1

FM96.5 A Java-based Electronic Auction House

Juan A. Rodriguez, Pablo Noriega, Carles Sierra, Julian Padget
ITTA; LANIA-IIIA; IIIA; U. Bath
ITTA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia, Spain.
Vox: +34-3-5809570, Fax: +34-3-5809661
{jar, pablo, sierra}@iiia.csic.es; jap@maths.bath.ac.uk
http://www.iiia.csic.es

March 10, 1997

Abstract

We present an implementation of an electronic auction house inspired by the
age old institution of the fish market, where both software and human agents may
trade. This implementation supports fair, lively and robust bidder interactions.

FM96.5 is a Java-based multi-agent environment that allows for a real-time
concurrent operation of the complete fish market auction process by making use
of multi-threading. Agent interactions in this structured environment are modelled
through standardized illocutions implemented upon Java Object Serialization.

All market-owned agents are deployed through a simple layered architecture,
while buyer and seller agents of arbitrary complexity are confined to the market
behavioural conventions through standardized Java agent interface applets.

Introduction

Internet is spawning many new markets. One that is particularly attractive for multi-
agent technologies is network-based trading. But if that market is to become an effective
actual market various non-trivial issues need to be addressed. Three issues appear to be
particularly significant:

e Diversity , of goods, trading conventions, participants, interests.
e Dispersion, of consumers and producers, and also of resources and opportunities.

o Safety and security of agent and network-mediated transactions.

Thus it is not surprising that they have been the object of concern and positive at-

tention both by the commercially interested parties as well as the academic community.

We propose to address those issues through a mimetic strategy, i.e. by adapting to
the new context created by the Information Highway those traditional institutions that
have proven effective in dealing with those same issues’.

Traditional trading institutions such as auction houses —and the fish market in particular—
have successfully dealt with the issues of diversity and dispersal. For instance, by defining
strict trading conventions where goods of specified kinds (e.g. fish of certain quality) are
traded under explicit time/location restrictions (e.g. twice a day at fixed times at the fish
market building) under strict negotiation protocols (e.g. downward bidding?). Participat-
ing agents are subject to terms and conditions —involving identity, credit and payment,
guarantees, etc.— whereby the soundness of transactions becomes a responsibility of the
institution itself, who in turn enforces those terms and conditions on its own behalf.
In practice, the auction house upholds the fairness of the negotiation process and the
accountability of transactions by defining and enforcing stable conditions on:

the eligibility requirements for participating buyers and sellers

the availability, presentation and delivery of goods

acceptable behaviour of participants within the site

the satisfaction of public commitments made by participants

We believe that similar functions may advantageously be instituted for multi-agent
systems. Be it to address some problems derived from the complexity of multi-agent
interactions, or —more practically— to make acceptable some real-world applications of
multi-agent technologies. In this spirit we have advocated the implementation of struc-
tured environments that allow for the definition and enforcement of explicit constraints
on multi-agent interactions [12]. We have also advanced some formal elements for that
purpose [11].

In this paper we show how this mimetic strategy can lead to an actual electronic
auction house. We present a proof of concept-level release, FM96.5, of an electronic
auction house that is a rather complete implementation of the trading conventions of
the fish market. It includes, among other features, a sound and fair implementation of a
real-time downward bidding protocol and secure user interfaces that allow buyer agents of
arbitrary complexity to participate in auctions subject to the explicit —and enforceable—
behavioural conventions of the fish market. In Section 2 we outline what the electronic
Fishmarket consists of, in Section 3 we present our design assumptions and in Section 4
how they were implemented. In a final section we discuss related and future work.

'We use the term institution in the sense proposed by [13] as a ”..set of artificial constraints that
articulate agent interactions”.

2The Spanish fish market still uses the traditional downward bidding protocol in which boxes of fish
are adjudicated to the buyer who stops a descending sequence of prices that is called by an auctioneer in
front of all registered buyers. This protocol is also called a Dutch auction because it is the way flowers
have been traditionally traded in Holland. For historical references and the classical economic-theoretical
outlook on auctions, cf., [7, 10].

2 FM 96.5 Blueprint

The actual fish market® —and other similar auction conventions— can be described as a
place where several scenes take place simultaneously, at different places, but with some
causal continuity. Each scene involves various agents who at that moment perform well-
defined functions. These agents are subject to the accepted market conventions, but they
also have to adapt to whatever has happened and is happening at the auction house at
that time. The principal scene is the auction itself, in which buyers bid for boxes of fish
that are presented by an auctioneer who calls prices in descending order —~the downward
bidding protocol. However, before those boxes of fish may be sold, fishermen have to
deliver the fish to the fish market (in the sellers’ admission scene) and buyers need to
register for the market (at the buyers’ admission scene). Likewise, once a box of fish is
sold, the buyer should take it away by passing through a buyers’ settlements scene, while
sellers may collect their payments at the sellers’ settlements scene once their lot has been
sold.

One important aspect of the actual fish market —which can be transferred directly to
the electronic version— is the presence of market intermediaries: the auctioneer, a market
boss, a receptionist, a credit officer. These intermediaries interact with buyers and sell-
ers on behalf of the fish market, and therefore have authority to request, acknowledge,
dismiss or accept all the actions that sellers and buyers need to perform within the fish
market. Furthermore, all those interactions between the market intermediaries and ex-
ternal agents (buyers and sellers) can in fact be associated with standardized illocutions,
some of which are probably tacit in the actual fish market, but explicitable nonetheless
in the computational model.

FM96.5 has been designed to show the full complexity of those interactions while
keeping as strong as possible a similarity with the ontological elements of the actual fish
market. For instance, we have tried to identify computational agents in FM96.5 with
either buyers or sellers or actual market intermediaries —we identify agents not with func-
tions of intermediation, but with actual persons—. We have also tried to mirror all actual
fish market illocutions, tacit or explicit, with agent illocutions that are always explicit.
Market documents correspond to FM96.5 log inscriptions, and market instruments —boxes,
remote control bidders— are implemented as FM96.5 objects and classes (goods record,
buyer interface, ...).

In spite of this healthy mimetic intention, previous implementations of the Fishmarket
had shown us that a careful consideration was needed to represent computationally some
aspects of physical reality*. We had previously realized that activation and closing of
the market involved evident differences between the actual market and its computational
models. The appropriate implementation of collective speech acts —such as broadcasting
and multicasting— also required subtle analysis. In this version we decided to address the
underlying problems of identity and persistence of entities, subjective and objective time,
and causation and effects of activity with a different set of computational tools. We de-
cided to use a more expressive concurrent programming paradigm and more general and

3In this paper we will use the (lower-case) expression fish market to refer to the actual, real-world,
human-based trading institution, and the (upper-case) Fishmarket to denote the artificial, formal, multi-
agent counterpart. Thus, FM96.5 refers to a particular implementation of the Fishmarket model of the
fish market.

4Some references to previous work are reported in the last section of this paper,in [5, 11, 12] and in
[19] , where in particular, FM96.5 is described in detail.

abstract computational constructs in the interest of achieving a realistic —i.e., robust, thor-
ough, lively and sound— computational model. In particular, three basic implementation
decisions were adopted from the start:

e All agent interactions were to be performed on a reliable network’® .
e Multithreading would be used to implement concurrency® ; and

e Object encapsulation and strong typing would allow for layering and modularisation
of the specification of agents and environment.

In this version we chose to build internal (market) agents that correspond with actual
fish market intermediaries. Thus our agents should be able to perform several functions
—sometimes even in different scenes— but should be able to manage precedence conditions
and keep track of pending actions and obligations towards other agents. Although our
emphasis in their construction has been functionality and performance, a certain degree
of layering was brought to their design but no abstract reasoning was implemented”.

The market boss, in FM96.5, thus, fulfils the prosaic function of a name server as well
as the more anthropomorphic ones of auction supervisor and ultimate authority in the
auction house. An auctioneer takes care of the bidding process. Two buyer intermediaries
are deployed in this version: a buyer admitter who handles identity and acceptability
conditions of buyer candidates, and a buyer manager who takes care of the financial
dealings and physical location of buyers. There are also two seller intermediaries, a seller
admitter who registers sellers and goods, and a seller manager who settles the sellers’
accounts after an auction.

External (non-market) agents may be agents of arbitrary complexity, even human
users, but they participate in the fish market always and exclusively through a standard-
ized communication interface. Buyers in this version are handled through software incar-
nations of a remote control device which receives all the (significant) market illocutions,
and transmits to the market only those illocutions that the buyer may express; always in a
standardized form and only in scenes and moments when these illocutions are acceptable.
Sellers, likewise, are always handled through similar nomadic interface-programs.

Three market activities deserve special comment, for their treatment in FM96.5 has
been significantly different from what we had done in previous versions: activation, closing
and bidding rounds.

In FM96.5, activation of the market is started by the market boss agent who opens
the market place and establishes the identity of market intermediaries who are enabled
by it to perform their intended functions 8. Once these intermediaries are activated,
buyers and sellers may start entering those rooms where they would conduct business,
but always subject to the fish market behaviour and illocutory constraints. In fact, as

5 A network is said to be reliable if messages transmitted on it are never lost or duplicated, nor message
sequencing altered (e.g. TCP/IP) [4].

6In fact we used Java threads with their priority operators —aware of their implicit limitations. Cf.
[6].

"We use the term layering (as in [11]) to indicate that the internal architecture of agents involves
various units that represent crisply differentiated attitudes.

8Tn FM96.5 we still have a human user who triggers an activation command through which the market

boss agent is spawned and starting conditions for an auction —including number of sellers, products and
product characteristics— are passed.

soon as the market intermediaries are activated, they set up an agenda of pending actions
that will correspond to sequential or concurrent actions (threads) they have the obligation
to perform. These agendas are constantly updated since obligations are fulfilled by the
market agents and new actions may be inscribed in the agenda by a directive of the
market boss —for example: open a bidding round—, by a request from an external agent
—e.g. update my credit line— or by a delegation from another market intermediary —e.g.
check buyer’s credit status. In this way activity is propagated to different scenes through
events that are triggered sometimes by the market boss, sometimes by other market
agents, but many times by sellers or buyers as well.

Market closing involves, also, some artificiality in FM96.5. The market boss may stop
an auction through a closing declaration —whose triggering conditions are explicit, albeit
varied— but actual closing requires that all pending actions of market agents be properly
terminated. Depending on the prevalent situation of the market at the time of the closing
declaration, the termination process may be more or less involved. In order to avoid
anomalous conditions, some careful bookkeeping of delegation of execution control and of
action flow had to be implemented®.

Likewise, the implementation of the fish market’s downward bidding protocol (as
shown in Fig. 2 and Fig. 1) has been revised considerably. In this new version, syn-
chronism is achieved not within each price quote —as in the actual fish market room-—
but within the sequence of price quotations that are needed to sell one good!?. By do-
ing so, and thanks to the fact that a reliable network is assumed, fairness conditions
are preserved. Thus, premature bids, foot-dragging, and spoofing are adequately avoided
directly by the protocol implementation, while malicious suplantation and snooping are
dealt with through ad-hoc identity devices.

3 Design Issues

For FM96.5 we had two complementary objectives in mind. First of all we wanted a
robust, stable version of the fish market that we could expand or refine in a modular
fashion in order to develop and test, systematically, our theoretical proposals on agent
architecture, agent models, interaction protocols and structured environments. But we
also wanted a realistic example of an electronic auction house that could eventually be
developed into a commercially interesting product.

Therefore, the guiding principles had to do with transparency, modularity, reusabil-
ity and standardization on one hand, and, on the other, robustness, functionality and
performance. Evidently, the choice of tools and programming methodology was strongly
determined by these principles.

First, there was the matter of computing paradigm: Illocutions can be regarded as the
basic unit of analysis in the Fishmarket. In the actual-world fish market, these illocutions
are performed by humans with some intention in mind and eventually change the state of
the world in a way analogous to the way physical actions do (cf. e.g. [15]). In the elec-
tronic Fishmarket, an agent performing an illocution can be computationally modelled as
a client (speaker) contacting a server (receiver) and sending a message (illocution). In the
same way, an agent listening to an illocution (message) can be seen as a server (receiver)

9FM96.5 is not provably fault-tolerant yet, but significant security, integrity and failure-recovery fea-
tures are built-in for that purpose.
10That (complete) sequence is called a bidding round in this paper.

waiting for incoming communication requests from a client, performing the necessary
computation (which eventually changes the state of the world) and perhaps returning an
answer to the client. Note that this client/server model is a computational model and
is independent of the type of illocution. The fact that every illocution changes in some
way or another the state of the receiver justifies this very convenient implementational
simplification!®.

Among the competing paradigms (and technologies) for developing new client-server
applications, distributed objects seem to be the leading force. Nonetheless, even though
we do like the many benefits of distributed objects, we do not believe that such a paradigm
is the most suitable for modelling the type of agent interactions present within the Fish-
market'?. In the actual fish market, buyers, sellers and market intermediaries utter il-
locutions that trigger actions on the hearers. But it is important to notice that the
different behaviours exhibited by the hearers are exclusively determined by themselves
as a response to incoming messages. From a computational point of view, all we need,
then, is to bundle clients (speakers) messages and send them out, and it should be up to
servers (hearers) to determine how to handle incoming messages. We see no benefit from
endowing agents with the capability to invoke methods on remote objects since we do not
intend that clients trigger actions on the servers’ side but only that they provoke actions
to be triggered. Therefore, we prefer the model of clients’ illocutions triggering actions in
the server, in contrast to clients invoking those actions directly.

And then there is the matter of concurrence: One of the main features of the fish
market is that it is composed of several, isolated scenes whose activities happen in a
concurrent way. But, notably, market intermediaries may be involved in tasks that happen
(simultaneously) in different scenes, (as depicted in Fig. 2). We modelled scenes as sets of
distributed processes and gave to our market agents a multi-threaded architecture so they
are capable of both servicing requests and delegating tasks concurrently. For instance,
the buyers’ manager may be active enrolling several buyers in its list of buyers while at
the same time be involved in verifying whether a bid made in the current bidding round
should be regarded as legal. Hence, we in fact model two levels of concurrence. On one
hand, that corresponding to the concurrent activity of isolated scenes, modelled as a set
of distributed processes. And on the other hand, the inner activity of each market agent,
modelled as a multi-threaded process.

Consequently, action-flow in the Fishmarket is non-trivial. One should distinguish
an agent-flow corresponding to buyers and sellers moving from scene to scene, and a
communication-flow caused by illocutions exchanged between agents. In order to model
the mobility of buyers and sellers, we designed our scenes as virtual scenes made up
of processes that might physically be running at different sites but which are always
virtually situated within the same scene. Buyers and sellers in FM96.5 have therefore
the impression of moving among scenes (e.g. from the admission office to the auction

" Two technicalities may be worth noting. First, this simplification imposes processing costs: A cost
is paid in the interpretation of the illocution on the server side —different illocutions trigger possibly
different actions in the server— and another cost had to be paid at the client side in order to produce
the utterance of the illocution. Second, a true client/server model usually implies an explicit response
from the server to every request from a client. In FM96.5, for performance and transparency reasons, we
actually build in a few illocution/action sequences in which servers give no explicit replies. But, these
are all reifyable as true client/server interactions.

12Tt will be evident when we discuss the external agents’ nomadic agent interfaces that the distributed
object approach is indeed quite useful for those devices.

receive
offers

azzert N
3

decreasze
price

accept to buy
12

declare
credit status
1431

declare sold
#3321

assert bid

ne ne 143

adjust
wredit

assert exceed
credit
143221

declare not-sold
4322

collision
I4.2

adjudicate
qood

declare collision
142

unacceptable
bid

declare zanction
2222

increase
price

declare adjusted credit
42211

=anction

buyer i

pick up
goods

increase
price

affer pay seller

Mz2232

T Settlemnents

Delivery Room

SRR

Figure 1: The Fishmarket naive downward bidding protocol.

PARTICIP ANTS
auctionesr

credit superwvisor
bugers (buyer i, ...

ASSUME
There is a good, delivered by =zeller j, with an established starting-price
There iz a non-ermpty set of buyers, buyer i iz one of them.

FROTOCOL
auctionesr : start bidding round
£l offer (auctioneer to all present, to-sell(good at starting-price) at time 1)

auctioneer : receive offers
buger i: may accept offer O keep zilent

C12) accept (buyer i to auctioneer, to-buy(good at price]) at time 1+1)
auctioneer : W& 1T, then count nurnber of received offers &ND post nurmber of received offers
[IZ) declare Cauctioneer to all present, number of received offers iz n, at time t+2]

auctioneer : (if number of received offers is 0, then decrease price AND offer good) AND Cif nurnber of
received offers iz more than 1, then declare collision AND increase price AND offer good) AND (if
nurnber of received offers iz 1, then post received offer)

(14,12 offer (auctioneer ta all present, to-sell (good, newprice]), t+3)
[14.2) declare Cauctioneer to all present, collizion, 1+3)

[14.2.1) offer (auctioneer ta all present, to-sell (good, newprice]), t+4)
[14.3) aszert [auctioneer to all present, bid (buyer 1, good, price], ++3)

credit supervizsor : (if numbetr of received offers iz 1 AND credit of buyer i iz greater than price,
declare buyer i able) AND (if nurnber of received affers is 1 AND credit of buyer 1 s not greater than or
equal to price, declare buyer i unable).

(14317 declare (credit supervizor to auctionesr, credit-status Chuyer i), t+4)
auctioneer : [if buyer i iz able, then declare sold (good, price, buger 1) ANDC (if buyer iz not able, then
declare unacceptable bid) AND Csanction buger i AND declare buger i zanctioned) AMD (increase price
AMD offer good)).

[14.3.2.1) declare (auctioneer to all preszent, sold [good, price) to buger i, t+5)

(143221 declare (auctioneer to all present, not-zold (good, price), t+5)

[14.3.2.2 1)azzert (credit supervisor to buyer i, exceed (price, credit buyer i), t+6]

[14.3.2.2 2Meclare Cauctioneer to all present, sanctionedibuyer i1, t+7)

(14 3.2.2 3offer (auctioneer to all present, to-sell (good, newprice], t+3)
credit supervizor : (if sold (good, price) to buyer i, then adjust credit buyer i)

[14.32.2.1 1 declarelcredit supervisor to buger 1, adjusted-creditioredit buyer i, price]), t+6]
auctionesr : end bidding round.

COMMITHENTS

To "financial settlerments" scene

From (14.3.2.1)

credit supervizor : update credit of buger i
buyer i: update credit with credit superwvisor
payrnent officer : pay seller j, good

zeller j: receive-payrent good

From (14.2.2.2)
credit supervizor : sanction buyer i, owverbidding
buyer i: pay-=sanction overbidding

To "delivery of goods" scene

From (14.2.2.1)

buyer i: pick-up good

exit officer : deliver good to buyer i

Mote: fram [14.3.2.2), when a buyer iz zanctioned, he cannot bid until the bidding round iz over and a fine
iz payed.

Figure 2: The Fishmarket downward bidding protocol. Naive communication flow.

room, from there to the settlements office and so on) in the same way human buyers and
human sellers would in the actual fish market. As to the communication flow, we opted
for standardizing the structure of the messages being exchanged between agents. Each
message is regarded as a Java object containing a tag, information about the sender and
the contents of the message, which is in turn a Java object. The use of Java Object
Serialization [25] allowed for serializing each message at the sender side and deserializing
it at the receiver side in a straightforward way.

And finally, external agent interfaces: In order to achieve the most realistic implemen-
tation of the auction house activity, we decided to standardize as much as possible all
conceivable external agent interactions with the market. We took advantage of the highly
structured negotiation convention of auctions, and of the fact that in actual fish markets
all bidding round interactions can be mediated through a remote control device. Thus, we
built nomadic agent interfaces —a sort of electronic remote control devices— that could be
used as universal interfaces by buyer and seller agents. This nomadic interface is installed
in the external agent’s computer and becomes the only channel through which messages
can pass between external agents and market (internal) agents. Since the Fishmarket
interactions are all linked to illocutions, this interface is all that is needed, in principle,
to participate effectively in the electronic auction house. But in fact, these interfaces
fulfil other necessary duties as well: they sustain the identity of participants, validate il-
locution emission and reception, and, generally speaking, enforce the auction-house rules
—including the bidding protocol®. It should be noted, then, that in FM96.5 there are re-
ally no buyer or seller agents, only their nomadic interfaces. But through these nomadic
interfaces buyer and seller agents —developed and owned elsewhere or even human buyers
or sellers— can participate in electronic auctions. This is, we think, the kind of design
Castelfranchi was suggesting :

7 ...artificial agents can be designed, and they should be designed as rational.
But they should also be integrated into human organisations, and be capa-
ble to interact with their human partners in an adaptive and understandable
way.” [2].

In our choice of tools, we profited from our previous experiences too. Having already
developed prototypes using PVM and MPI for internetworking and C and EU-Lisp for
other features, Java suggested relevant advantages [6] that were worth testing in the
Fishmarket implementation:

e Java provides the advantages of object-oriented languages (reusability, modularity,
encapsulation, etc.) and claims to be designed for maximum portability.

e Its ease of programming and safety features help produce debugged code quickly.

e Java is reported to be valuable for distributed network environments.

13Qbviously, this interface permits to address the security issues that would arise when arbitrary foreign
agents (i.e. whose code we do not know) are admitted into the Fishmarket. In fact the nomadic quality
of the interface makes it possible for other external agents —and necessary for the agent who uses it—
to prove a zero-information property, i.e. that through the interface no information of the market, nor
any information of the external agent can be transferred outside the interface, except for the one that
is explicitly stated by the interface. Note also that our nomadic interfaces are akin to the payment
and service cassettes used in the construction of the Java Wallet (cf. [24]), and can in fact be readily
connected to them.

4 SETTLEMENTS OFFICE h 4 SETTLEMENTS OFFICE

Ec
BUYERS'
MANAGER
AT

RENY
serpiind

L UERES
S““S‘:;&me“‘

SELLERS’
MANAGER
S LILS 3

Jomsuy ANNOIAM AN
SAL
&
Sate,
CCorg

N
SENDLIST

\K

% SELLERS
T Listpfgoods (ETER

BUYERS'
ADMITTER

Gondrecnrg

GOODINF
PRICE Newpric

ADMISSION OFFICE AUCTION ROOM ADMISSION OFFICE

Figure 3: A simplified diagram of the communication-flow between and within market
scenes

e There is available an increasingly large collection of specialized packages which allow
the programmer to count on powerful tools to tackle distributed computing [25, 26,
21], database connectivity [22], security [27], etc.

Besides, given the recent industrial commitment and investment as well as generalized
commercial activity around Java, it seems to us there is strong indication that Java may
become a de-facto standard, therefore having permanence and complementary develop-
ments that would facilitate taking FM96.5 to a product-level stage.

4 Implementation

FM96.5 was developed as an object-oriented client/server distributed application which
is actually made up of a collection of Java applications that can run as both applets'* or
standalone applications. There is in fact a Java application for each of the agents depicted
in Fig. 2. In addition, one separate package groups those classes defining data structures
while another package contains those classes referring to client and server connections
capable of reading and writing whole objects. The mechanisms of exception handling that
ease the task of dealing with network error conditions are encapsulated within this last
package. We utilised JDK 1.0.2, and Java Object Serialization [25]; on a LAN composed
of a SUN SPARC/20, several SUN SPARC/5 and a few Macintosh and PCs.

4These applets can be activated from browsers such as Netscape and HotJava.

Each market agent works as a multi-threaded process with a graphical user interface.
This multi-threaded architecture allows market agents to service several message-shaped
requests concurrently. Nevertheless not all requests are handled in the same way. There
are requests that are regarded to be more important than others. Threads servicing
different types of requests are started off with different priorities. Therefore, a market
agent would give the highest priority to what it contemplates as the most important tasks,
then to requests made by other market agents, requests made by buyers and sellers and,
finally, the closing request emitted by the market boss.

Perhaps the major challenge from a technical point of view was the design of the pro-
tocols involved in the main activities in the market - activation, bidding round and closing
- since they implied the co-ordination of the activities of sets of distributed processes:

(i) Activation: The market boss agent acts as a central name server. Once the market
boss agent starts, the rest of market agents are forced to check in at the boss’ office
by identifying themselves and later on ask for the addresses of those market agents
that they will work with. Although an auction cannot take place until all the market
agents check in, the market does not remain inactive until that condition occurs.
In fact, buyers and sellers might start entering the market as soon as the admitters
are ready.

(ii) Bidding protocol: We can identify several situations that may arise during each
bidding round in the fish market:

— Proper sale. When a single buyer submits a bid that his credit can support, it
is turned into a sale.

— Unsupported bid. When a buyer submits a bid that his credit cannot guaran-
tee. The buyers’ manager fines this bidder and the round is restarted by the
auctioneer who calculates the new starting price by increasing 25% the price
within the bid.

— Collision. When two or more buyers simultaneously submit the same bid. The
auctioneer declares a collision and restarts the round. Again, the new starting
price is calculated by increasing 25% the collision price.

FM 96.5 implements faithfully all theses cases, plus two more:

— Ezxpulsion. When a buyer is overdrawn and cannot back up a fine, he is sent
off the market and the round is restarted as usual

— Minimum price. Each good is assigned a minimum price when passing through
the sellers’ admitter office. If minimum prices are reached, the round is restarted
as usual.

Finally, it is worth noticing that FM 96.5 will start or restart a round only when
the boss authorises the auctioneer. We implemented minimality conditions on the
number of buyers present and the goods to be auctioned.

Our main concern when implementing the downward bidding protocol has been to
ensure fairness while preserving realistic response time!'®>. In FM96.5 we achieve it

15In the fish market this corresponds to time delays between prices that are short enough to be im-
perceptible to human buyers but long enough to allow for collisions (i.e. one or two seconds between
successive prices).

(iii)

—without supposing common fixed delay intervals— through a clever alternative to
common clocks.

In FM 96.5 we regard the termination of a bidding round as the synchronisation
point of the round participants. All buyers receive syncopated price sequences. If
a buyer is going to submit a bid, he will signal this as soon as the price quotation
reaches his target bid. The signal sent back from the remote control device to the
auctioneer includes the price at which the buyer signalled his intention and the
time stamp. As soon as the auctioneer receives a bid, he multicasts to the buyers’
remote control devices the information that a bid is in, which these devices must
acknowledge. Since we can assume a reliable network, the order in which messages
are transmitted is never altered, thus the auctioneer must receive any delayed bids
before we receive the corresponding acknowledgements from these bidders. Hence
we have the standard two cases:

— Proper sale. One bidder
— Collision. Multiple bidders at the same price

and a new case:

— Multiple bidders at different prices. In this case, the highest price bid wins if
there is just one, or we restart as usual.

To understand our current implementation of the bidding protocol, it may prove
helpful to regard downward bidding rounds as competitions for a unique resource
(the good being auctioned). This turns out to be similar to the problem of distributed
mutual exclusion ([3]) with a slight difference: distributed mutual exclusion involves
a single process being given the right to access shared resources temporarily before
another is granted it, whereas a bidding round involves a single process being given
the right to acquire resources that will not be shared with the rest of the processes.
Therefore it is not surprising the many features our bidding protocol has in common
with Ricart and Agrawala’s distributed algorithm using logical clocks to implement
mutual exclusion [14]. In fact, it is possible to prove that a given implementation of
the downward bidding protocol is correct using an adaptation of Lynch’s formalism
for I/O Automaton correctness proofs [9].

Closing: We could briefly summarise the termination of the market in the following
steps:

1. The boss sends a closing signal to the auctioneer (the boss has the right to
close the market at any time).

2. The auctioneer acknowledges this closing signal as soon as the current bidding
round is over.

3. The boss multicasts a closing signal to the rest of market agents.

4. Buyers’ admitter and sellers’ admitter close the doors of the market to buyers
and sellers intending to enter by rejecting their requests.

5. Lastly all the market agents engage in a co-ordinated activity which basically
consists in finishing off all pending activities before definitively terminating. In
this sense it is important to highlight that any market agent cannot properly
finish until all pending requests have been dealt with, all pending services
have been provided and all potential clients have indicated no further need for
services. Each market agent will keep track in its agenda of pending obligations
and active agents so as to determine what remains to be done when a closing
signal is received from the market boss.

Let us, finally, draw attention to buyers’ and sellers’ nomadic interfaces. These devices
are versatile. First, they allow the user to determine the scene (or virtual location) where it
wants to be active (external agents can only act —or more properly, engage in dialogue with
market agents— at one place at a time). Secondly, depending on the specific location, and
the prevalent market conditions, it displays market information and habilitates dynamic
interface windows —and buttons— through which the external agent receives and transmits
the pertinent standardized illocutions. Finally, since these devices are market-owned,
some accounting, liveness and security functions are performed in the background and
transmitted to the market agents. Note that these remote control devices are coupled
with a graphic interface when dealing with human agents, while when interacting with
external software agents they transmit and receive message-shaped illocutions between
these external and the internal market agents.

It is important to notice that these FM96.5 nomadic interfaces convey to buyers and
sellers other information that human buyers and sellers in the fish market would have
available in situ. For instance, buyers receive the list of participating buyers (which
would be seen by a human buyer taking part in the auction), the list of auctionable goods
(which are scattered over the floor in the auction room), details of the next good to be
auctioned, and his own current credit and the list of purchases.

5 Final Remarks

As commercial use of the Internet grows, new services that combine traditional auction
techniques with web-based technology have started to appear leading to a number of
electronic auctions of a naive type. These are being used to trade different goods: vintage
records [31], computers and electronics [32], art [34] objects in general [29, 30, 33|'.
Buyers and sellers interactions are in most of these cases quite natural and simple:

e Goods —which may be inscribed directly by external sellers [29, 30, 33], or otherwise
obtained by the auction house— are catalogued and even sometimes displayed —
electronically and/or physically— before and during an auction.

o After registering in a given auction —usually a simple e-mail inscription— a buyer
can submit his bids either by e-mail ([31, 32, 33]), by fax ([31, 32]), by submitting
a web-form ([29, 30, 34|) or even by post ([31]).

16We should acknowledge that other forms of electronic auctions have been developed recently. On one
hand, there are actual auction simulation environments like FCC [1, 8], whose purpose is to train bidders
or to test innovative bidding protocols and trading mechanisms(cf. e.g. [16, 17, 18]). On the other
hand, electronic auctions have been used as coordination mechanisms in market-oriented programming.
Although these developments have many points of contact with our own project, a full comparison is
beyond the scope of this paper.

e Payments are usually through credit cards, and sales are definite up to actual pay-
ment, but most of the time the physical transactions (actual payments) are explic-
itly relinquished by the auction houses. Some sales are defeasible if protested —and
properly supported— within a period of time [33, 34].

e Most service providers adopt a rather primitive sealed-bid English auction protocol
—the item goes to the highest bidder— except for [32], which offers several auction
formats (Yankee auction, Dutch auction, Straight sale, Buy or Bid and FEnglish
Auction), [29] which has an on-line simplified English auction, and [34], whose
only auction format is Buy or Bid.

e The evolution of each bidding round is displayed on a browser [29, 30, 32, 33] or
sent by e-mail [29, 30, 31, 32, 33, 34]to participating buyers.

e In most cases, single bidding rounds are open for an extended period of time —up
to a couple of months; the exception is [29] that allows for more lively bidding
rounds— and terminate on a previously announced closing date, though sometimes
the auctioneer determines when a bidding round closes.

e Security is an important concern in some of these applications: [29, 32] and handle
security by utilising the Netscape Commercial Server which uses the HT'TPS pro-
tocol to encrypt bids; whereas [30] uses a validation code for bidder identification
in each auction.

These naive electronic auctions are probably adequate for the type of products they
trade. But there are many differences between these naive electronic auctions and our
Fishmarket implementations, and some may be significant for many types of web-based
trading. Apart from those that have to do with their purpose and operation —these naive
auctions do trade actual goods in the real world, ours is still an academic prototype— the
most significant differences have to do with performance and accountability.

First, the performance of FM96.5 is significantly better than those of naive auctions
in two respects: vivaciousness and functionality. Depending on the type of good to
be traded and its market conditions, the speed at which bidding takes place may alter
significantly the strategy —and decision making process— of buyers. FM96.5 can register
buyers and perform auctions in the same frenetic speeds at which non-naive traditional
auctions take place; something that is impossible in all these naive auctions (except
possibly for AUCTIONLINE), while FM96.5 can also handle long-term bidding rounds
without any difficulty. Similarly, the Fishmarket has a more complex structure than these
naive auctions: our development has taken special care about modelling and automating
the several scenes making up the fish market, however, most naive auctions seem to rely
upon a centralised service which acts as admitter, auctioneer and, some times, even as
the accountant.

Second, accountability. We do identify and take care of multiple conditions that either
should or should not happen in auctions: Those that are inherent on the auction house
conventions, those that are inherent in the interactions among participants and those
that depend on the implementation of these conditions and interactions. For example, a
bidding protocol should be fair in the sense that all participants may bid under identical
conditions, and may be required to be synchronic in the sense of assuring equal timing
for each price quotation for every bidder or vivacious (fast price changes) or private (not

Version Place Basic Tool Concerns Advantages

FM96.0 IITA Netscape Fast development Demonstrability
FM96.1 TIITA & Naples PVM Synchronisation, Bidding protocol Proof of concept
FM96.2 IIIA-Bath MPI/C Open Network Portability
FM96.3 IITA-Bath MPI/C More agents, Market functionality Isolated Contexts
FM96.4 IITA-Bath EU-Lisp/MPI Agent interactions Expressiveness
FM96.5 TITA-Bath JAVA Modularity, concurrency, Full functionality
functionality, fairness, Robustness
livelihood of protocol Expandability

Table 1: Implementations of the Fishmarket Environment

revealing bidder identities). Thus naive auctions may function adequately for simple
one-round sealed-bid protocols or for very quiet bidding rounds. Meanwhile, FM96.5 can
handle more elaborate transactions, and numerous lively rounds only assuming TCP/IP
communication. Finally, as indicated in section 4, we have not only an empirical way
of addressing anomalies, but also a formal framework through which we can characterise
and prove that many of these conditions hold, or not, in a given implementation. Thus
fundamental issues such as fairness or privacy can be obscured in naive auctions!”, but
become clearly guaranteed in FM96.5.

These advantages did not come for free. They are the result of a systematic analysis of
a more general problem —that of structured agent interactions— and the empirical testing
of the conviction that multi-agent systems can be fruitfully applied to model and automate
social interactions, such as the ones present in trading. In [5] we presented a prototype
implementation of a simple version of the fish market. FM96.5 is a far more thorough
implementation. In between we have addressed different aspects of the problem, and gone
through the exercise of exploring specific technical or methodological issues (as shown in
Table 1).

We are currently developing a few extensions of FM 96.5. The first one concerns the
implementation of alternative bidding protocols (English, FCC, MexTR, etc.), in order to
have a general electronic auction platform. Second, the development of intelligent buyer
and seller agents capable of exhibiting different trading behaviours. And, as a comple-
mentary task, we are also engaged in the development of analysis tools that will serve two
main purposes: to help debug future releases of FM 96.5 —and other structured multi-agent
environments— and to run simulations that offer the possibility of testing agents aptitudes
and studying the emergent behaviour of the market as a whole'® These developments
are part of a research programme addressed at the exploration of agent-mediated insti-
tutions, where accountable trading and negotiation interactions are our main focus [35].
This programme shares many concerns with the market-oriented programming approach,

17All the naive auctions cited happen not to be strictly fair. Those bids arriving after the closing
date are rejected —irrespective of the reason for that delay— although bidders might have expressed their
intention to bid before that time.

18Some future developments are more mundane: Among the many features of JDK 1.1, we find par-
ticularly useful the Java Database Connectivity modules [22]. As was mentioned above, our market
agents keep track of pending obligations through an agenda; with JDK 1.1 features we plan to make
these devices persistent. This will allow for the implementation of databases of transaction information
in a similar fashion to that proposed in the specification of the Java Electronic Commerce Framework
[24]. Finally, although our implementation does not address secure transactions issues, we plan to tackle
them in the near future with the aid of the SSLava toolkit [27].

(¢f. Wellman) [18, 36|, particularly the desing of automated trading mechanisms, the
study of trading features that should be brough to electronic marketplaces, and the de-
velopment of sound schemes for automated negotiation.

Other developments —like the full formalization and proof of properties and conditions
of agent models, roles, protocols and their implementations— are fundamental and open-
ended. But all these more fundamental improvements are desirable to achieve realistic
market needs —e.g. a true fault-tolerant operation of the market, and full on-line auditing
of the auction house- and essential, if agent-based technologies are to be safely and
responsibly used in this our Information Society.

6 Acknowledgements

We are gratefully indebted to Xavier Mdrquez, manager of the Blanes fishermen’s coop-
erative market (Blanes, Girona, Catalunya) for his illuminating explanations. We also
want to acknowledge Francisco Martin for his always pertinent remarks and enthusiastic
collaboration, as well as Andreas Kind and Julio Garcia contributions.

This work has been partially supported by the European TMR number PL93-0186
VIM, CEC/HCM VIM project, contract CHRX-CT93-0401 (cf. [28]); the Spanish CI-
CYT project SMASH, TIC96-1038-C04001; the Mexican CONACYT grant [69068-7245],
and the British EPSRC grant GR/K27957 (http://www.maths.bath.ac.uk/ jap/Denton).
Juan Antonio Rodriguez enjoys a CIRIT doctoral scholarship FI-PG/96-8.490 from the
Catalan Government, and developed a first version of FM96.5 while on an extended visit
supported by VIM/HCM at the University of Bath. Carles Sierra is currently on sab-
batical leave at Queen Mary & Westfield College, University of London, thanks to the
Spanish Ministry of Education grant PR95-313.

References

[1] Backerman, S. R., Rassenti and Smith, V. (1996). Efficiency and Income Shares in
High Demand Energy Networks: Who Receives the Congestion Rents When a Line is
Constrained?. In UPC Conference on Auctions, Theory and Empirics.

[2] Castelfranchi, C. and Conte, R. (1996). Distributed Artificial Intelligence and Social
Science: Critical Issues. In Foundations of Distributed Artificial Intelligence. (G.M.P.
O’Hare and N.R.Jennings, ed.). John Wiley & Sons, New York.

(3] Coulouris, G., Dollimore, J. and Kindberg, T.(1994). Distributed Systems.Concepts
and Design. (2nd edition). Addsison Wesley.

[4] Comer, D.E. and Stevens, D.L.(1993). Internetworking with TCP/IP Volume III:
Client-server programming and applications. Prentice-Hall International, New Jersey.

[5] Di Napoli, C., M. Giordano, M. Mango Furnari, C. Sierra and P. Noriega (1996). A
PVM Implementation of the Fishmarket Multiagent System. In Proceedings IX Inter-
national Symposium on Artificial Intelligence, Cancin (México), Nov. 12-15, 1996 (in
press).

[6] Gosling, J.(1996). The Java Programming Language. Addison-Wesley, Reading.

[7] McAfee, R.P. & McMillan, J. (1987). Auctions and Bidding. J. Ec Lit., Vol. XXV,
(June 1987), pp. 699-738.

(8] Levin, D. and Smith, J. (1996). Entry Coordination in Auctions: An Ezperimental
Investigation. In UPC Conference on Auctions, Theory and Empirics.

[9] Lynch, N. (1996). Distributed Algorithms. Morgan Kaufman, S Fco.

[10] Milgrom, P.R. & Webber, R.J. (1982). A Theory of Auctions and Competitive Bid-
ding. Econometrica; Vol. 50, N. 5 (Sep 1982), pp. 1089-1122.

[11] Noriega, P. and Sierra, C. (1996). Towards Layered Dialogical Agents. Proceedings of
the ECAI'96 Workshop on Agent Theories, Architectures and Languages. ATAL’96.
Budapest, pp. 69-81.(L.N.A.I. Springer, in press)(IITA-RR-96-19)

[12] Noriega, P., C. Sierra, M. Giordano, R. Lépez de Mantaras, F. Martin, J.A. Rodriguez
(1996). The Fish Market Metaphor. A proposal for Structured Multi-Agent Negotia-
tion Environments. Institut d’Investigacié en Intel.ligencia Artificial, Research Report
ITTA-RR-96-17.

[13] North, D. (1990). Institutions, Institutional Change and Economics Performance.
Cambridge U.P.

[14] Ricart, G. and Agrawala, A. K.(1981). An optimal algorithm for mutual exclusion in
computer networks. Comms. ACM, vol.24, no.1,pp. 9-17.

[15] Searle, J. R. (1969) Speech acts. Cambridge U.P., 1969.

[16] Sandholm, T. (1996) Limitations of the Vickrey Auction in Computational MultiA-
gent Systems. In Proceedings of ICMAS-96, pp. 299-306

[17] Tsvetovatyy, M. and Gini, M. (1969) Towards a Virtual Marketplace: Architecture
and Strategies. In Proceedings of PAAM96.

[18] Wellman, M. P. (1993) A market-oriented programming environment and its appli-
cation to distributed multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1-22, 1993.

[19] FM. The Fishmarket Project Webpage. http://iiia.csic.es/Projects/fishmarket
[20] HTMLScript.http://www.htmlscript.com/samples

[21] IDL. The Java IDL System for Distributed Programming.
http://splash.javasoft.com/JavalDL/pages/index.html

[22] JDBC. The JDBC Database Access API http://splash.javasoft.com/jdbc/

[23] JDK. The Java Dewelopers Kit Version 1.0.2.
http://java.sun.com:81/products/JDK/1.0.2/

[24] JECF. The Java Electronic ~ Commerce Framework — White Pa-
per.http://java.sun.com:81/products/commerce/doc/white_paper.html

[25]
[26]
[27]
28]
[29]
[30]
[31]
32]
[33]
[34]
[35]
[36]

JOS. Java Object Serialization. http://chatsubo.javasoft.com/current/serial /index.html
RMI. Java Remote Method Invocation. http://chatsubo.javasoft.com/current/rmi/
SSLAVA. SSLava (tm) Information Center. http://www.phaos.com

VIM. European Comission TMR project VIM. http://www.maths.bath.ac.uk/ jap/VIM
AUCTIONLINE. http://www.auctionline.com

InterAUCTION. http://www.interauction.com

Nauck’s Vintage Records. http://www.infohwy.com/ nauck/vral9/PROTOCOL.htm
ONSALE. http://www.onsale.com

Phoebus Auction Gallery. http://www.phoebusauction.com

Seven Seas Trading Company, Ltd.. http://www.7cs.com

Emporium Project. http://www.iiia.csic.es/Projects/Emporium

AuctionBot. http://auction.eecs.umich.edu

