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Abstract

This paper considers the minimization version of a class of nonconvex knapsack problems
with piecewise linear cost structure. The items to be included in the knapsack have a divisible
quantity and a cost function. An item can be included partially in a given quantity range and
the cost is a nonconvex piecewise linear function of quantity. Given a demand, the optimization
problem is to choose an optimal quantity for each item such that the demand is satisfied and the
total cost is minimized. This problem is encountered in many situations in manufacturing, logis-
tics, and supply chain design. In particular, we are motivated by winner determination in volume
discount procurement auctions in electronic commerce. The piecewise linearity of the cost func-
tion gives the problem two different knapsack structures related to precedence constrained and
multiple choice knapsack problems. Two mixed integer linear programming formulations are
proposed based on the above structures. Motivated by the unique nature of the varying de-
mands on the problem in different scenarios, the following algorithms are developed: (1) a fast
polynomial time, near optimal heuristic using convex envelopes; (2) two exact, pseudo polyno-
mial time dynamic programming algorithms; (3) a polynomial time 2-approximation algorithm;
and (4) a fully polynomial time approximation scheme. A test suite was developed to generate
representative problem instances with different characteristics. Extensive computational experi-
ments conducted on these problem instances show that the proposed formulation and algorithms
are faster than the existing techniques.
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Acronyms

LP Linear Programming

DP Dynamic Programming

1P Integer Program

MILP Mixed Integer Linear Program

NKP Nonlinear Knapsack Problem

PLKP Piecewise Linear Knapsack Problem

M Incremental Model

MCM Multiple Choice Model

CCM Convex Combination Model

PCKM Precedence Constrained Knapsack Model

LP:PCKM LP relaxation of PCKM

CE:PCKM PCKM with Convex Envelope of original cost function
MCKM Multiple Choice Knapsack Model

MKP Multiple Choice Knapsack Problem

FPTAS Fully Polynomial Time Approximation Scheme

1 Introduction

Knapsack problems are among the the most intensively studied combinatorial optimization prob-
lems [31, 28, 22]. The knapsack problem considers a set of items, each having an associated cost
and a weight. The problem (minimization version) is then to choose a subset of the given items
such that the corresponding total cost is minimized while the total weight satisfies the specified
demand. Well studied variants of the knapsack problems [31, 28] include: bounded/unbounded knap-
sack problems, subset-sum problems, change-making problems, multiple knapsack problems, multiple
choice knapsack problems, and bin packing problems. The applications of these problems vary from

industrial applications and financial management to personal health-care.

1.1 Nonlinear Knapsack Problems

A generic nonlinear knapsack problem (also called nonlinear resource allocation problem) has a
demand B and a set J of N items. Each item j € J has a nonlinear cost function Q;(b) defined
over the quantity b € [a;,@;]. The optimization problem is to choose quantity ¢; € {0, [a;,@;]}
for each item j to meet the demand B (3°;c;q; > B) such that the total cost 3 ;c; @;(g;) of
accumulated demand is minimized. The problem can be formulated as the following nonlinear

integer programming problem:

(NKP) : min ) Q;(g;) (1)
jeJ
subject to
>.qi>B
jE€J
a;T; <gqj <ajx; Vied



zj € {0,1}, g; > 0, integer Vj € J

The decision variable g; can take either zero value or an integer value in the range [gj,ﬁj].
This is implemented as linear inequalities using binary decision variables z;. There are several
variations to the above problem: the objective function is an arbitrary function Q(q1, - .., q|s); each
item has a weight w; and the demand constraint is }°,c ; w;q; > B; a generic demand constraint
e gj(g;) > B; and the variables g; are continuous. The problem considered in this paper is as
in NKP above, with ); as a nonconvex piecewise linear cost function.

The NKP and its variants are encountered either directly, or as a subproblem, in a variety of
applications, including production planning, financial modeling, stratified sampling, and in capacity
planning in manufacturing, health-care, and computer networks [5]. Different available algorithms
for the problem were developed with varying assumptions on the cost function @); and the demand
constraint. The book by Ibaraki and Katoh [17] provides an excellent collection of algorithms for
demand constraint }°;c; ¢; = B. The paper by Bretthauer and Shetty [5] reviews the algorithms
and applications for NKP with generic demand constraint 3¢ ; g;(g;) > B.

The objective functions considered in most of the literature for convex knapsack problems are
separable like in NKP. If the decision variables are continuous, the differentiability and optimality
property of the convex functions are used in designing algorithms [34, 2]. For problems with
more general separable nonlinear convex constraint of the form ;¢ ; gj(gj) > B, multiplier search
methods [3] and variable pegging methods [23, 4] are the general techniques. The algorithms
for problems with discrete variables are based on Lagrangian and linear relaxations. For convex
demand constraints, the solution methodologies include branch-and-bound [3], linearization, and
dynamic programming [29, 14].

Unlike convex knapsack problems, very little work has been done on nonconvex knapsack prob-
lems. Dynamic programming (DP) is the predominant solution technique for this problem. A
pseudo-polynomial time DP algorithm was developed in [17]. Approximation algorithms based on
dynamic programming were proposed in [26] (the problem was called as capacitated plant alloca-
tion problem). Concave cost functions were considered in [30], but the solution technique used
local minimizers for obtaining a local optimal solution. Use of branch-and-bound algorithm was
proposed as a promising technique in [5].

1.2 Contributions and Outline

In this paper, we consider a nonlinear knapsack problem called as nonconvex piecewise linear
knapsack problem (PLKP). As the name suggests, the cost function (; is a nonconvex piecewise
linear cost function. The demand constraints are the same as in NKP. The problem is motivated
due to its application in the winner determination of volume discount procurement auctions in
electronic commerce. The cost function and the associated knapsack problem are introduced in
Section 2. We study the problem from different perspectives owing to its diverse demands in varying

scenarios.



e First as an optimization problem, Section 3 investigates various mathematical programming
formulations. Two new formulations are proposed based on the precedence constraint and
multiple choice structure of the problem. Computational experiments that compare the solu-
tion time of the proposed formulations with that of the existing textbook formulations, when
solved with a commercial optimization solver, are presented. This is useful for practitioners

to choose the formulation that best suits their needs.

e For applications that demand a good solution in relatively short time, a fast linear program-
ming based heuristic is developed in Section 4. The approach uses the convex envelopes of the
cost function to solve the relaxation. Computational experiments were performed on problem
instances with different features to study the trade-off in savings in computational time with

the optimality gap of heuristic solution.

e Two exact algorithms based on dynamic programming are developed in Section 5. The
purpose of these algorithms is two fold: one of the algorithms is useful in solving PLKPs
which appear as subproblems in multi-attribute procurement and the other algorithm is used

to develop a fully polynomial time approximation scheme.

e The PLKP is AN'P-hard and it is of theoretical interest to investigate the possibilities of
approximation. Section 6 presents a 2-approximation algorithm and a fully polynomial time

approximation scheme. Section 7 concludes the paper.

2 The Nonconvex Piecewise Linear Knapsack Problem

The nonconvex piecewise linear knapsack problem (PLKP) considered in this paper is the same as
NKP above, with the cost function ; as a piecewise linear function. The piecewise linear cost
function @; defined over the quantity range [a;,d;] is shown in Figure 1. Table 1 provides the
notation.

The cost function @; can be represented by tuples of break points, slopes, and costs at break
points: Q; = ((a; = 5?, ey G = S;]),( ]1-, .. ,ﬁ;j), (ﬁg, e ,'FL;’)) For notational convenience,
define 47 = 5; — Sj_l and nj as the fixed cost associated with segment s. Note that, by this
definition, nj = ﬁ?. The function is assumed to be strictly increasing, but it need not be marginally
decreasing as shown in the figure. The assumed cost structure is generic enough to include various
special cases: concave, convex, continuous, and a; = 0. The PLKP with the generic cost structure

was shown to be A'P-hard upon reduction from the knapsack problem in [20].

2.1 Motivation for PLKP

The discontinuous piecewise linear cost structure is common in telecommunication and electric-
ity pricing, and in manufacturing and logistics. This cost structure for network flow problems
with application is supply chain management was studied in [6]. Our motivation for considering

this cost structure for knapsack problems is driven by its applications in electronic commerce, in
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Figure 1: Piecewise linear cost function @);

particular, electronic procurement. For example, consider an organization interested in procuring
multiple units of a certain good. Using its private electronic marketplace, the organization would
invite bids from its suppliers, quoting the demand and the deadline. The suppliers, who wish to
sell the goods, submit sealed bids, in which the price is given as a piecewise linear function of
the quantity. The bid evaluation problem faced by the buyer is to choose a set of winning sellers
and to determine the quantity to be bought from each winning seller such that the total cost is
minimized while satisfying the demand and supply constraints. This is exactly the PLKP. The
cost structure enables the suppliers to express their volume discount strategy or economies of scale
and/or the production and logistics constraints. The volume discount strategy, which is buy more
and pay less can be expressed with marginally decreasing cost functions. The discontinuities in the
cost structure can capture the production and transportation constraints. Procurement auctions
with piecewise linear cost curves are common in industry for long-term strategic sourcing [8]. A
procurement scenario with piecewise linear cost function was considered in [24] and approximation
algorithms based on dynamic programming were developed. The nonconvex piecewise linear knap-
sack problems also arise as subproblems in bid evaluation of complex procurement scenarios like
multi-unit procurement of heterogeneous goods [10] and multiattribute procurement [21].
Another potential application of the PLKP is the capacitated plant allocation problem. Many
industrial organizations operate several plants with different production cost structures. One of the
operational decisions is to determine the production level of each plant in order to minimize the
cost of the requested total production. More precisely, consider the situation where B units of a
single product have to be manufactured and N plants with capacities in range [Q]—, a;] for plant j are

available. The cost of production (and possibly transportation) by plant j is given by a nonconvex



[gj,ﬁj] a; is the minimum quantity to be included and @; is the upper limit

Qj Piecewise linear cost function for item j defined over [a;, @]
l; Number of piecewise linear segments in Q;
A Slope of Q; on (5;-_1, )

— 5 Ts—1
7} Qj(65) +nj
nj Fixed cost associated with segment s of item j

~ _ ~l . l ~ ~l .

Qj = ((g; = (5?,...,(1]- =67), ( Jl-,...,ﬁj]),(ng,...,nj]))

Table 1: Notation for the nonconvex piecewise linear knapsack problem

piecewise linear cost function ();. Then the decision of choosing the plant capacities such that the
total cost is minimized is PLKP. A similar version of the problem was considered in [26], with a

more generic non-decreasing cost structure (need not be piecewise linear), but with a; = 0.

2.2 Related Knapsack Problems

There are two well studied knapsack problems, tree knapsack problems and multiple choice knapsack
problems, which are similar and closely related to the PLKP. The piecewise linear nature of the
cost function enables one to view the PLKP in two different ways. In both the ways, consider
each item j of PLKP to be a class consisting of some knapsack items. Each linear segment can
be considered as a knapsack item with weight 5;- and cost n;’ + ,8;-’5;?. However, these items have a
precedence constraint (across each j) and therefore s can be selected only if s — 1 has been already
selected. This is a precedence constrained knapsack [33], more specifically a tree knapsack problem
[19]. However, it is different from the above problems as in PLKP the weights ¢7 are divisible
except for the a;.

The second way of interpreting PLKP is that a class j consists of [; mutually exclusive kanpsack
items, out of which, at most one can be selected. In this case, each segment s has weight S“;*l and
cost 7. This is similar to the multiple choice knapsack problem [25, 31]. Indeed PLKP is a
generalization of this problem as it can accept partial allocation of these items in a given range.
The tree knapsack problems and multiple choice knapsack problems are well studied. PLKP in
some sense contains both these structures, but still it is different from the above two. These two
structures are exploited extensively in this paper for mathematical formulation and algorithms

design.

2.3 A Test Suite

A test suite was developed to generate problem instances of various size and features. The intention
is to study in a comprehensive way the performance of the mathematical programming formulations
and algorithms for different problem instances using computational experiments. The following

parameters were considered in the generation of the problem instance: continuity, marginally de-



Q, CR UR
n’ {0.8,0.9,1} {0.2,0.3,...,1}
B} {30,40, 50} {20,30,...,100}

B {08,085,...,1}  {0.4,0.45,...,1}

Table 2: The set of values for parameters of (); for CR and UR cost functions

creasing cost, similarity of the cost functions, a; =0 or > 0, and n?- = 0 or > (0. Each of the above
parameters has two possible values. A continuous function has all the jump costs nj = 0, whereas a
discontinuous function has non-zero values. A marginally decreasing function will have B; > ﬂ;-“

and an arbitrary cost function need not have any order over ;. For similar cost functions, the
S S
(RRCE
in a close range. To make the cost functions unrelated across the items (UR), these parameters

functions are closely related (CR) with values for parameters ;, 55 , n?, and d; chosen randomly
are chosen randomly from a wide range as shown in Table 2. The specific value for a parameter is
chosen randomly (with uniform distribution) from the associated set of values.

The lower bound g; can be zero or non-zero. Further for zero lower bound, the associated cost ﬁ?
can be zero or non-zero. The above parameterization helps in generating problem instances related
to different real world scenarios. For example, to study a procurement auction, a discontinuous,
marginally decreasing, similar cost functions with a; > 0 can be used. A marginally decreasing
function has 5]1 = 1 and the rest of the 3] are chosen with decreasing values from the corresponding
set of values. An arbitrary function can have any possible value for any 5} . The number of segments
l; is chosen randomly from the set {3, 4, 5}. The number of items N and the demand B (as a fraction
of the total supply) are inputs to the test suite. The test suite can generate 16 types of problem
instances based on the above parameterization (two possible values for each of the four parameters:
continuity, marginally decreasing, similarity, and lower bound). With the option of n; being zero or
non-zero for a; = 0, the test suite can generate 24 different problem instances. A problem instance
is compactly represented by the truth values of the 5-tuple: (similarity, continuity, marginally
decreasing, a;, ng) For example, TFTFT refers to a problem instance with similar cost functions

that are discontinuous and marginally decreasing with a; = 0 and ng > 0.

3 Mixed Integer Linear Programming Formulations for the PLKP

The cost function @); of Figure 1 is nonlinear but due to the piecewise linear nature, the nonlinear
knapsack problem can be modeled as a mixed integer linear programming (MILP) problem. There
are three standard textbook models for modeling piecewise linear cost functions, which were for-
mally studied in [6, 7]. They are incremental (IM), multiple choice (MCM), and convex combination
(CCM) models. In this paper, two more equivalent formulations are proposed, with two different
knapsack structures: precedence constrained knapsack model (PCKM) and multiple choice knapsack

model (MCKM). The decision variables and the constraints for the above formulations are given in



Model Variables Constraints Quantity g; Cost Q(g;)

5 € {0,1} a5t < dj nddd+

0 l; l;
o £30  seti<gcge (YUTESG Zead )
- 777 — 4 ="7"7

vl €{0,1} El;'zo v <1 ﬁ?vjo + lej: (~§vj-+
20 i gs S(gS — 85 1ps
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3,78 >0 ¢5 + 77 =} s=1V Yy T g 9)
ds € {0,1} a5t < dg nd)+
0 l; l;
PCKM o P < < g a;dd + 0 05x8 Y0 (nidS + Bi6sas)
J= j ==Y
vie{0,1}  Yl,v<l ajof + v+
li (%s—1,s $,,8 L > 8,8 $125,,8
MCKM g >0 v < v Y= (0] vi + &jy]) i (RS + 65 B7y;)

Table 3: MILP formulations for PLKP

Table 3.

In all the formulations, a binary variable and a continuous variable are used for each of the
linear segments in the cost function. In the IM, the continuous variable ¢; (1 < s < 1}) denotes
the quantity chosen from segment s. Note that continuous variable is not used for the indivisible
segment 0. Hence if ¢; > 0 then qj’ = (5]5-' for ' < s. The binary variables d; (0 < s <) are used
to handle the above logical implications. The quantity chosen for an item incrementally adds up
along the linear segments and hence the name. In the MCM, the binary variable v; = 1 indicates
that the total quantity chosen lies in the segment s. Hence, if g; > 0, then the total quantity
gj = ¢;. At most one of the binary variables (and hence the continuous variables) can be non zero
and hence the name multiple choice model. The CCM is similar to the MCM, where the quantity
in segment s is chosen as the convex combination of the end points of the segment. The above
three textbook models are the same with respect to the (1) set of feasible solutions, (2) Lagrangian

relaxation (with respect to the demand constraint), and (3) linear programming relaxation [7].



The proposed new formulations PCKM and MCKM are similar to the IM and the MCM,
respectively. The continuous variables in the proposed models are normalized to vary between 0
and 1. These two models, however, reveal the hidden knapsack structures discussed in Section
2.2. The proposed formulations are useful in developing different algorithms due their knapsack
structures. The heuristic algorithm based on LP relaxation (Section 4) and the 2-approximation
algorithm (Section 6) are developed using the PCKM formulation while the dynamic programming
based algorithms (Section 5) and the fully polynomial time approximation scheme (Section 6) are

developed using the MCKM formulation.

3.1 Computational Experiments

The MILP formulations were modeled and solved using CPLEX 10.0 for different problem instances
generated by the test suite. The intention is to evaluate the formulations in terms of solution time
using a commercial package. This will help the practitioners in choosing the appropriate formulation
for their requirements. The experiments were carried out on a Windows XP based PC equipped
with a 3GHz Intel P4 processor with 760MB RAM. The experiments and the test suite were coded
in Java. The average solution time for different problem types with N = 250 is shown in Table 4.
The time is averaged over 100 instances of each problem type. It is immediately obvious from the
table that the solution time varies across the formulations for each problem type and across problem
types for each formulation. With respect to the formulations, the MCKM formulation proposed
by us took the least time across all problem types, except for few where it was slightly less than
that of CCM. Though MCKM is similar to MCM, the solution time of MCKM was significantly
less than that of MCM. However, no such significant difference was noted between IM and PCKM.
The solution times of the formulations greatly depend on the algorithms used and hence it should
be noted that these observations are with respect to CPLEX 10.0.

As expected, the problem type also influenced the solution time. For MCKM, the solution
time varied from 75 milliseconds to as long as 7998 milliseconds, depending on the problem type.
Henceforth in the analysis we will refer to only the MCKM formulation. In the 5-tuple truth value
representation of problem types, let X denote either of the truth values T or F, but fixed for each
parameter. For example, XTXFT refer to problem types with the X for each parameter have been
fixed to either T or F independent of the X value of the other parameters. Thus XTXFT can
represent 4 problem types. To know the influence of continuity on the solution time, one has to
compare problem types XTXXX with XFXXX.

Each of the parameters that defines the problem type influenced the solution time. The following

values individually showed an increase in solution time:
e 29 >0, a; = 0 (compare XXXFT and XXXFF)

e marginally decreasing, with more than 10 fold increase in time for many types (compare
XXTXX with XXFXX)

e discontinuity, except for 14 and 20 (compare XFXXX with XTXXX)



Problem MILP formulations

°  Type IM MCM CCM PCKM MCKM
1 TTTTT 173221 114644 1280.37 2051.69  615.97
2 TTTFT 23076.69 11649.96 22503.14 23560.95 5089.44
3 TTTFF  4023.32 2115.67 2796.61  3344.4  864.87
4 TTFTT 11735 8874  67.44  107.91 7453
5 TTFFT  3691.92 20265  3342.2  3030.62  512.50
6 TTFFF  90.86 10437  91.21  77.18 77.57
7 TFTTT 364741 384558  5595.38 457251  1536.33
8 TFTFT 28786.77 16741.67 36642.2 26593.54  7998.1
9 TFTFF  5556.0  5522.8  5673.51 501149  2099.8
10 TFFTT  246.99  513.46  1092.86 2368  204.18
11 TFFFT  4639.74 278479  4068.47  4210.77  906.04
12 TFFFF  340.23  860.74  822.66  368.36  308.85
13 FTTTT 10506.55 4445.04 12980.21 11377.45 2191.64
14 FTTFT 1567423 6427.8 11291.93 18253.29  3679.93
15 FTTFF  10530.46 2831.02 6643.53 9815.13  1466.85
16 FTFTT 23858 22285  176.64 2475  168.75
17  FTFFT  337.16  279.84  217.66  273.28  223.91
18 FTFFF  181.5  257.06  165.32 1825  143.27
19 FFTTT 1293452 5881.72 1863535 13675.17 2970.93
20 FFTFT 13327.64 6388.28 10373.00 15246.01 3538.14
91 FFTFF  10378.57 46647  9797.2  10815.12  2899.79
22 FFFTT  516.26  386.39  720.96  508.11  285.87
23 FFFFT 71594 3395  567.87  630.07  284.53

24 FFFFF 340.94 325.88 546.89 333.17 190.43

Table 4: Average solution time in milliseconds for different MILP formulations
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However, the similarity parameter did not reveal any coherent pattern (compare TXXXX with
FXXXX). Six problem types (2, 5, 7, 8, 10, and 12) with CR property had solution times greater
than that of with UR (14, 17, 19, 20, 22, and 24, respectively) and vice versa for six other problem
types (1, 3, 4, 6, 9, and 11 took less time than that of 13, 15, 16, 21, and 23, respectively) . From
the above individual influences, one is tempted to believe that either of TFTFT or FFTFT should
have taken the longest time and indeed TFTFT (number 8) took the longest time.

4 A Heuristic Algorithm based on LP Relaxation and Convex

Envelopes

Certain applications demand a good gquality solution in a relatively short time. For example, in
iterative or multi-round procurement auctions, the winner determination problem has to be solved
in each round. With automated agents participating in the auctions, several hundreds of such
rounds will not be uncommon. In such scenarios it may be advantageous to solve optimally the
winner determination problem only in the later rounds, where less number of bidders will be left
in the auctions. In the initial rounds with more number of bidders, solving the problem fast using
a heuristic which provides a good feasible solution will help in earlier termination of the auction.
In certain cases like spot purchase markets and exchanges, even the single round auctions need to
be cleared in very less time. In this section, we develop a fast heuristic that finds a near-optimal
solution to the PLKP. The heuristic is based on LP relaxation of PCKM using the convex envelope
of the cost function.

In LP relaxation based heuristics, the integral variables are relaxed to take on continuous
values and the resulting linear program is solved. If the optimal solution to the relaxed problem is
integral, then it is also the optimal solution to the original problem. If not, the continuous solution
obtained should be converted into integral solutions using some heuristic rounding techniques so
that it is feasible to the original problem. Often, the integral solutions obtained this way are close
to optimality, depending on the structure of the problem. We first propose a polynomial time
algorithm for solving the LP relaxation of PCKM, followed by a rounding heuristic to construct a

mixed integer feasible solution from the continuous solution.

4.1 Convex Envelopes and LP Relaxation

The LP relaxation of PCKM can be solved using the convex envelope of the cost function @);. It
was shown in [6] that the LP relaxation of the incremental model approximates the cost function
Q; with its convex envelope. Since the LP relaxations of PCKM and the incremental model are
equivalent (g7 = 65z7), the LP relaxation of PCKM approximates the function @; with its convex
envelope. This means that solving the LP relaxation is equivalent to solving the PCKM with the
convex envelope of (); as its cost function. The notion of convex envelope is introduced first and
then an algorithm is proposed to construct the convex envelope for a nonconvex piecewise linear

function.

11
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Figure 2: Convex envelope Qj of the piecewise linear cost function Q;

Definition 1 (Convex Envelope [16]) Let M C R"™ be convex and compact, and let f : M — R
be lower semi-continuous on M. A function g: M — R is called the convex envelope of f on M if
it satisfies:

1. g(z) is convex on M,

2. g(z) < f(z) for allz € M,

3. there is no function h : M — R satisfying (1), (2), and g(T) < h(T) for some point T € M.

In other words, the convex envelope is the best underestimating convex function that approximates
the original function. Let Qj be the convex envelope of the piecewise linear cost function @;. Let
LP:PCKM denote the LP relaxation of PCKM and let {g}} be the optimal quantity chosen in
LP:PCKM. Then the result that relates LP relaxation and convex envelopes (see [6]) states that
Z(LP : PCKM) = 3, Qj(q;) Thus solving the LP relaxation is equivalent to solving the convex
envelope problem. Based on this, LP:PCKM will be solved using the convex envelopes.

It is assumed here that the piecewise linear cost function is defined over [0,@;] instead of
[a;,@;]. This is for mathematical convenience as the convex envelope is used here for solving the
LP relaxation and thus the binary variable dg can take continuous values and partial allocation

50
of the indivisible segment is possible. The slope for the indivisible segment is defined as ;6;-) =1

a;
and hence for ¢; € [0,a;] and Q;(g;) = quj. The convex envelope Qj is also piecewise linear and
hence the algorithm iteratively determines the break points and the slopes from that of @;. Let
the slopes of Qj be denoted by {a7}. The mechanism is illustrated in Figure 2. The first break
point is obviously 0, and from (0,0) the slopes to @; at all other break of @); points are evaluated.
The minimum of it is chosen to determine the next break point and slope a} of Qj. The next slope
is determined by proceeding in the same way: determine the slopes from the current break point
(5}, Qj (571)) to @; at the remaining break points. The algorithm is presented first followed by the

theorem of correctness.
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Algorithm 1 Convex Env: Algorithm to find the convex envelope of a piecewise linear cost function

Qj-

1. (Initialize)
c=0b=0u=0;r=1;
2. while (u <;) do:

r : 28 ntpo—c - : 38
2.1. of = min fj=-1=11—;§=arg min [}
I us<y I o3 -b u<s<l;

4
22 87 ={u,.., 557 = ¥ 65;
2.3. ¢ =5 + B565; b= &;
24. u=3+1Lrr+1;

3. t;=m;
In Step 2.1, the segment with maximum index s is chosen in case of ties. The time complexity of
the algorithm is O(ZJZ-). The following properties of the function Qj can be easily verified:

o Qj is continuous and piecewise linear, and Qj (g5) < Q,(g;) over the its domain [0,a;].

o If s = max{s € 7} for some 1 <r <, then Q](gjl) = QJ(SJS’)

7} = Tyes; 6 for 1 <r < tj and T, |7 =1 +1

Bs §s

Eses’? ﬂ] J o .

° o = ﬁ and o < agﬂ for 1 < r < t; and hence convex (as it is continuous and
seST 7j

J

piecewise linear)

With reference to Figure 2, [; = 3, t; = 2, S; = {0,1}, and Sy = {2,3}. The correctness of the

algorithm is stated in the following theorem.
Theorem 1 Algorithm 1 determines the convex envelope Qj of the piecewise linear function @);.

Proof: See Appendix.

4.2 LP Relaxation based Heuristic for PCKM

The binary variables d?, when relaxed for LP:PCKM, become redundant for s > 0. The constraints
of PCKM imply that dj > z7, for all j € J and 0 < s <[;. The objective is of minimization type
and all coefficients and variables in the objective are non-negative. Hence in the optimal solution,
dj would take the minimal possible value: dj = 3. Thus the d} variables are redundant and can

be removed from the formulation.
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Proposition 1 The PCKM with the convex envelope Qj as the cost function is a continuous knap-

sack problem.

Proof: The formulation of the problem is:

tj
(CE:PCKM):  min}" " (afy2) )
jeJr=1
subject to
524" Viesl<s<y ®)
t,
S Yy > b @
jeJr=1
€01  VieJi1<r <t

Note that of < oz§+1 as it is a convex function. Since all 77 > 0 and 2] € [0,1], segment r will
be obviously chosen before r + 1 in the optimal solution. Hence the constraints z; > z;-"""l are
redundant. The resulting problem is a continuous knapsack problem with each segment r of j as

an item with weight v; and unit cost o. [

The LP relaxation of PCKM is:

(LP:PCKM):  min)_ i (839323 (5)

jeJ s=0
subject to
25> VjeJ;0<s < (6)
3 512> b (7
jeJ s=0
25 € [0,1]

The optimal values for X of LP:PCKM can be obtained from z of CE:PCKM.

Proposition 2 Let z be the optimal solution to CE:PCKM. The optimal solution X to LP:PCKM

is &3 = zj for s € S; and 1 <1 <, for all j.

Proof: See Appendix.

Finally one has to construct a feasible solution to PCKM from the optimal continuous solution
of LP:PCKM. Let g; be the optimal quantity chosen in LP:PCKM for item j. Then the rounding
heuristic is to allocate g; units for item j across the segments without violating the precedence

constraints. If ¢; € (0,a;), then allocate a; units. One can easily see that the solution constructed

by the above heuristic is feasible with respect to the demand and the precedence constraints.

Algorithm 2 LP PCKM Heu: Heuristic based on LP relazation of PCKM.
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N  Simplex Convex Envelope

100 17.65 0.01
200 42.79 0.16
300 60.72 0.32
400 89.70 0.78
500 120.92 0.96
600 162.78 1.11
700 201.59 1.43
800 235.78 1.76
900 269.8 2.30
1000  328.48 2.83

Table 5: Average computational time in milliseconds for LP based heuristic solved by simplex

algorithm and the proposed convex envelope based algorithm

1. Construct the convex envelope Qj of Q;, Vj € J.
2. Solve CE:PCKM using the algorithm for continuous knapsack problem.

3. Determine the optimal solution X to LP:PCKM from the optimal solution z of CE:PCKM
according to Proposition 2.

4. Construct feasible solution (d,x) to PCKM from % using the rounding heuristic.

The time complexity if step 1 is O(L?), that of remaining steps is O(L), and hence the total time
complexity is O(L?).

4.3 Computational Experiments

Computational experiments were performed for the problem types generated using the test suite.
The intentions were to study the reduction in computational time by using the proposed convex
envelope based algorithm (as against solving by the simplex algorithm) and the optimality gap of
the solution provided by the heuristic. As before, 100 instances of each of the problem types were
generated using the test suite for various N values. The MCKM formulation was used to model the
problem as an MILP. Each instance was solved as an MILP to optimality. Its corresponding LP
relaxation based heuristic was solved by simplex algorithm and by the proposed convex envelope
based algorithm. CPLEX was used to solve the MILP and the LP relaxation using simplex.

The structure of the problem had very negligible effect on the solution time of the LP based
heuristics. The average time in milliseconds is shown in Table 5 for the LP based heuristic us-
ing CPLEX and the proposed convex envelope based algorithm. As these values did not change
significantly across problem types, the time for problem type TFTFT is only shown in the table.
The proposed algorithm is more than 100 folds faster than the simplex algorithm implemented
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Problem Number of Items N

° Type 100 200 400 600 800 1000
1 TTTTT 0.0878 0.0382 0.0174 0.0086 0.0066 0.0051
2 TTTFT 0.3627 0.2072 0.0973 0.0685 0.4962 0.0406
3 TTTFF  0.0728 0.0375 0.0171 0.0098 0.0053 0.0041
4 TTFTT 0.1265 0.05647 0.0229 0.0202 0.0110 0.0099
5 TTFFT  0.3352 0.1552 0.0867 0.0534 0.0392 0.0301
6 TTFFF  0.0360 0.0153 0.0052 0.0019 0.0009 0.0000
7 TFTTT 0.0942 0.0439 0.0183 0.0101 0.0074 0.0064
8 TFTFT  0.3997 0.1759 0.0988 0.0685 0.0493 0.0424
9 TFTFF  0.0842 0.0435 0.0166 0.0106 0.0082 0.0051
10 TFFTT 0.0815 0.0512 0.0252 0.0104 0.0089 0.0065
11 TFFFT  0.2818 0.1770 0.0913 0.0508 0.0444 0.0301
12 TFFFF  0.0348 0.0185 0.0073 0.0034 0.0012 0.0001
13 FTTTT 0.2252 0.1165 0.0633 0.0423 0.0224 0.0217
14  FTTFT 03977 0.2075 0.1106 0.0784 0.0547 0.0393
15 FTTFF  0.1351 0.0894 0.0439 0.0236 0.0197 0.0154
16  FTFTT 0.2938 0.1435 0.0666 0.0490 0.0334 0.0298
17 FTFFT 0.4062 0.2526 0.1087 0.0818 0.0466 0.0443
18 FTFFF  0.1285 0.0729 0.0323 0.0219 0.0189 0.0107
19 FFTTT 0.2034 0.1038 0.0635 0.0335 0.0236 0.0215
20 FFTFT 0.3853 0.2122 0.1208 0.0790 0.0583 0.0503
21 FFTFF  0.1487 0.0828 0.0394 0.0249 0.0187 0.0140
22 FFFTT 0.3154 0.1499 0.0875 0.0569 0.0298 0.0283
23 FFFFT  0.4059 0.2246 0.1190 0.0803 0.0544 0.0388
24 FFFFF  0.1732 0.0742 0.0393 0.0225 0.0125 0.0117

Table 6: Average optimality gap (%) of the LP based heuristic
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by CPLEX. Thus, it is clearly preferable in time constrained applications than the commercial
optimizers.

The quality of the solution given by the heuristic was measured using the optimality gap,
calculated against the optimal solution provided by the MCKM formulation. It is obvious that
the problem structure will influence the optimality gap, unlike the solution time. The results are
shown in Table 6. One can easily verify from the Table 6 that problem types with ng > 0 have
more optimality gap than with ng =0 for a; = 0 (by comparing problems XXXFT and XXXFF).
With respect to similarity parameter (TXXXX versus FXXXX), UR functions had more gap than
that of the CR functions. However, there were no significant differences in gap with respect to
continuity (XTXXX versus XFXXX) and marginally decreasing (XXTXX versus XXFXX).

5 Exact Algorithms based on Dynamic Programming

Dynamic programming (DP) is the earliest exact solution technique to the knapsack problem [1] and
hence been successfully applied to its variants. With the knapsack problems having two parameters,
cost and demand, DP formulations based on each of the parameters are commonly developed. The
idea is to make on of these parameters as independent variable and determine the other recursively.
In the DP based on demand, the minimum cost for a given demand is determined recursively.
For the DP based on cost, the maximum demand that can be accommodated for a given cost is

determined recursively.

5.1 Motivation

The DP algorithms for knapsack problems are pseudo polynomial time algorithms, which work
relatively fast for small problem instances. However, with larger problem instances, they tend to
be inefficient in time and memory. Our purpose of developing DP algorithms for PLKP is mainly
twofold: the DP algorithm based on cost is used to develop fully polynomial time approximation
scheme in Section 6 and the DP algorithm based on demand is useful for multi-attribute procure-
ment with configurable bids. The DP based on demand does not only provide the optimal solution
for demand B, but for any demand b € [0, B]. The DP is basically a recursion and hence with a
single run, one can get the optimal solutions for any demand b. This redundancy is useful in certain
decision making scenarios and in particular for PLKP, it is useful auctions with configurable bids.

In multi-attribute auctions, there are multiple attributes to be negotiated, in addition to price.
Configurable bids allows the suppliers to communicate all of their capabilities and gives the pro-
vision for the buyer to configure the bid based on the requirements. For example, consider a steel
procurement scenario, with just two attributes: cost and delivery lead time. With large quantities
of steel being traded, the suppliers submit configurable bids, as shown in Figure 3. In the figure, the
attribute delivery lead time has three possible attribute values, due to the different transportation
modes. Further the cost of delivery depends on the quantity. The buyer has to make two decisions:

choose the optimal quantity ¢; from each bid j and an optimal configuration of the delivery modes
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Figure 3: Configurable bids for attributes cost and delivery lead time

for that optimal quantity. The optimal configuration for ¢; means splitting this quantity across
the various transportation modes to minimize the transportation cost. One can see that this is
clearly a PLKP, for a given g;. The overall procurement decision is complex as the two decisions of
choosing ¢; and the optimal configuration are interdependent. On the other hand, if the optimal
configuration for each possible g; is known in advance, the problem of finding ¢; is relatively easy.
Thus if we use the DP based on demand for the configuration of transportation modes, we can get
the optimal configuration for all possible g; by just solving it once. Note that the dimension of this
problem is generally very small (few alternate attribute values) that the curse of dimensionality of
DP has negligible effect. First we present two naive DP formulations based on the formulation in
[26].

5.2 Naive DP Algorithms

In [26], a nonlinear knapsack problem was considered (called as capacitated plant location problem)
with nondecreasing cost functions. The problem is generic than the PLKP, as the cost need not be
piecewise linear. A DP algorithm based on cost was proposed to solve the problem to optimality.
Based on this algorithm, we propose here two naive algorithms, one based on cost and the other
based on demand. Without loss of generality, it is assumed that B, {47}, and {Q;b} are integers.

5.2.1 DP based on Cost

Let Hj(c) denote the maximum demand that can be satisfied with cost ¢ from items {1,...,j}.
The PLKP can be reformulated as:

min{c: Hy(c) > B} (8)

Based on this new formulation, the DP algorithm iteratively finds the H;(c) for each j and for
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each possible cost ¢ = 0,...,C, where C is an upper bound on the optimal cost. Let Q;l(c) denote

the inverse price function over the domain [Q;(g;), Q;(@;)]:

Q; ' (c) = argmax{Q;(b) < c}, ¢ € [Q;(gy), Q;(3))] (9)

The boundary conditions for H;(c) are:

Qr'(0) c€Qila), Q1(a1)]

Hi(e) = 40 ¢ < Qi(ay) (10)
a c > Ql(ﬁl)

H;(0) = 0VjelJ (11)

Hj(c) = Hj 1(c)Vj>1, c<Qj(a) (12)

Hj(c) = H;(>_ @), c> Y Qi) (13)
1<j 1<j

The other values of H;(c) can be recursively found using the follow relation:

Hi(c) = Hi_i(c—)+Q; )}, Hi 14
i max{c'E[Qj@f)?Sﬁaj)]n[o,c}{ 1o =)+ Q1O B l(c)} .

The optimality of the above recursion can be verified as follows. The possible contribution from
j in terms of cost is from the set {0 U [Q;(a;), Q;(@;)]}. The first term of 14 chooses the optimal
positive contribution ¢ that maximizes the accumulated demand for cost ¢. The second term is for
zero contribution from j (H;(c) = H;_1(c)). For each item j, the time complexity is 0(62) and
the optimal solution can be found in O(N 62) steps. The size of the DP table, which stores all the
values of H is NC. The C can be any upper bound on the optimal cost. A simple heuristic to
determine C is to select items in the order of the increasing unit costs Q;(@;)/a;, till the demand

B is satisfied. The heuristic runs in O(N log N) time.

5.2.2 DP based on Demand

In the similar way, the DP algorithm based on demand can be developed. Let G;(b) denote the

minimum cost at which the demand b can be met using the items 1, ..., 7. The PLKP can restated
as:
min_ Gy (b) (15)
be[B,B|

The B is an upper bound on the accumulated demand of the optimal solution. The demand of the
optimal solution can be greater than B, if the allocation from each of the items (in the optimal
solution) consists only of the indivisible segment a;. Hence, the natural choice for the upper bound
is B = B+ max;{a;}. If 3;a; < B, then B = B. The boundary conditions are:

Q1(b) b€ [ay,a]
G1(b) = 0 b=0 (16)

00 otherwise
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Gj(0) = ovVjelJ (17)

Gj(b) = Gj_l(b) Vj >1,b< a; (18)
Gj(b) = ooifb> Zaz- (19)
1<j

Given the above conditions, the G;(b) can be determined from the following recursive equation:

G(b) = min {b'e[g:?aijl]lm[o,b] {Gio1(b—1b")+Q,(1)} ,Gjl(b)} (20)

The optimality of the recursion can be easily verified. The possible contribution from j in terms of
demand is from the set {0U[a;,@;]} and the recursion searches for the minimum cost from this set.
For each j, the time complexity is O(FQ) and hence the total time complexity is O(N FQ). The size
of the DP table to store all the G values is NB. Next, we present DP formulations with improved

time complexity, which exploit the multiple choice knapsack structure of PLKP.

5.3 Improved DP Algorithms

The multiple choice knapsack problem (MKP) [25, 31] has N classes, where each class j has I;
knapsack items, each with a cost and a weight. The problem is to choose at most one item from
each class such that the demand constraint is met and the overall cost is minimized. As observed
earlier, the PLKP is a generalization of MKP, as it allows partial or fractional allocation of an
item. Let item 7 be called as fractionally allocated if the allocation ¢; ¢ {O,gz-,gil,...,ﬁi}. Let

B* =3’ ;q; denote the total allocation accumulated from the optimal solution. Clearly, B* > B

and the following properties are straightforward.

Proposition 3 Let {g;} be an optimal allocation, with B* = 3=, q;.
1. If B* > B, then q; € {0,a,}, Vj € J.
2. If B* = B, there exists an optimal solution with at most one fractionally allocated item.

3. If item i is fractionally allocated with quantity g;, then the optimal allocation from items J\{i}
is equivalent to the optimal allocation of MKP with classes J \ {i} and demand B — g;.

Exploiting the above properties, we propose DP algorithms, which have better time complexity
than the naive formulations. The outline of the algorithms is as follows. The fractional item ¢ could
be any item in the set J with ¢; € [g;,a;]. Hence, we first solve N MKP problems, each without
an item ¢. For this we use the DP formulations of MKP. Then with each of the above MKP, we
combine the corresponding fractional item ¢ to determine the optimal allocation for PLKP.

For DP formulations of MKP, define ¢; = Q; (5;" ), for all j € J and 0 < s <[;. Note that each
item of PLKP is a class in its corresponding MKP. The DP formulations for MKP were proposed
in [9]. The idea is to consider one class of MKP at a time and the problem is solved sequentially.

Therefore for a MKP with N classes, the solution is found in N stages.
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5.3.1 DP based on Cost

First we present the DP algorithm for MKP. Let Vj(c) denote the maximum demand that can be
satisfied for a cost ¢ with MKP classes 1,...,7. The MKP can then be reformulated as:

Z(MKP) =min{c: Vn(c) > B} (21)
The Vj(c) can be recursively defined as:
Vile) = max {max{V;-1(c ~ &) + 8}, V;1(e)} (22)

where ¢ = 0, ..., C for an upper bound C on optimal cost of MKP. It is easy to verify the optimality
of the recursion. At stage j, there are two possibilities: either include or not to include one of the
MKP items from class j. The boundary conditions to the recursion are V;(0) = 0 and Vj(c) = —o0
if one cannot accumulate any demand for cost ¢ with classes 0, ..., j.

The heuristic to determine C for MKP is similar to that of the PLKP. The total time complexity
to evaluate the DP table is O(LC) and the size of the DP table is NC. It is worth noting that the
above optimal value is an upper bound to that of PLKP. Using the above formulation, we solve
the PLKP as follows. Any item ¢ could have fractional allocation in PLKP. So, we solve the MKP
N additional times, each time without an item i. Let MKP~* denote the MKP without i. With
a slight abuse of notation, we use Vj*i(c) to denote the accumulated demand for the MKP~%. It
clearly follows that for all 7 € J:

V() = Vj(e) Vi < i, Ve (23)

Hence MKP~* requires additional N — i evaluations of V. The total space to store all the V values
of all the MKPs is N2C and the time complexity is O(NLC). If i has the fractional allocation
b € [a;,@;] in the optimal solution, then the optimal cost of PLKP is Q;(b)+c, where Vy‘(c) = B—b.

Let Z' denote optimal cost such that i has fractional allocation.

Zt = beI[Ii,%i] {Qi(b) +min{c: Vy'(c) = B - b}} (24)

The minimum is taken over all possible allocations b from i in [g;, @;], with contribution Q;(b).
The demand B — b is exactly satisfied from MKP~* (if possible). The V determines the maximum
demand for a given cost and hence many different costs can be achieved for the same demand B —b.
The minimum of such costs is chosen as the contribution from MKP~*. For the ease of establishing

the time complexity, we use the following technique to determine the Z°.

Zi= cg[loin] {c +Qi(b): b= (B - Vgi(c)) € [gi,a,-]} (25)

It is same as that of above, but the minimum is taken over all possible contributions from
MKP~’. Clearly, it takes O(C) steps to determine Z* using the MKP~*. The optimal solution to
PLKP can be easily determined by investigating all Z* and MKP (solutions with B* > B).
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Z(PLKP) :min{minzi, min {c: Vi(c) ZB}} (26)
e c€[0,C]

The first term takes O(NC) steps and the second term takes O(LC) steps. Hence, the overall
time complexity including the MKP~, is O(NLC).

5.3.2 DP based on Demand

The DP based on demand exploiting the MKP can be developed in the similar way as above. Let
U;(b) be the minimum cost at which the demand b can be met with MKP from classes 1,...,j.
Then the optimal cost of the MKP is:

Z(MKP) = min{Un(b) : b > B} (27)
The U;(b) can be recursively defined as:
U;(b) = min {min{U;_1(b - &) + ¢}, U;_1(b)} (28)

where b = 0,..., B and B is an upper bound on the accumulated demand from the optimal solution
to MKP. The B = B + max]-{gj} is an upper bound on the accumulated demand. The boundary
conditions are U;(0) = 0 and U;(b) = oo if b units cannot be exactly met from classes 1,...,j. The
space required to maintain all the values is NB and time complexity is O(LB).

Let Uj_i(b) denote the corresponding recursion of MKP~%. Similar to that of the previous
algorithm, one can easily see that the total time complexity for evaluating all MKP~" is O(NLB)
and the total space required is in O(N?B). If item 4 has fractional allocation in the optimal solution
of PLKP, then the optimal cost is given by

7'= min {Qiv) + Uy (B - b)} (29)
The optimal solution to PLKP is then the minimum of all Z* and MKP with no items with fractional

allocation.

Z(PLKP) = min {min Z gg{UN(b) }} (30)

€]
The time complexity of first term is O(NB) and that of second is O(LB), amounting to the total

time complexity of O(NLB). This is better than the naive formulation with time complexity
O(N FZ), as L will be usually less than the demand B.

5.4 Computational Experiments

Computational experiments were performed to study the improvement in computational time of
the proposed MKP based DP algorithms. Extensive experimentation using the test suite is not

required as the structure of the problem instance is irrelevant to the DP algorithms (which depend
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Problem N o, DP-Cost 5 DP-Demand

Type Naive Improved Naive Improved
5 603.5 6.91 0.79 286.94 2.0 0.77
10 1105.5 47.8 6.42 517.85 5.91 3.78
DP1 15 1606.4 113.95 22.35 753.68 16.68 8.59
20 2168.0 219.35 53.58 995.93 31.43 20.96
25  2723.5 354.96 105.93 1228.31  51.74 41.09
5 3694.0 323.24 7.08 2482.6 80.77 3.12

10 6909.3  2038.31 46.93 4588.1  507.95 24.03
DP2 15 10407.4  5440.15 159.69 6656.0 1275.11 84.87
20 13191.5 9583.26 359.89 8653.4 2321.41 209.51
25 16333.5 15298.69 651.19 10577.9 3651.48 389.56

Table 7: Average computational time in milliseconds for DP algorithms

only on N, L, C, and B). Two types of problems were considered with the following characteristics:
(DP1) 65 € {20,30,40,50} and (DP2) 65 € {100,200,...,500}. The values of other parameters for
both problem types were: I; € {2,3,4,5}, 8; € {1,2,...,5}, and nj € {20,30,40,50}. The two
types differ only by the values of {(5]5-}, which results in varying values for B and C. The experiments
were conducted for small values of N and results are shown in Table 7. The computational time
is averaged over 100 instances of each problem type. The upper bounds B and C shown in the
table are average values. The approximate average values of L for N = 5,10, 15,20, and 25 were
17,35,52,70, and 87, respectively. There is significant reduction in the computational time of
improved DP algorithms based on cost. For the DP algorithms based on demand, the reduction in

time is more for problems with larger B.

6 Approximation Algorithms

The PLKP is N'P-hard and therefore it is of immediate interest to investigate the possibility of
approximation algorithms. An approximation algorithm is necessarily polynomial, and is evaluated
by the worst or average case possible relative error over all possible instances of the problem. In
this section, a 2-approximation algorithm is proposed for PLKP, which will be subsequently used

to design a fully polynomial time approximation scheme.

6.1 A 2-Approximation Algorithm for PLKP

For a minimization problem, an e-approzimation (¢ > 1) algorithm is a polynomial time algo-
rithm that yields a solution with a value that is at most € times the optimum solution value.
A 2-approximation algorithm is proposed here for the PLKP. The approximation algorithms for

maximization version of the knapsack problems are well studied [32, 18, 27, 28]. However, these
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algorithms do not give the same approximation ratio for the minimization version and in some
cases it is not even possible to characterize the ratio (though the exact algorithms for maximiza-
tion problems can solve the minimization problems). On the contrary, very few papers [12, 26, 13]
consider the minimization problem. The general idea for the algorithm is outlined in [12]. It
is a multi-run greedy algorithm that identifies a critical item at each run and the final solution
guarantees a 2-approximation ratio. In the same lines, we design our algorithm by using the LP
relaxation to identify a segment of an item, which we call as the break segment. The break segment
can be either in or not in the optimal solution and if it is in the optimal solution it can either
be partially or fully allocated. Considering all these possibilities, we construct a 2-approximation
solution. If it cannot be guaranteed, the segment is removed and the LP relaxation is again applied.
The algorithm stops when a 2-approximation is guaranteed or when it is impossible to remove any
more segments. In the following, we use the decision variables d,x, X consistent with the notation
of LP based heuristic of Section4. The x denote the solution of LP:PCKM and d,x denote the
constructed feasible solution of PCKM.

Proposition 4 The feasible solution to PCKM, constructed using the LP rounding heuristic, has
at most one z; such that 0 < z3 < 1. If all 27 are either 1 or 0, then either the solution is optimal

or there is exzactly one 0 < :%2 < 1 in the LP solution that was rounded to obtain dg =1.

Proof: See appendix.

The above proposition identifies an unique segment of a feasible PCKM solution that was
constructed from the LP solution. The variable corresponding to this segment is an z; € (0,1)
or d?, whose corresponding LP variable :/%2 had a fractional value. This segment will hereafter be
referred to as the break segment. Let I denote a set of segments {(4, s)} that preserve the precedence
constraints and 1p_pckm(I, A, F, 3, 3, b) denote the LP relaxation procedure on the set I. The
other arguments in the procedure are outputs: A is the set of segments with LP solution £ = 1,
F is the set of segments with fractional values 0 < £7 < 1, 7 and § define the break segment (5, §),
and b = :1:; ;” if § #0, else b = a;. Let the quantity b accepted from the break segment be called
as the break quantity. Note that this quantity is the accepted quantity in the PCKM solution (and
not in the LP solution). Let co(Set) be the cost of segments in set Set evaluated using the values

of PCKM variables {x} and wt(Set) denote the demand accumulated from the segments in Set.

co(Set) = Z Bioix; (31)
(j,8)ESet

wt(Set) = Z 65 (32)
(j,s)ESet

Following is our 2-approximation algorithm for PLKP using the PCKM formulation.
Algorithm 3 2-APPROX: A 2-approzimation algorithm for PLKP.
1. (Initialize) I = {(4,s) : 0 < s <I;, Vj}; R=0; z = o0; I' = {;
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2. while wt(I) > B do:

2.1. 1p_pckm(I, A, F, j, §, b);
2.2. z < min(z, co(A) + co(F));
2.3. if F = () then stop fi;
2.4. if co(F') < co(A) then stop fi;
25. T I\ {Us»3(5,5)} R RU{Us23(3,)};
2.6. if § % 0:

26.1. 05 b1 I+ TU (7,8) \ {Us<3(J,9)};

26.2. " =3,.; 623%; b =3k 0%;

2.6.3. while wt(I') > (B —b") do:

(a) lppckm(I', A", F' ', &', V);
(b) z < min(z,” + co(A") + co(F"));
(c) if F' = () then break fi;
(d) if j/ = 7 then break fi;
(e) if co(F') < (" + co(A’)) then break fi;
() I' = '\ {Usz (4", ) 15
od;

fi;

od;

The 2-approximation solution value is stored in z. The set F' in 1p_pckm(-) is the set of segments
with fractional LP solutions Z7. All the segments in F' would belong to the same item j and they will
all be contiguous in s. This is because there will be only one segment of the convex envelope with
fractional value in CE:PCKM (as it is equivalent to solving continuous knapsack problem) and this
fractional value results in PLKP segments (of that convex segment) with fractional values. Note
that though the F' is determined using LP variables %, in Steps 2.2 and 2.4, the co(F) is evaluated
using the PCKM variables x. This gives the contribution (in terms of cost) of the segments from F
to the original problem. To prove the correctness of 2-approximation of the algorithm, the following

observations are made first:
e If F =), then the break segment (7, ) is null and A has the optimal segments to I.

o If F #£ (), then wt(A) < B and A is the set of optimal segments to I for demand wt(A). Then
it follows that co(4) < Z(PCKM).

Theorem 2 Algorithm 2-APPROX is a 2-approzimation algorithm to PLKP.
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Proof: It is required to prove that Z(PCKM) < z < 2 x Z(PCKM). The first inequality can be
validated easily as z always stores the value of a feasible solution. Consider the first iteration. If
F = (), then the solution is optimal and thus the theorem is true. If F' # ), and if co(F) < co(A)
then,

z < (co(A) + co(F)) <2 x co(A) < 2 x Z(PCKM) (33)

Thus if the algorithm terminates at Steps 2.3 or 2.4, the theorem is proved. If co(F') > co(A), then

there are four possibilities:
1. The break segment (7, §), with quantity greater than or equal to b, is in the optimal solution.

2. The break segment (j,3), with quantity greater than or equal to b, is not in the optimal

solution.
3. The break segment (7, §), with quantity less than b, is in the optimal solution.
4. The break segment (j, §), with quantity less than b, is not in the optimal solution.

The above four exhaust all the possibilities and at least one of them is true. If (1) is true then
co(F) < Z(PCKM) and hence

z < (co(A) + co(F)) < 2 x Z(PCKM) (34)

If (2) or (4) is true then the break segment can be removed from I as it will not alter the optimal
solution. The algorithm can be stopped if (1) is known to be true, but since it is not known which of
the possibilities is true the algorithm is continued further. Thus if (1) is true, the 2-approximation
is guaranteed. If not, remove the break item from I (Step 2.5). Due to the precedence constraints,
removal of break segment leads to the removal of the subsequent segments in j from I. Ignoring
the Steps 2.6 to 2.8, z is a 2-approximation value if either of the possibilities (1), (2), and (4) is
true. This is because, at every run of 1p_pckm(-) at least one of the segments is removed from
I and the set R has the removed items. The algorithm terminates at 2.3 or 2.4 guaranteeing a
2-approximation solution, otherwise it terminates when wt(I) < B. At this stage, at least one of
the segments from R should be in the optimal solution, otherwise it leads to infeasibility. Since
the possibility of the segments in the optimal solution is taken care of, the 2-approximation is
guaranteed.

The possibility (3) is true only if the break segment is not the indivisible segment. This is taken
care of in Step 2.6. If break segment is in the optimal solution with quantity less than b, then all
segments preceding § in j belong to the optimal solution. A new PLKP is created with segments
I' and demand b”. The I', however, has the break segment with quantity b — 1, as the optimal
quantity is less than b. The Step 2.6.3 is similar to Step 2, except that the problem considered
at 2.6.3 assumes that the break item is in the optimal solution with quantity less than b. Thus
the solution obtained in 2.6.3 guarantees a 2-approximation for I’. The algorithm, hence, yields a

2-approximation solution for all the above four possibilities.

26



The Step 2.1 takes O(L?) time and Step 2.6.3 takes O(L?) time. The Step 2 has to repeated
O(L) times and hence the total time complexity is O(L*). The algorithm could be implemented in
a more efficient way by implementing Step 2.6 independently from Step 2. The efficiency is achieved
by avoiding the calling the LP relaxation routine repeatedly. Note that in every run of Step 2, the
segments in set A are preserved, that is A is a non-decreasing set, only including new segments
in the consecutive runs. Thus, in every run, only the new segments to be added to A are to be
identified. This can be implemented in the following way. First evaluate the convex segments of all
the cost functions in O(L?) time. Next, create a min-binary heap of the convex segments in O(L)
time [11]. The CE:PCKM can be solved by choosing the convex segments in increasing slopes till
the demand is satisfied. This is equivalent to removing the root (minimum element) of the binary
heap, till the demand is satisfied. The break segment and the break quantity can be found from
the last convex segment removed. Note that F' contains the linear segments corresponding to this
last convex segment and A contains all the segments removed, but the last segment. According to
Step 2.5, segments that follow the break segment should be removed from I. This is equivalent to
removing the remaining convex segments of j from the heap. However, linear segments preceding
§ in F', should be added in I. Find the convex envelopes just for these segments and add to the
heap. The I is now the segments in A, plus the segments in the binary heap. Now the new demand
is B — wt(A). Remove the root elements from the heap till this new demand is satisfied. Thus the
Step 2 (without 2.6) can be implemented by maintaining a single binary heap and a set A. The time
complexity of deletion of the root in the heap is O(log L). At worst L segments need to be removed
and hence the complexity is O(Llog L). At every run, convex envelope needs to be evaluated for
the segments s < §, which are in F'. In the worst case, it has to be done for all the segments and
hence the time complexity is O(L?). The new convex segments then need to be inserted into the
heap. Each insertion has O(log L) complexity and hence the total complexity is O(L log L). Thus
the total time complexity of Step 2, excluding 2.6, is O(L?). The Step 2.6 is similar to the above,
except that the demand and certain segments are changed. Hence, Step 2.6 also takes O(L?) time.
However, it may be required to do this for every segment and hence the total complexity is O(L3).

Thus we have the total time complexity of the 2-approximation algorithm as O(L3). [

6.2 A Fully Polynomial Time Approximation Scheme

The 2-approximation algorithm developed above is a constant ratio approximation. The approzi-
mation schemes are superior to the constant ratio approximations as their performance does not
limit the ratio on the error. A fully polynomial time approzimation scheme (FPTAS) is proposed
here for the PLKP.

Definition 2 (FPTAS) An algorithm is called an FPTAS if for a given error parameter e, it
provides a solution with value z such that z < (1 + €)z* for a problem instance with optimal

objective value z*, in a running time that is polynomial in the size of the problem and %

The € in 2-approximation is 1 but in FPTAS it can be made as close to 0 as desired with a running

time as a function of %, N, and L. FPTAS generally exist for problems with knapsack structure
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due to the pseudo-polynomial time dynamic programming algorithm. The DP based on cost is
the essential building block for the FPTAS [15]. Recall that the running time of DP based on
cost is O(NLC) where C is some upper bound on the objective value. The idea of the FPTAS is
to exploit this DP algorithm and the 2-approximation algorithm. The cost ¢; = ¢75; are scaled,
thus reducing the running time of the algorithm to depend on the new scaled value. However,
the optimal solution for the scaled problem need not be optimal to the original. With a judicious
selection of the scaling factor, the optimal solution of the scaled problem can be made close to that
of the original problem. Following is the FPTAS for the PLKP. Let Cy be the objective value of

the 2-approximation algorithm and e the required approximation ratio.

Algorithm 4 DP-FPTAS: FPTAS for PLKP

_ €C:
1 k=
2. if k> 1

then & = |%]: T =|¢|;
else ¢} = cf; C = Cy;
fi;

3. C¢ + DP_Cost (¢, C)

The algorithm first determines the scaling factor k¥ based on the desired error parameter € (if £ < 1,
scaling is not required). The DP_Cost(&, C) is the DP algorithm developed in Section 5.3.1, applied
to the scaled problem with cost & and upper bound C. Let Cost(Set,ct) denote the total cost of

items in set Set evaluated with cost ct.
Proposition 5 The value C is the upper bound to the scaled problem.

Proof: See appendix.

The above proposition is necessary for the DP-FPTAS algorithm, since without that, one cannot

guarantee an optimal solution to the scaled problem.
Theorem 3 Algorithm DP-FPTAS is an FPTAS for the PLKP.

Proof: Let € be the given error parameter and C, the optimal objective value of the scaled problem
obtained by DP-FPTAS. Then according to the definition of FPTAS, one has to prove C, < (1+¢€)C*
and running time of DP-FPTAS is polynomial in N, L, and % First consider the case where k > 1.
Let A* be the set of items with optimal quantities to the PLKP and A, the set of items with

S

optimal quantities to the scaled problem. Then, co(A*,c) = C* and co(4,€) = Ce. As ¢} = [%J,

c; > ke >ci—k (35)
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The first inequality is obvious from the definition and the second inequality follows from the in-
equality z — 1 < |z]. By the definition of A*, A, and &,

co(Ae,c) > co(A*,¢) > k x co(A*,€) > k X co(Ae, &) > co(Ae,c — k) (36)

The first inequality follows from the fact that items of A* are optimal to the unscaled problem,
second follows from ¢} > ké3, third is due to the optimality of items of A, to the scaled problem,

and the last one is because k¢; > ¢j — k. Thus,

co(A*,¢c) > co(Aec—k) > co(Ae,c) — Lk
= co(Ae,¢) < C*"+ Lk
= co(A., &) < C*"+ Lk
< C'+ %
< C"+eC*
= Ce < (14+¢C"

The fourth inequality follows from the 2-approximation bound Cy. The time taken by the algorithm
is the time taken to determine the 2-approximate solution Cy (O(L?)) plus the time taken by the
DP (O(NLC)).

—~ C C, 2NL?
NLC = NL {JJ <NL2Z = (37)
k k €
The total time complexity is O(LTB) (as N < L) and hence the algorithm DP-FPTAS is an FPTAS
for PLKP. [

7 Conclusions

This paper considered an important class of nonlinear knapsack problems in which the cost of
inclusion of the quantity of an item is a nonconvex piecewise linear function. The cost function
considered was generic enough to include various special cases like continuous, linear, concave,
convex, marginally decreasing, discontinuous fixed costs, etc. This abstract function can thus model
cost structures arising in logistics and supply chains. The problem was particularly motivated by
its application to winner determination in volume discount procurement auctions. The problem is
NP-hard and was studied from two perspectives: (1) the practical purpose of solving the problem
in real-world applications such as e-commerce by developing heuristic and exact algorithms to
solve the problem with less computational effort and (2) theoretical viewpoint of studying the
approximability of the hard problem.

Two mixed integer programming formulations were proposed which are generalizations of prece-
dence constrained knapsack problems and multiple choice knapsack problems. These formulations
were compared with the standard textbook formulations in terms of solution time by a commer-

cial optimization package. The computational experiments conducted over a set 24 representative
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problem types show that the MCKM formulation proposed by us took less computational time
than that of the other formulations for all the problem types.

A fast polynomial time heuristic was proposed to solve the linear relaxation of the problem using
convex envelopes. Computational experiments showed that the proposed heuristic was 100 folds
faster than that of solving using traditional simplex algorithm. T'wo pseudo polynomial time exact
algorithms based on dynamic programming were devised using the multiple choice formulation.
These formulations are faster than the existing naive formulations. A 2-approximation algorithm
and a fully polynomial time approximation scheme were also developed.

There are some interesting research problems with respect to solution techniques. An intelligent
branch and bound technique that exploits the fast convex envelopes based linear relaxation can
possibly solve the problem at a much faster rate than other enumerative search techniques. There is
also scope for improving the computational and memory requirements of the dynamic programming
algorithms. The information from the LP relaxation can possibly leveraged to fix some of the
variables in the dynamic programming to their optimal values. Another research direction is to
develop the concept of core problems for PLKP, similar to that of the knapsack problem [31], where

only a subset of items are considered having a high probability of being in the optimal solution.
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Appendix

Proof of Theorem 1

Proof: It can be easily verified from the construction of the algorithm that Qj is convex over [0, @;]

(it is continuous and piecewise linear with increasing slopes). It is also underestimating, Qj(qj) <

Q;(g;)- Thus the conditions 1 and 2 of Definition 1 are satisfied. For proving condition 3, let there

exist a function @j which satisfies conditions 1 and 2, and @j(w) > Qj(w) for some w € [0,a;].
Let r be the segment of @Q; which includes w. If s = min{s € S,} and s" = max{s € S,}, then
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Figure 4: Proof of Qj as the convex envelope

w € [Sj’_l, 5;-"] (refer Figure 4). By construction of the algorithm, at the end points of the segment
7, Qj(-) = @;(+). Since (), is an underestimating convex function,
Q;(g)) < Qi(g) = Q5(g;) for ¢; = 67", &5
= kQ;(05 ) + (1 - k)Q;(8") < kQ; (851 + (1 - k)Q;(8") Vk €[0,1]
= QR T HA-RE) <@ (kT +A-RE")  Vkeo1]

= Q;(w) < Qj(w)

1-—
1-—

which contradicts the assumption of @j. Thus condition 3 is also satisfied and Qj is the convex
envelope of ();. (The above implications can be proved as follows: first implication is a direct
inequality due to the inequality at the end points, the second implication is due to the fact that @j
is a convex function and Qj is linear over the segment r, and the third implication is straightforward
by the definition of w.) [

Proof of Proposition 2

Proof: Assigning 27 = 2] for s € S, and 1 <r <1, for all j, the precedence constraints are clearly

satisfied. For the demand constraint,

L tj
DD % = D30 D 6

j s=1 j r=1s€S,

SRS

7 r=1 SESy

tj
= 225

j r=1

which is a feasible allocation as z is feasible. To show that the allocation is optimal,
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= Z(LP:PCKM) = Z(CE:PCKM)

Proof of Proposition 4

Proof: The CE:PCKM is a continuous knapsack problem (refer Proposition 1) and therefore the
optimal solution will have at most one fractional variable. The convex segment of this fractional
variable gives rise to fractional variables in the LP solution. If the variable of the convex segment
is not fractional, so are the corresponding variables of the LP solution (by Proposition 1). Hence
the fractional variables in the optimal LP solution are contiguous and belong to the same item j.
When converted into a feasible PCKM solution, there will be at most one fractional z3. If there are
no fractional variables, then either the solution is optimal or the fractional convex segment was the
first segment which made the corresponding :ﬁ? in the LP solution fractional, and finally rounded
the df = 1. n

Proof of Proposition 5

Proof: If £ < 1 then the proposition is obvious. For k > 1, let the proposition be false. Then,
[%J < C¢, where C is the optimal objective value of the scaled problem. Let Ao be the set of items

with quantities for the 2-approximate solution for the unscaled problem. Then, co(As,c) = Cj.

co(A, &) < {%J <cC. (38)

The first inequality follows from the fact that |z1] + ...+ |zn] < |(z1 + ... + z,)] for any real
numbers z1,. .., z,. Note that the set of items in Ay are feasible to PLKP (irrespective of the cost

structure) and therefore co(As,&) > C.. This contradicts the above relation and hence C. < C. m
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