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Example: Using a Binary Tree for 
Searching• What is Searching??

• Determining whether a particular piece of data is present 
in a (large) collection of data

• Example: In a collection of data about IISc students, 
searching for data on the student with S. R. No. 99999

struct StudentRecord{
int SRNo;
char Name[40];
char HomeAddr[200];
float Weight;
…

}

struct StudentRecord STUDENTS[5450];

If we assume that the data is given 
in an array• Sequential search

• Look for the value starting from one end of the 
array

• Number of comparisons:
• Best case? Worst case? Average case?

• Think: Can we do better if we sort the data in the 
array?

int Data[N];

for (int i=0; i<N; i++)

if (Data[i] == value) break;
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If the array is sorted (say in 
increasing order)

• Binary Search
• Compare the middle element in the array with the 

value being searched for
• Idea: We can eliminate half of the array elements 

from further consideration
int SortedData[N];

if (SortedData[N/2] >= value)

/* continue search in SortedData[0 .. N/2]  */

else 

/* continue search in SortedData[N/2+1 .. N-
1] */

If the array is sorted (say in 
increasing order)

• Binary Search
• Compare the middle element in the array with the 

value being searched for
• Idea: We can eliminate half of the array elements 

from further consideration
int SortedData[N];

if (SortedData[N/2] >= value)

/* continue search in SortedData[0 .. N/2]  */

else

/* continue search in SortedData[N/2+1 .. N-
1] */

Binary Search ..

• Complexity?
• But we may want to add/delete data to/from the collection

int BinarySearch (int value, int from, int to) { 
while (1) {

int mid = (from + to) / 2; 
if (value < SortedData[mid])

to = mid - 1; 
else if (value > SortedData[mid])

from = mid + 1; 
else

return(mid); 
if (from > to)

return(/* value not present 
*/);

}
} 

Then there would be 3 
operations1. Searching

2. Inserting a new element
3. Deleting an existing element

Inserting/deleting an element involve O(N) data 
movements
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Example: Using a Binary Tree for 
Searching

• Idea: As new data is entered, insert it into a 
binary tree that has a special property

• Binary Search Tree Property
• All elements stored in the left subtree of any node 

x are less than the element stored at node x, and 
all elements in the right subtree of node x are 
greater than the element stored at node x

Building a Binary Search Tree
• In the beginning (before any data has been 

inserted) the tree is empty
• Suppose that the data to be inserted arrives 

in the order
13, 17, 3, 5, 1, 14, 27

1 5 14 27

3 17

13

Searching with a Binary 
Search TreeSearching for value = 14

1 5 14 27

3 17

13
ptr = root                       /* start at the root */

if (value < 
if (value >  ptr->data)

ptr = ptr->left; /* go to left 
subtree */

else if  (value <  ptr-> data)
ptr = ptr->right; /* go to right 

subtree */

while (1) {

else return (ptr);
if (ptr == NULL)

}
return( /* value not present */ );

ptr
struct TreeNode *root, *ptr;root

Number of Comparisons?
3

• In terms of number of nodes in tree,
• But this Binary Search Tree is balanced, in fact, 

full
• What if the same data had been inserted in a 

different order?
• e.g., 1, 3, 5, 13, 14, 17, 27

 N2log

BST with 1, 3, 5, 13, 14, 17, 
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Search for value 14

Number of comparisons?
5

Worst case?
N

Insertion into a Binary Search 
Tree• To insert new value, X

• Search for X
• If the search fails (at a NULL link)

• Insert a new node with value X in place of the NULL
• Example: Insert 11

1 5 14 27

3 17

13

11

ptr
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Deletion from a Binary 
Search Tree• Example: Delete the value 3

1 5 14 27

3 17

13

1 5 14 27

17

13

• But this is not a Binary Search Tree!

• We have to fill the vacancy that was created

Deletion from a Binary 
Search Tree ..• Filling the vacancy created

• Must maintain the Binary Search Tree Property
• All elements stored in the left subtree of any node x are 

less than the element stored at node x, and all 
elements in the right subtree of node x are greater than 
the element stored at node x

• i.e., if the value X was deleted, replace it by the 
immediately lower value in the BST

• Or the immediately higher value in the BST

Getting to know the BST
• Question: Where is the lowest value located?
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IN THIS BST
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IN THIS BST

Deletion from a Binary 
Search Tree …• Filling the vacancy created

• Must maintain the Binary Search Tree Property
• All elements stored in the left subtree of any node x are 

less than the element stored at node x, and all 
elements in the right subtree of node x are greater than 
the element stored at node x

• i.e., if the value X was deleted, replace it by the 
immediately lower value in the BST

• Or the immediately higher value in the BST
• i.e., highest value in left subtree of node with X

• Or lowest value in right subtree of node with X

Deletion from a Binary Search 
Tree …. case (node to be deleted)

1. Leaf node
• Simply delete the node

2. Node with no left subtree
• Replace by right subtree

3. Node with no right subtree
• Replace by left subtree

4. Node with both left and right subtree
• Replace by either immediately lower value or 

immediately higher value in the BST 


