
1

Example: Using a Binary Tree for
Searching• What is Searching??

• Determining whether a particular piece of data is present
in a (large) collection of data

• Example: In a collection of data about IISc students,
searching for data on the student with S. R. No. 99999

struct StudentRecord{
int SRNo;
char Name[40];
char HomeAddr[200];
float Weight;
…

}

struct StudentRecord STUDENTS[5450];

If we assume that the data is given
in an array• Sequential search

• Look for the value starting from one end of the
array

• Number of comparisons:
• Best case? Worst case? Average case?

• Think: Can we do better if we sort the data in the
array?

int Data[N];

for (int i=0; i<N; i++)

if (Data[i] == value) break;

N

i
N

i

1

2
1 N

If the array is sorted (say in
increasing order)

• Binary Search
• Compare the middle element in the array with the

value being searched for
• Idea: We can eliminate half of the array elements

from further consideration
int SortedData[N];

if (SortedData[N/2] >= value)

/* continue search in SortedData[0 .. N/2] */

else

/* continue search in SortedData[N/2+1 .. N-
1] */

If the array is sorted (say in
increasing order)

• Binary Search
• Compare the middle element in the array with the

value being searched for
• Idea: We can eliminate half of the array elements

from further consideration
int SortedData[N];

if (SortedData[N/2] >= value)

/* continue search in SortedData[0 .. N/2] */

else

/* continue search in SortedData[N/2+1 .. N-
1] */

Binary Search ..

• Complexity?
• But we may want to add/delete data to/from the collection

int BinarySearch (int value, int from, int to) {
while (1) {

int mid = (from + to) / 2;
if (value < SortedData[mid])

to = mid - 1;
else if (value > SortedData[mid])

from = mid + 1;
else

return(mid);
if (from > to)

return(/* value not present
*/);

}
}

Then there would be 3
operations1. Searching

2. Inserting a new element
3. Deleting an existing element

Inserting/deleting an element involve O(N) data
movements

2

Example: Using a Binary Tree for
Searching

• Idea: As new data is entered, insert it into a
binary tree that has a special property

• Binary Search Tree Property
• All elements stored in the left subtree of any node

x are less than the element stored at node x, and
all elements in the right subtree of node x are
greater than the element stored at node x

Building a Binary Search Tree
• In the beginning (before any data has been

inserted) the tree is empty
• Suppose that the data to be inserted arrives

in the order
13, 17, 3, 5, 1, 14, 27

1 5 14 27

3 17

13

Searching with a Binary
Search TreeSearching for value = 14

1 5 14 27

3 17

13
ptr = root /* start at the root */

if (value <
if (value > ptr->data)

ptr = ptr->left; /* go to left
subtree */

else if (value < ptr-> data)
ptr = ptr->right; /* go to right

subtree */

while (1) {

else return (ptr);
if (ptr == NULL)

}
return(/* value not present */);

ptr
struct TreeNode *root, *ptr;root

Number of Comparisons?
3

• In terms of number of nodes in tree,
• But this Binary Search Tree is balanced, in fact,

full
• What if the same data had been inserted in a

different order?
• e.g., 1, 3, 5, 13, 14, 17, 27

 N2log

BST with 1, 3, 5, 13, 14, 17,
27

14

13

5

3

1

27

17

Search for value 14

Number of comparisons?
5

Worst case?
N

Insertion into a Binary Search
Tree• To insert new value, X

• Search for X
• If the search fails (at a NULL link)

• Insert a new node with value X in place of the NULL
• Example: Insert 11

1 5 14 27

3 17

13

11

ptr

3

Deletion from a Binary
Search Tree• Example: Delete the value 3

1 5 14 27

3 17

13

1 5 14 27

17

13

• But this is not a Binary Search Tree!

• We have to fill the vacancy that was created

Deletion from a Binary
Search Tree ..• Filling the vacancy created

• Must maintain the Binary Search Tree Property
• All elements stored in the left subtree of any node x are

less than the element stored at node x, and all
elements in the right subtree of node x are greater than
the element stored at node x

• i.e., if the value X was deleted, replace it by the
immediately lower value in the BST

• Or the immediately higher value in the BST

Getting to know the BST
• Question: Where is the lowest value located?

O P

H

Q

I J

D E

R S

K L

T U V

M N

F G

B C

A
values that
are higher

than A

values that
are lower

than A

LOWEST VALUE
IN THIS BST

HIGHEST VALUE
IN THIS BST

Deletion from a Binary
Search Tree …• Filling the vacancy created

• Must maintain the Binary Search Tree Property
• All elements stored in the left subtree of any node x are

less than the element stored at node x, and all
elements in the right subtree of node x are greater than
the element stored at node x

• i.e., if the value X was deleted, replace it by the
immediately lower value in the BST

• Or the immediately higher value in the BST
• i.e., highest value in left subtree of node with X

• Or lowest value in right subtree of node with X

Deletion from a Binary Search
Tree …. case (node to be deleted)

1. Leaf node
• Simply delete the node

2. Node with no left subtree
• Replace by right subtree

3. Node with no right subtree
• Replace by left subtree

4. Node with both left and right subtree
• Replace by either immediately lower value or

immediately higher value in the BST

