Example: Using a Binary Tree for

* Whatis Sea@gapgﬁmg
« Determining whether a particular piece of data is present
in a (large) collection of data

« Example: In a collection of data about 11Sc students,
searching for data on the student with S. R. No. 99999

struct StudentRecord{
int SRNo;
char Name[40];
char HomeAddr[200],
float Weight;

struct StudentRecord STUDENTS[5450];

If we assume that the data is given

* Sequentialisearchrray
« Look for the value starting from one end of the
array

int Data[N];
for (int i=0; i<N; i++)

if (Data[i] == value) break;

* Number of comparisons: ®
« Best case? Worst case? Average Case?
¢ Think: Can we do better if we sort the data in the

array?

If the array is sorted (say in

_ increasing order)
¢ Binary Search

« Compare the middle element in the array with the
value being searched for

« |dea: We can eliminate half of the array elements
from further consideration

int SortedData[N];
if (SortedData[N/2] >= value)

/* continue search in SortedData[0 .. N/2] */
else

/* continue search in SortedData[N/2+1 .. N-
1]/

If the array is sorted (say in
increasing order)

+ Coprare [ppmme]

T T I ITITTd

int SortedData[N];
if (SortedData[N/2] >= value)

/* continue search in SortedData[0 .. N/2] */
else

/* continue search in SortedData[N/2+1 .. N-
1]/

Binary Search ..

int BinarySearch (int value, int from, int to) {
while (1) {
int mid = (from + to) / 2;
if (value < SortedData[mid])
to=mid - 1;
else if (value > SortedData[mid])
from = mid + 1;
else
return(mid);
if (from > to)
return(/* value not present
*/);
}
. Com)plexity?
* But we may want to add/delete data to/from the collection

Then there would be 3

1. Searchineperatlons

2. Inserting a new element
3. Deleting an existing element

Inserting/deleting an element involve O(N) data
movements

Example: Using a Binary Tree for

Searchin _ -
* |dea: As new data is entered, insert it into a

binary tree that has a special property

¢ Binary Search Tree Property

« All elements stored in the left subtree of any node
x are less than the element stored at node x, and
all elements in the right subtree of node x are
greater than the element stored at node x

Building a Binary Search Tree

¢ In the beginning (before any data has been
inserted) the tree is empty

¢ Suppose that the data to be inserted arrives
in the order
13,17,3,5,1, 14, 27

13

) @
VOV

Searching with a Binary

Searching for @Hﬁ?ﬁ%l’\“Trpp
N struct TreeNode *root, *ptr;
ptr = root [* start at the root */
while (1) {

if (value > ptr->data)
ptr = ptr->right; /* go to right
subtreegiee if (value < ptr-> data)
ptr = ptr->left; /* go to left
else return (ptr);
if (ptr == NULL)
return(/* value not present */);

Number of Comparisons?

« In terms of number of nodes in tree, [log, N'|

 But this Binary Search Tree is balanced, in fact,
full

¢ What if the same data had been inserted in a
different order?

*eg.,135,13,14,17,27

BST with 1, 3, 5, 13, 14, 17,

Search for ngZe 14

Number of comparisons?
5

Worst case?
N

Insertion into a Binary Search
* To insert n-g\m\galue, X

¢ Search for X

« If the search fails (at a NULL link)
« Insert a new node with value X in place of the NULL
« Example: Insert 11

Deletion from a Binary
¢ Example: §@?eﬁ8‘ﬂ€6§ﬁje 3

®
D @ —

WO WE éé}

« But this is not a Binary Search Tree!

* We have to fill the vacancy that was created

Deletion from a Binary
. Filling the V2S5 &riSked

« Must maintain the Binary Search Tree Property
« All elements stored in the left subtree of any node x are
less than the element stored at node x, and all
elements in the right subtree of node x are greater than
the element stored at node x
« i.e., if the value X was deleted, replace it by the
immediately lower value in the BST
« Or the immediately higher value in the BST

Getting to know the BST

¢ Question: Where is the lowest value located?

LOWEST VALUE HIGHEST VALUE
IN THIS BST IN THIS BST

Deletion from a Binary
Search Tree....

« i.e., if the value X was deleted, replace it by the
immediately lower value in the BST
« Or the immediately higher value in the BST
« i.e., highest value in left subtree of node with X
« Or lowest value in right subtree of node with X

Deletion from a Binary Search

case (node t-grk?gdéléted)
1. Leaf node
« Simply delete the node
2. Node with no left subtree
* Replace by right subtree
3. Node with no right subtree
* Replace by left subtree
4. Node with both left and right subtree

* Replace by either immediately lower value or
immediately higher value in the BST

