binary tree can be empty
2. These 2 trees are not the same

Example: Expression tree

B

A

B

A

Expression Tree
A + B * C + D

B C

A *

+ D

+

B C

* D

A +

+

Expressions
A + B * C + D
Infix Notation
((A + (B * C)) + D)

You may have heard of other notations for
representing arithmetic expressions

Postfix Notation
Put the operator last
Also called Reverse Polish Notation

A B C * + D +
((A (B C *) +) D +)

4

Expressions ..
A + B * C + D
Prefix notation

Put the operator first
Also called Polish notation

+ + A * B C D
(+ (+ A (* B C)) D)

Some binary tree terminology

t

r

e

w

q

u

y

D E F G

B C

A

W V U

Y X

Z

4 5 6

2 3

1

BALANCED

SKEWED

FULL

COMPLETE

(left skewed)

More about binary trees
• Let h be the height of a given non-empty binary tree
• Question: At most how many nodes can it have?

Max
nodes

h

0 1

1 3

2 7

3 1512 1 hNumber of nodes ≤1h

More about binary trees ..
• Let h be the height of a given non-empty binary tree
• Question: At most how many leaves can it have?

Max
leaves

h

0 1

1 2

2 4

3 8h2Number of leaves ≤1

5

Tree Traversal
The systematic enumeration of the nodes of a binary

tree
1. In-order traversal

Visit nodes of left subtree in in-order, then visit the root, then
visit nodes of right subtree in in-order

2. Pre-order traversal
Visit root, then visit the nodes of left subtree in pre-order, then

visit nodes of right subtree in pre-order

3. Post-order traversal
Visit nodes of left subtree in post-order, then visit nodes of

right subtree in post-order, then visit the root

Tree Traversal: Examples

B C

A *

+ D

+

In-order traversal: Visit nodes of left subtree in in-
order, then visit the root, then visit nodes of right
subtree in in-order

+Traversal of left subtree Traversal of right subtree

Tree Traversal: Examples

B C

A *

+ D

+

In-order traversal: Visit nodes of left subtree in in-
order, then visit the root, then visit nodes of right
subtree in in-order

+ DTraversal of left subtree

Tree Traversal: Examples

B C

A *

+ D

+

In-order traversal: Visit nodes of left subtree in in-
order, then visit the root, then visit nodes of right
subtree in in-order

++A B * C D

In-order
traversal of

expression tree
produces

expression in
infix notation

6

Tree Traversal: Examples

B C

A *

+ D

+

Pre-order traversal: Visit root, then visit the nodes of
left subtree in pre-order, then visit nodes of right
subtree in pre-order

+ + A B* C D

Pre-order
traversal of

expression tree
produces

expression in
prefix notation

Example

A B

X C

E F

D U

Y W

Z

A BX C E FD UY WZ

Z XY B U FW EA DC

A XB Y U ZE WC FD

In-order traversal

Pre-order traversal

Post-order traversal

Data Structures for Binary
Trees1. Pointer based

• For every node, there is some associated
information (e.g., ‘A’, 4, ‘*’ in our examples)

• In addition, for every node, there are 2 pointers
i. One to the node of the root of its left subtree
ii. One to the node of the root of its right subtree

struct treeNode {

char value;

struct treeNode *left,
*right;

}

Data Structures for Binary
Trees ..1. Pointer based

2. Using an array
• char TreeArray [1000]
• Use TreeArray [1] for the root node
• For the node that is in TreeArray [i]

• For its left child: use TreeArray [2i]
• For its right child: use TreeArray [2i + 1]

7

Example of Using an array
• Use TreeArray [1] for the root node
• For the node that is in TreeArray [i]

• For its left child: use TreeArray [2i]
• For its right child: use TreeArray [2i + 1]

B C

A *

+ D

+

9 10 11876543210

+ + D A * B C

Tree Traversal
Implementationstruct treeNode {

char value;

struct treeNode *left,
*right;

} *MyTree;

void inorder (treeNode *root)
{

visit (root);
inorder (root-

>left);

inorder (root-
>right);}

if (root) {

}

