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A class of nonlinear knapsack problems with piecewise linear cost structure is considered in
this paper. Given multiple units of a set of items and a demand, the problem is to choose
an optimal quantity for each item such that the demand is satisfied and the total cost of
the chosen items is minimized. The cost of an item is a piecewise linear cost function de-
fined over the quantity. This class of problems arises in numerous applications including
electronic commerce (for example, selection of winning bids in electronic procurement auc-
tions). In this paper, the piecewise linear knapsack problem is modeled as a mixed integer
programming problem and a polynomial time algorithm is developed to solve its Lagrangian
relaxation. Using the solution of the relaxed problem as a lower bound, a branch and bound
algorithm is developed with appropriate search strategies. Computational experiments on
a wide variety of randomly generated problems show that the proposed algorithm outper-
forms existing techniques over certain ranges of input parameters. The algorithm developed
offers an efficient alternative and addresses an important current need for solving this class

of problems.
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1. Introduction

Knapsack problems are among the the most intensively studied combinatorial optimization
problems (Pisinger and Toth, 1998; Martello and Toth, 1990; Kellerer et al., 2004). The
knapsack problem considers a set of items, each having an associated cost and a weight. The
problem (minimization version) is then to choose a subset of the given items such that the
corresponding total cost is minimized while the total weight satisfies the specified demand.
Well studied variants of the knapsack problems (Pisinger and Toth, 1998; Martello and Toth,
1990) include: bounded/unbounded knapsack problems, subset-sum problems, change-making

problems, multiple knapsack problems, multiple choice knapsack problems, and bin packing



problems. The applications of these problems vary from industrial applications and financial

management to personal health-care.

1.1. Nonlinear Knapsack Problems

In nonlinear knapsack problems (NKPs) (also called nonlinear resource allocation problems),
there are multiple units of each item and the cost of inclusion of an item varies nonlinearly
with the number of units. A generic nonlinear knapsack problem can be formulated as the

following nonlinear integer programming problem:

(NKP) : min ) | Q;(q)) (1)
jeJ
subject to
>q >0
jeJ
a;T; < q; < E]-a:j Vj eJ

z;j € {0,1}, ¢; > 0, integer Vj € J

Let N be the number of items, that is, N = |J|. For each item j € J, there are multiple
units @; of that item . For each item j, the cost ); is a nonlinear function defined over the
quantity range [a;, @]. Given a demand b, the problem is to choose a set of items, each with
g; units such that the sum of cost of all the items is minimized while the sum of units of
all items satisfies the demand b. If item j is selected (z; = 1), then the quantity ¢; satisfies
a; < q; < ay, else ¢; = 0.

There are several variations to the above problem: the objective function is an arbitrary
function Q(q1, ..., gn), the weight associated with an item is w; with the demand constraint
as Y. ;eswjg; > b, the demand constraint is more general like 3", ;g;(¢;) > b, and the
variables g; are continuous. The problem considered in this paper is as in NKP above, with
(2; as a nonconvex piecewise linear cost function.

The NKP and its variants are encountered either directly, or as a subproblem, in a variety
of applications, including production planning, financial modeling, stratified sampling, and
in capacity planning in manufacturing, health-care, and computer networks (Bretthauer and
Shetty, 2002). Different available algorithms for the problem were developed with varying
assumptions on the cost function ); and the demand constraint. The book by Ibaraki and

Katoh (1988) provides an excellent collection of algorithms for demand constraint 3=, ; ¢; =



b. The paper by Bretthauer and Shetty (2002) reviews the algorithms and applications for
NKP with generic demand constraint ;¢ ; g;(g;) > b.

The objective functions considered in most of the literature for convex knapsack problems
are separable like in NKP. If the decision variables are continuous, the differentiability prop-
erty of the convex functions, together with its optimality property and Karush-Kuhn-Tucker
conditions are used in designing algorithms (Zipkin, 1980; Bitran and Hax, 1981). For prob-
lems with more general separable nonlinear convex constraint of the form ;¢ g;(g;) > b,
multiplier search methods (Bretthauer and Shetty, 1995) and variable pegging methods (Ko-
dialam and Luss, 1998; Bretthauer and Shetty, 2001) are the general techniques. The algo-
rithms for problems with discrete variables are based on Lagrangian relaxation and linear
relazation of the original problem. For convex demand constraints, the solution methodolo-
gies include branch-and-bound (Bretthauer and Shetty, 1995), linearization, and dynamic
programming (Mathur et al., 1986; Hochbaum, 1995).

Unlike in the case of convex knapsack problems, very little work has been done on noncon-
vex knapsack problems. Dynamic programming (DP) is the predominant solution technique
for this problem. A pseudo-polynomial time DP algorithm was developed in Ibaraki and
Katoh (1988). Approximation algorithms based on dynamic programming were proposed
in Labbe et al. (1994) (the problem was called as capacitated plant allocation problem).
Concave cost functions were considered in Moré and Vavasis (1991), but the solution tech-
nique used local minimizers for obtaining a local optimal solution. Use of branch-and-bound
algorithm was proposed as a promising technique in Bretthauer and Shetty (2002). The idea
is to use the convex envelope (Horst and Tuy, 1990) of the cost function to obtain a lower

bound, which can be used for pruning the search in the branch and bound algorithm.

1.2. The Piecewise Linear Knapsack Problem (PLKP)

The nonconvex piecewise linear knapsack problem (PLKP) considered in this paper is the
same as NKP above, with the cost function (); as a piecewise linear function. The piecewise
linear cost function @; defined over the quantity range [a;, @;] is shown in Figure 1. Table 1
provides the notation.

The cost function (); can be represented by tuples of break points, slopes, and costs

at break points: Q; = ((¢; = 5;-’,...,6]- = 5;’),( },...,5?), (ﬁ?,,ﬁ;”)) For notational
s

convenience, define 67 =9

i — 55-’1 and n as the fixed cost associated with segment s. Note

that, by this definition, n? = ~2. The function is assumed to be non-decreasing, but it need
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Figure 1: Piecewise Linear Cost Function @);

not be marginally decreasing as shown in the figure. The assumed cost structure is generic
enough to include various special cases: concave, convex, continuous, and a; = 0. The PLKP
with the generic cost structure was shown to be NP-hard upon reduction from the knapsack

problem in Kameshwaran (2004).

Table 1: Notation for the Nonconvex Piecewise Linear Knapsack Problem

la;,@;] a; is the minimum quantity to be included and @; is the upper limit

Qj Piecewise linear cost function for item j defined over [a;, @]
l; Number of piecewise linear segments in Qj

B; Slope of @; on (65-_1, é2)

83 =05 05"

n; Price at 07

n; Fixed cost associated with segment s of item j

Qi =g;=08....0;=357),(8}....57),(R,...,77))




1.3. Motivation for PLKP

The discontinuous piecewise linear cost structure is common in telecommunication and elec-
tricity pricing, and in manufacturing and logistics. This cost structure for network flow
problems with application is supply chain management was studied in Croxton (1999). Our
motivation for considering this cost structure for knapsack problems is driven by its applica-
tions in electronic commerce, in particular, electronic procurement. For example, consider
an organization interested in procuring multiple units of a certain good. Using its private
electronic marketplace, the organization would invite bids from its suppliers, quoting the
demand and the deadline. The suppliers, who wish to sell the goods, submit sealed bids, in
which the price is given as a piecewise linear function of the quantity. The bid evaluation
problem faced by the buyer is to choose a set of winning sellers and to determine the quantity
to be bought from each winning seller such that the total cost is minimized while satisfying
the demand and supply constraints. This is exactly the PLKP. The cost structure enables
the suppliers to express their volume discount strategy or economies of scale and/or the
production and logistics constraints. The volume discount strategy, which is buy more and
pay less can be expressed with marginally decreasing cost functions. The discontinuities in
the cost structure can capture the production and transportation constraints. Procurement
auctions with piecewise linear cost curves are common in industry for long-term strategic
sourcing (Davenport and Kalagnanam, 2001). A procurement scenario with piecewise linear
cost function was considered in Kothari et al. (2003) and approximation algorithms based on
dynamic programming were developed. The nonconvex piecewise linear knapsack problems
also arise as subproblems in bid evaluation of complex procurement scenarios like multi-
unit procurement of heterogeneous goods (Eso et al., 2001) and multiattribute procurement

(Kameshwaran and Narahari, 2003).

1.4. Contributions and Outline of the Paper

In this paper, we consider piecewise linear knapsack problems and develop an efficient algo-
rithm based on classical techniques such as branch and bound and Lagrangian relaxation.
We are motivated by two strong reasons: (1) lack of efficient algorithms in the literature
for solving these problems and (2) the vast application potential these problems have in
practical situations.

This present paper supplements and complements a companion paper by the authors,



Kameshwaran and Narahari (2004) which also develops algorithms for piecewise linear knap-

sack problems. The algorithms proposed there include:

e two exact algorithms based on dynamic programming: the first one has a worst case
computational complexity of O(N B) where N is the number of items and B is an upper
bound on the optimal quantity; the second algorithm has a worst case complexity of

O(NC) where C is an upper bound on the optimal cost.

e a linear time heuristic algorithm based on LP relaxation (this algorithm is based on
a linear time algorithm we develop for computing the convex envelope of a piecewise

linear function).
e a 2-approximation algorithm with worst case complexity O(N?log® N).
e 3 fully polynomial time approximation scheme
In this present paper, our contributions are as follows.

e We consider a mixed integer linear programming (MILP) formulation of PLKP and
develop an efficient O(NN?) algorithm for optimally solving the Lagrangian relaxation
of the MILP formulation. This solution provides a tight lower bound on the optimal
value of the original PLKP problem.

e We set up a branch and bound (B&B) algorithm for solving the original PLKP problem
optimally. The algorithm for Lagrangian relaxation above provides an efficient lower

bounding technique for the B&B algorithm.

e We optimize the B&B algorithm for high performance through various strategies and

carry out numerical experiments to show the efficacy of our proposed algorithm.

In our view, the algorithm developed offers an efficient alternative and addresses an important
current need for solving this class of problems.

The paper is organized as follows. In Section 2, a mixed integer linear programming
formulation is presented for PLKP. This formulation is taken from Kameshwaran (2004)
and forms the target formulation that provides the basis for developing the algorithms later
on. A polynomial time algorithm is proposed to solve the Lagrangian relaxation of the
PLKP problem in Section 3. This is used as the lower bounding technique in Section 4

to develop a B&B algorithm. We discuss various strategies by which the B&B algorithm



Table 2: Acronyms

LP Linear Programming

DP Dynamic Programming

IP Integer Program

MILP  Mixed Integer Linear Program
LR Lagrangian Relaxation

NKP Nonlinear Knapsack Problem

PLKP  Piecewise Linear Knapsack Problem
PCKM Precedence Constrained Knapsack Model
B&B Branch and Bound

CP Candidate Problem

DFS Depth First Search

BFS Best First Search

BCF Best Child First

NP Non-Deterministic Polynomial Time

can be improved to yield high performance. We also describe computational experiments to
examine the efficacy of the proposed algorithm. We conclude the paper in Section 5. The
appendix provides the pseudo code and data structures for all the algorithms developed in

the paper. The various acronyms used in paper are listed in Table 2, for easy reference.

2. An MILP Formulation for PLKP

2.1. Need for the MILP Formulation

The cost function @); of Figure 1 is nonlinear but due to the piecewise linear nature, the
nonlinear knapsack problem can be modeled as a mixed integer linear programming (MILP)
problem. There are three standard textbook models for modeling piecewise linear cost
functions, which were formally studied in Croxton (1999). They are: incremental, multiple
choice, and conver combination models. We now present another equivalent formulation
proposed in Kameshwaran (2004). This is called the precedence constrained knapsack model
(PCKM). We use the PCKM formulation for developing all the algorithms in this paper. In
the PCKM formulation, each item j is split into /; + 1 knapsack items, where [; is the
number of linear segments in the cost function ();. The formulation is equivalent to the
earlier textbook models in terms of (1) the feasible solutions, (2) Lagrangian relaxation (with

respect to the demand constraint), and (3) linear programming relaxation (Kameshwaran,



2004). However, due to the different inherent knapsack structure, it is extremely useful for

developing different algorithms.

2.2. Precedence Constrained Knapsack Model (PCKM)

(PCKM) : minzj: (ngdg + ﬁ:l (njdj + Bjéjxj)) (2)
subject to
d; < dj ViedJ (3)
zi < d; Vied, 1<s<l (4)
x> dit! VielJ; 1<s <l (5)
% (gjdg +:§1 5;;]5;.) > b (6)
d; € {0,1} Vied, 0<s<
33;6[0,1] Vied, 1<s<lI;

The above formulation can be interpreted in the following way: each segment s of j (including

the indivisible segment s = 0) is a knapsack item with weight 07 and cost 653f. The

quantity g; selected for item j is given by ¢; = deg + ﬁ:l ojz;. However, these items have
a precedence constraint (across each j) and therefore s can be selected only if s — 1 has
been already selected. Thus this is a generalization of the precedence constrained knapsack
problem (more specifically tree knapsack problems) (Johnson and Niemi, 1983; Samphaiboon
and Yamada, 2000). Precedence constrained knapsack problems are knapsack problems with
some additional precedence constraints over a subset of items. The above formulation can
be considered as a generalization due to the following reason: in the precedence constrained
knapsack problem, all items have indivisible weight, but in this case the weights ¢} are

divisible except for the a;. However, a partial weight can be accepted only if it is the
last segment that is selected in j. Mathematically, 7 > 0 implies :r;-_l =1land 27 <1

implies xj-“ = 0. The above logical implications are handled by introducing binary decision
variables d? and are given by constraints (3) to (5). Also the fixed costs n} are handled
appropriately in the objective function. This formulation is similar to the incremental model
(Manne and Markowitz, 1957), in which the continuous decision variable for a segment
denotes directly the quantity chosen from that segment. If Z7 is the continuous decision

variable in the incremental model for segment s of item j, then in terms of the PCKM



formulation, #7 = z3d;. Thus, given a solution of the incremental model, one can find
an equivalent solution to PCKM with the same objective value and vice versa. However,
the PCKM problem reveals the hidden precedence constrained knapsack structure, which is

otherwise not obvious with the incremental model.

3. Lagrangian Relaxation of PCKM Formulation

The Lagrangian problem for PCKM by dualizing the demand constraint is:

(P,) : minz (n?d? + i (njd; + 5;5;33;)> +m (Q -> (a dj + Z 8 s)) (7)

J

subject to
djl- < dg Vjied (8)
r;<d; VjeJ; 1<s< 9)
a3 >ditt VieJ;1<s <l (10)

d;€{0,1} VjeJ;0<s<;
z5€0,1] VjieJ;1<s<;

Let Z(-) denote the optimal objective value of the problem (-). The optimal objective value
of the LR is obtained by solving the following Lagrangian dual problem:

(LD : PCKM) : max Z (Py) (11)

720

LR with respect to the demand constraint has integrality property, that is, Z(LP : PCKM) =
Z(LD : PCKM), where Z(LP : PCKM) is the optimal value of the linear relaxation of PCKM
and Z (LD : PCKM) is the optimal value of the Lagrangian dual of PCKM. Let A be the
coefficient matrix of the constraints (8) - (10). A has only elements from the set {0,1,—1}.
Further the transpose of A, AT has only two non-zero entries in each column and they sum
to zero. Hence AT and A are totally unimodular (Nemhauser and Wolsey, 1988), that is,
the determinant of every square submatrix of 4 is 1, —1, or 0. In other words, z} and d}
will always take integral values irrespective of the integrality restrictions. Thus the dual
satisfies the integrality property (Geoffrion, 1974) and hence the lower bound generated by

the Lagrangian dual is the same as the lower bound generated by the linear programming
relaxation of PCKM.



The binary variables d; for s > 0 are redundant as d; = z for the optimal solution. The

above problem can be reformulated as:

subject to
>t VjeJ; 0<s <

i:;e{(),l} Vied; 0<s<l,

where Ejo = nY/a;, B; = (n$ 4 3363)/05 for s > 0, and 07 = a;. By assigning d} = &} and

0

d; = zj = I}, one can easily verify that the above two formulations are the same and yield

the same optimal value.

3.1. Solving the Lagrangian Problem

The Lagrangian problem P, splits into the following /N subproblems, one for each item j:

L
| A min ) (85 — )03 %} (13)
s=0
subject to
N ~s+1
> :c; 0<s<l
25 € 40,1}

The optimal value of the original Lagrangian problem is Z(P,) = ¥; Z(P1) + wb. For a

given 7, the subproblem for item j is solved as follows:
1. Let #; = arg ming<,<y; ZZ:O(B;- — m)ds.
2. If EZJZO(/;’j - 7r)(5;- <0, assign Z; = 1 for s < 7; and 2 = 0 for s > 7.
3. 16 Y0 (B2 — )58 > 0, assign 2% = 0 for all s.

In case there are multiple solutions in Step 1, the maximum subscript is chosen to accept as
much quantity as possible (note that this does not increase the cost). Solving the subproblem
for item j involves choosing a minimum from /;+1 values, where each value can be computed

in unit time. If L = 37;(l; 4+ 1), the complexity of computing Z(P,) is O(L), which is O(N).

10



3.2. An Efficient Algorithm for Solving the Lagrangian Dual

The Lagrangian dual problem that determines the lower bound is

(LD : PCKM) : max,>o Z(Py)

Subgradient optimization (Nemhauser and Wolsey, 1988; Fisher, 1981) techniques are
generally used to solve the Lagrangian dual. But as a non-differentiable optimization tech-
nique, the convergence of the algorithm depends on the problem instance. In most cases,
stopping criteria are used to terminate the algorithm at a near optimal solution. However,
for the above Lagrangian dual, due to its structure, a polynomial time algorithm can be
shown to exist. For a given m, let the total allocation for the Lagrangian problem P, be
b(r) = > Zijzo 6¢. Note that this allocation is feasible to PCKM only if b(r) > b and
13(7r) is an non-decreasing function of . The proposed polynomial time algorithm uses the
monotonic property of b(r). It starts with a minimum value of 7 and it is increased till the
optimum value is reached. The technique of finding the next subsequent value for 7 and the
optimality criterion are discussed next.

Consider just a single item j with three linear segments and cost structure as shown in
Figure 2. As all 35 are positive (hence all Bj), no segments will be selected for 7 < 0. Let
at 7 = 7', 7! > 0 segments be chosen. As no segments are chosen for 7 < 7!, the P7, =
with .@j =1 for s <rl.

Pl = XLy (B; — ')d; =0
Sl B

= 7T1 - 1
A
s=0"J

Cost Cost

Quantity Quantity

Figure 2: Determining the 7
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. t 3s s . .
Define 3} = E—iio—g;j for 0 <t < l;. Then 7! = ;-”1, where r' = argmin,{f;}. The
dotted lines in the left half of Figure 2 show the slopes /5;’ In the figure, 7! = 1. Let at
7 =m? > 7!, r? segments be added to the solution. Note that for 7 < 72 there were only r!

segments. Hence the cost added by the segments r? — r! should be zero.

r? 2 2 —
s:rl—l—l(lﬁj -7 )6; =0
2 ~
:> 7T2 — E:=§1+1 ’6;6;
Z:=T1+1 Jj

; .
Redefine (5} = 723371“’6’;8] for r'+1 <t < ;. Then 7% = ;2, where 7? = arg min1 11<,<;, {5}
s=rl41Y =90

These are shown in the right half of Figure 2, with 72 = 3. The above technique can be
extended to more than one item by choosing the minimum value of Bj across all items j
and segments s. Let 7* be the optimal solution to the Lagrangian dual. The following

proposition helps in deriving a polynomial time algorithm.

Proposition 1 The following results are true:
1. The breakpoints of the piecewise linear Z(P,) occur only at m = Bj for some j and s.
2. Optimal 7 = arg mingo{b(m) > b}.

Proof: (1) It is assumed here that ,Bj are suitably updated whenever new segments of item
j are chosen. Let 7! = 5]3 for some j and s and let r; be the number of segments chosen
for item j. The ﬁ;’ are redefined wherever necessary. Pick a 7% such that 7! < 72 < 73

where 73

= minj,S{Bj}. For each item j, the 7; of 7! will remain the same for 72, as no new
segment will be added to the solution. Thus the solution remains the same and b(7?) = b(r1).

However, the objective value changes.

Z(Pp) = 3 i(,@; — 7%)05 + b

j s=0

=y Zo(ﬁj — 7+t =)+ (nf +at — )b
j s=

= Z(Pn)+ (zt —7?) ZZ&; + (7% — 7')b

Based on the above relation,
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o Z(P,2) increases with slope (b — b(72)) if b > b(r?)
o Z(P,) decreases with slope (b — b(x?)) if b < b(n?)
o Z(Pp) = Z(r') if b= b(x?)

Thus the slope of Z(P,) does not change at a 7w # ,6]5 for all 7 and s.
(3) Z(P,) is concave and the maximum will occur at the 7 where Z(P,) changes direction
from increasing to decreasing. From the above discussion it is clear that the change of

direction of Z(P,) occurs when b(r) crosses b. Hence 7* = argming>o{b(7) > b}. u
Algorithm 1 PCKM LD: Algorithm to solve the Lagrangian dual of PCKM.

1. (Initialize)

t s
-t —_ Eszoﬂ‘?(s‘? y L.
ﬁj - Zi:og}?] ) vja 0 S t S l]7
b=0;

2. while (b < b) do:

21. m; = argmin{Bj crj+1<s< lj}, N

2.2. m = min;{m,};

2.3. do Vy:

(a) if (m = m;)
then k < r;;

T 4 argmax{Bj : ﬁ; =k <s <}
» Et—k L B3
B« == k<t <

Es:rlicl—kl 6; ’
b b+, b5
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The updating of Bj need not be done till /; in Step 2.3.(a), but can be stopped when
the next r; is found (that is when BJ(-SH) > ﬁ;) This essentially combines Steps 2.1 and
2.3.(a). Thus this can be done in O(L). Implementing Step 2.2 takes O(/N). Hence the

overall computational complexity is O(N?).

3.3. Primal Feasible Solution and Optimality Gap

A feasible solution to PCKM can be easily found from the optimal solution of the Lagrangian
dual. Assign d9 = 2% and d} = 23 = #5. The allocation b(r*) > b and hence the above
solution is feasible. Actually one can still make the solution better if b(7*) > b by removing

the excess allocated units.

Z(LD: PCKM) < Z(PCKM)

> Z Bi6s + (b — b(n*)) < Z(PCKM)

7 s=0
i R
Z Z B;o; — Z(PCKM) < 7*(b(m*) —b)
7 s=0
The worst optimality gap for the primal feasible solution derived from the Lagrangian dual

is 7 (b(7*) — b). Thus if b(7*) = b, then the solution is optimal for PCKM.

3.4. Performance of the Heuristic

The proposed heuristic was tested on three different problem sets to study the computational
time and the optimality gap. The Type 1 problems had decreasing slopes for the linear
segments in the cost function and the function parameters were highly correlated across the
items. This resembles bids in procurement auctions where the cost of the item does not vary
much across the suppliers. The Type 2 problems had similar cost functions but the param-
eters were uncorrelated and the Type 3 problems had uncorrelated and arbitrary piecewise
linear functions. The number of segments was chosen randomly from 3 to 5 for Type 1
problems and from 3 to 10 for Type 2 and Type 3 problems. To determine the optimality
gap and the savings in computational time for the heuristic, the problem was solved to op-
timality using ILOG Concert Technology of CPLEX 9.1 Con (2001). The experiments were
carried out on a Linux based PC equipped with a 3GHz Intel Xeon processor with 4GB RAM

and the algorithms were coded in Java. Figures 3 and 4 show the average optimality gap
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Figure 3: Optimality gap for the LR based heuristic
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and savings in time, computed over 20 randomly generated problems for each of the three
types. There are no major variations in the optimality gap and the savings in time across
the problem types. The average savings in time is around 99.5% with an average optimality
gap of less than 0.02%. Thus the heuristic extremely efficient and can be effectively used in

time constrained applications with negligible loss in optimality.

4. Branch and Bound Algorithm

In this section, an exact algorithm based on branch-and-bound (B&B) technique is devel-
oped, which uses the Lagrangian relaxation heuristic to generate lower bounds and incumbent
solutions. As is well known, B&B is an exact intelligent enumerative technique that attempts
to avoid enumerating a large portion of the feasible integer solutions. It is a widely used
approach for solving discrete optimization, combinatorial optimization, and integer program-
ming problems in general. For an excellent introduction, the reader is referred to Chandru
and Rao (1999) and for a detailed exposure, to Chapter 15 of Murty (1985). The B&B
approach first partitions the overall set of feasible solutions into two or more sets and as
the algorithm proceeds the set is partitioned into many simpler and smaller sets, which are
explored for the optimal solution. Each such set is represented algebraically by a candidate

problem (CP). A typical iteration of B&B consists of:

e Selection/Removal of a CP from the list of CPs

Determining the lower bound of the selected CP

e Fathoming or pruning, if possible, the selected CP

Determining and updating the incumbent solution, if possible

Branching strategy: If the CP is not fathomed, branching creates subproblems which
are added to the list of CPs

The order of these steps depends on the strategies used in deploying the steps. The algorithm
first starts with the original IP/MILP as the only CP in the list, that is, the entire feasible
set of solutions is considered at this point. The above steps are repeated until the list of
CPs is empty. Although the B&B technique is easy to understand, the implementation for

a particular problem is a nontrivial task (Chandru and Rao, 1999) requiring:
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A lower bounding strategy with efficient procedures for solving these relaxations,

Efficient data structures for handling the rather complicated book-keeping of the list
of CPs,

Clever strategies for selecting promising CPs, and

Branching strategies that could effectively prune the enumeration tree.

B&B has been successfully applied to knapsack problems (Pisinger and Toth, 1998) and
precedence constrained knapsack problems (Shaw and Cho, 1996). All these problems are
0 — 1 integer problems, unlike the PLKP which is an MILP. The implementation of B&B for
piecewise linear knapsack problem (PLKP) with various selection strategies is first discussed,

followed by a comparison of different search strategies in respect of computational time.

4.1. Strategies for the Branch and Bound Algorithm
Lower Bounding Strategy

The lower bounding technique finds the lower bound objective value of the CP. The lower
bounding technique should be selected such that it produces tight lower bounds in quick
time. Motivated by the efficient algorithm developed in the previous section, Lagrangian

relaxation is used as the lower bounding technique.

Fathoming and Pruning

If the lower bounding technique provides an optimal solution to the CP, then the CP is said
to be fathomed, that is, no further probe into the CP is required. The best solution from the
feasible set, represented by the CP, is found. A CP can also removed from further analysis
using pruning. Suppose that a feasible solution to the original problem is known. If the
lower bound of a CP is greater than the objective value of the known feasible solution, then
the CP can be removed from further analysis as it cannot guarantee a better solution than

what is already known.

Incumbent Solution

An ncumbent solution is a feasible solution to the original problem. In the generic B&B,
an incumbent solution is found when the lower bounding strategy yields a feasible solution

to the original problem. In the case of PLKP, an incumbent solution can be found for each
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iteration by using the heuristic based on LR. This does not need much extra computation
as it also finds a lower bound for the CP. The incumbent solution is found by suitably
appending the fixed variables along with the solution generated by the heuristic. The best
obtained incumbent solution obtained so far in the algorithm is updated and stored. This is
used in pruning the CPs and when the algorithm terminates, the best incumbent solution is

the optimal solution to the original problem.

Branching Strategy

If the CP is not fathomed or pruned then it is partitioned into two or more CPs and added to
the list of CPs. The partitioning is achieved through branching on a variable, that is, by fixing
a variable to some carefully selected feasible value. The branching strategy includes selection
of the variable to be branched, the number of branches, and the criterion for branching.
Recall that the Algorithm PCKM_LD terminates when the total demand accumulated so far
exceeds the demand of the problem. The variable of the segment at which the accumulated
demand exceeds the required demand is chosen as the branching variable. Two CPs are

generated by fixing this variable as 1 and 0, respectively.

Selection Strategy

In each iterative step of B&B, a CP is selected and removed from the list of CPs for further
analysis. The computational time of B&B depends crucially on the order in which the CPs
are selected and examined. Different B&B algorithms are developed by deploying different

selection strategies:

e Depth First Search (DFS): The CP that was added last to the list of CPs is chosen
for exploration in this strategy. This is basically a last-in-first-out (LIFO) rule and
the list of CPs can either be stored as a stack or by recursion. In this paper, it is
implemented as a recursion that traverses the binary enumeration tree (since each CP
is branched into exactly two CPs). Two strategies are possible here depending on
which CP is first explored. In DFS10, the CP with variable fixed as 1 is explored first
and then the CP with the corresponding variables fixed as 0. In DFS01 the traversal is
just the opposite. These two traversals are equivalent to two DF'Ss, one in which left

subtree is traversed first and the other in which the right subtree is traversed first.
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Table 3: Average Number of Lower Bound Computations for 100 Items
dfs10 dfs01 bcf Dbfs
Type 1 1608 743 743 371
Type 2 216 113 113 56
Type 3 387 132 132 65

e Best Child First (BCF): In this strategy, when a CP is branched into two CPs, the
one with the less lower bound is explored first. This requires that the lower bounds be

computed for both the CPs before traversing.

e Best First Search (BFS): BFS is implemented by creating a priority queue that holds
the list of CPs. At every iteration, the root of the priority queue, which is the CP with
the least lower bound, is deleted from the queue and explored. If it is not fathomed or
pruned, then two new CPs are generated and added to the queue. The priority queue is
implemented using a binary heap. In the first two cases, which are recursions, only one
instance of a CP is required to be maintained at every iteration. This is because the
CP can be appropriately modified and re-modified whenever the algorithm enters and
exits the recursion, respectively. However, for BFS, the information of the remaining

CPs needs to be maintained explicitly, thus requiring more storage and processing.

The pseudo-code and data structures for the above algorithms are provided in the ap-

pendix.

4.2. Computational Experiments

Numerical experiments were conducted on several random instances of problems of the three
data types. The time consuming step in the B&B approach is the lower bound computation.
The experiments were carried out on a Linux based PC equipped with a 3GHz Intel Xeon

processor with 4GB RAM and the algorithms were coded in Java.

Lower Bound Computations

Different search strategies were first compared based on the number of lower bound compu-
tations. Table 3 shows the average number of lower bound computations for a problem with

100 items. The average was taken over 100 problem instances. For all the three data types,
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DFS10 required the highest number of computations. The DFS01 and BCF required the
same number of computations which shows that fixing the break segment d; = 0 provides
a better lower bound that fixing it as d] = 1. The BFS, as expected, required the least
number of lower bound computations. Among the three data types Type 1 required more
computations than the other two. Recall that Type 1 data are highly correlated. The
B&B approach works essentially by pruning solutions that are not promising to be optimal.
With correlated data, the costs of the segments do not vary much and thus the lower bound
obtained by fixing any of them will not be much different from fixing a different segment.
Hence it requires more lower bound computations to prune the search space. Type 3 data
is not correlated and is not marginally decreasing. The number of computations was sig-
nificantly less than that of Type 1. However, Type 2 required less computations. This is

uncorrelated but had marginally decreasing cost functions.

Average Running Time

The proposed B&B algorithm was then tested for running time, by comparing with the solu-
tion time by CPLEX and with that of another approach, namely the dynamic programming
(DP) technique proposed in Kameshwaran (2004). The DP technique based on demand is a
pseudo polynomial time algorithm, whose solution time depends on the given demand b and
the number of linear segments L. CPLEX is a highly optimized generic solver, which uses
branch-and-cut algorithms. The B&B algorithm with BES strategy was compared with the
above techniques to identify the problem parameters, for which our B&B performs better.
The parameters considered were the number of items N, demand b, and the problem type.
The demand b is chosen as a fraction of the entire supply. The problem types show variation
in the size of the problem in terms of the number of linear segments L (number of binary
variables), for the same number of items. In addition, data values of the linear segments
across different items vary significantly. Figures 5 to 7 show the average computational
time taken over 20 problem instances for the different algorithms. The label a-f denotes
the computational time for algorithm a for the problem with demand as a fraction f of the
total supply. As expected, DP performed well for small size problems (in terms of L) and
the computational time was dependent on the demand. The B&B and CPLEX approaches
showed less variations with respect to b. The number of items up to which B&B performed
better than that of CPLEX was 50, 200, and 450 for Type 1, Type 2, and Type 3 prob-

lems, respectively. The superior performance of CPLEX for very large sized problems has
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to be viewed in the following contexts:

e CPLEX is a highly optimized and very well engineered generic solver, which uses

branch-and-cut algorithms.

e Our B&B algorithm considers only the bounds generated by the Lagrangian relaxation
technique. The inclusion of cuts and prices, like in branch-and-cut algorithms, will

certainly improve the performance of the algorithm.

5. Conclusions

An important class of nonlinear knapsack problems with piecewise linear cost structure was
considered in this paper. Given multiple units of a set of items and a demand, the problem
is to choose an optimal quantity for each item such that the demand is satisfied and the total
cost of the chosen items is minimized. The cost of an item is a piecewise linear cost function
defined over the quantity. This class of problems arises in numerous applications includ-
ing electronic commerce (for example, selection of winning bids in electronic procurement
auctions).

The main contribution of this paper is an efficient branch-and-bound algorithm for piece-

wise linear knapsack problems. A O(N?) algorithm was first proposed to solve the Lagrangian
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relaxation of the PLKP. A heuristic was then developed to find the primal feasible solution
to PLKP. Computational experiments performed on varying data sets showed that a primal
feasible solution can be computed with greater than 99% savings in time, with an optimality
gap of less than 0.02%. Branch-and-bound (B&B) algorithms were then developed, which
used the above heuristic to obtain the lower bounds and the incumbent solutions. Different
search strategies were used for the B&B algorithms and were compared with respect to run-
ning time and number of lower bound computations. The B&B with best first search strategy
was compared with the dynamic programming technique and CPLEX solvers, for the com-
putational time. The experiments identified the range of problem parameters for which B&B
outperforms dynamic programming and CPLEX. The proposed algorithm considered only
the bounds generated by the Lagrangian relaxation technique. The inclusion of cuts and
prices, like in branch-and-cut algorithms to improve the performance of the algorithm is an

important future work.
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Appendix: Algorithms for B&B

A high level description of the B&B algorithms is presented in this section. The common
variables and functions used in the B&B are shown in Tables 4 and 5, respectively. The
variables are not just the primitive data types supported in standard programming languages
but complex structures that can hold and manipulate information. The variable cp, for
instance, represents a CP and holds enough information about a CP, like the free variables,
variables with fixed values, demand and supply (demand and supply change because of fixing
of certain variables), and other information like whether or not it is fathomed. Not all of
this information is available at all times, for example, the ¢p can be known to be fathomed
only after the lower bounding technique is applied on it. The functions shown in Table 5 can
have several inputs and outputs. The implementation details are left unspecified for brevity.

The B&B algorithms with different selection/search strategies are presented next.
Algorithm 2 B&B DFS01: B&B with DFSO01 search strategy for PLKP.

1. (Initialize)
cp + PCKM; bs = null;

1s = null; os = null; Ib = oo;
2. dfs(cp, bs, is, os, 1b):

2.1. if cp infeasible return fi;

2.2. lowerbound(cp, bs, is, Ib);

2.3. update_inc_so0l(is, 0s);

2.4. if cp fathomed or pruned return fi;

2.5. modify(cp, bs, 0); dfs(cp, bs, is, os, lb); remodify(cp, bs, 0);
2.6. modify(cp, bs, 1); dfs(cp, bs, is, o0s, lb); remodify(cp, bs, 1);

2.7. return;

The optimal solution is stored in 0s. The algorithm is a recursion that recursively explores
and branches first on CP with branching variable fixed at 0 and then with that of CP fixed
at 1. Note that only one instance of ¢p is maintained throughout and it is appropriately

modified and re-modified to represent the CP currently in consideration. The algorithm
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Table 4: Variables Used in B&B

Variables Description

b Lower bound

cp A complex structure that holds information necessary to define a CP:

the free variables, demand, supply, (b, and other state information like
infeasibility (supply less than demand) and whether it is fathomed or

not.
bs The branching segment identified by the item j and the segment s.
18, 08 The incumbent solution to the PCKM containing the segments and the

solution value.

Pq A priority queue of elements, where each element is a cp. Standard

operations of priority queue like deletemin, insert, and delete are

supported.

Table 5: Common Functions Used in B&B

Function Input Output

Description

lowerbound cp b, bs, s

modify cp, bs, 1/0 ep
remodify cp, bs, 1/0  ¢p
update_inc_sol s, 0s 0s

Determines the lower bound [b of the given cp
and also finds the branching segment bs, which
will be used to create child CPs of ¢p. The in-
cumbent solution ¢s is the optimal solution to
cp if it is fathomed, otherwise it is constructed
using the heuristics.

Modifies the given cp by fixing the bs variable
as 1/0 and creates the child ¢p with modified
demand, supply, and variables.

It reverses the modify by restoring the original
values and creating the parent ¢p from its child.
Updates and stores the best incumbent solution
obtained in os
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dfs10 (B&B with DFS10 search strategy) is similar to the above but with Steps 2.5 and 2.6
interchanged so that the child CP fixed at 1 is explored first.

Algorithm 3 B&B BCF: B&B with BCF search strategy for PLKP

1. (Initialize)
cp < PCKM; bs = null;

18 = null; os = null; Ib = oo;
2. lowerbound(cp, bs, is, lb); update_inc_sol(is, 0s);
3. if ¢p fathomed stop fi;
4. bef(cep, bs, is, os, 1b):

4.1. child0 = childl = true;
4.2. modify(cp, bs, 0);

4.3. if cp infeasible
then child0 = false;
else lowerbound(cp, bs0, is, [60);
update_inc_sol(is, 0s);
3

?

4.4. if cp fathomed or pruned then child0 = false fi;
4.5. remodify(cp, bs, 0);
4.6. modify(cp, bs, 1);

4.7. if cp infeasible
then childl = false;
else lowerbound(cp, bsl, is, Ibl);
update_inc_sol(is, 0s);
s

I

4.8. if cp fathomed or pruned then childl = false fi;

4.9. remodify(cp, bs, 1);
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4.10. if 160 < Ibl
then if child0 = true
then modify(cp, bs0, 0);
bef (ep, bs0, is, os, 1b0);
remodify(cp, bs0, 0);
fi;
if childl = true
then modify(cp, bsl, 1);
bef(ep, bsl, is, os, b1);
remodify(cp, bsl, 1);
fi;
else if childl = true
then modify(cp, bsl, 1);
bef(ep, bsl, is, os, b1);
remodify(cp, bsl, 1);
fi;
if child0 = true
then modify(cp, bs0, 0);
bef (ep, bs0, is, os, 1b0);
remodify(cp, bs0, 0);
fi;
fi;

4.11. return;

The B&B_BCF is also a recursive algorithm like B&B_DFS01, but more work is done at each
iteration to select the best child to explore. For example, the functions modify and remodify
are called twice than that in DFS. Unlike the DFS, the lower bounds for the child CPs are

first determined before branching.
Algorithm 4 B&B BFS: B&B with BFS search strategy for PLKP

1. (Initialize)
cp + PCKM; bs = null; pqg = null,

1s = null; os = null; Ib = oo;
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2. lowerbound(cp, bs, is, Ib); update_inc_sol(is, 0s);
3. if ¢p fathomed stop fi;

4. pq.insert(cp, Ib);

5. while pq # 0 do:

5.1. (cp, bs) < pg.deletemin();
5.2. if c¢p pruned stop fi;
5.3. child0 = childl = true;
5.4. modify(cp, bs, 0);
5.5. if cp infeasible
then child0 = false;
else lowerbound(cp, bs0, is, [b0);
update_inc_sol(is, 0s);
fi;
5.6. if cp fathomed or pruned then child0 = false fi;
5.7. if child0 = true then pqg.insert(cp, bs0) fi;
5.8. remodify(cp, bs, 0);
5.9. modify(cp, bs, 1);

5.10. if cp infeasible
then childl = false;
else lowerbound(cp, bsl, is, Ibl);
update_inc_sol(is, 0s);
fi;
5.11. if cp fathomed or pruned then childl = false fi;
5.12. if childl = true then pq.insert(cp, bsl) fi;

5.13. remodify(cp, bs, 1);

od;
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The above algorithm, unlike the previous two, is not a recursion. The list of CPs is stored
in a priority queue. The deletemin operation of the priority queue returns the CP with
the least lower bound. If the selected CP is not pruned, two child CPs are generated and
added to the priority queue if they are not infeasible/fathomed/pruned. The priority queue
is implemented using the binary heap data structure. Every insertion and deletion is of
complexity O(log P), where P is the current size of the queue Cormen et al. (1990). The
bookkeeping of the list of the CPs is space efficient in the previous two algorithms. The
difference between the parent CP and the child CP is influenced by a single fixed variable
and its value (0 or 1). Since the recursion traverses back and forth only across the parent
CP and child CP, it is enough to remember the fixed variable and its value. The functions
modify and remodify appropriately construct the current CP from its parent or child. But
in the case of BFS, the algorithm jumps across CPs in no known order. Hence all the CPs

in the list have to be in memory, which are stored in the priority queue.
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