
An Algorithm for Multi-Unit Combinatorial Auctions

Kevin Leyton-Brown and Yoav Shoham and Moshe Tennenholtz
Computer Science Department

Stanford University
Stanford, CA 94305

Abstract

We present a novel algorithm for computing the optimal win-
ning bids in a combinatorial auction (CA), that is, an auction
in which bidders bid for bundles of goods. All previously
published algorithms are limited to single-unit CAs, already
a hard computational problem. In contrast, here we address
the more general problem in which each good may have mul-
tiple units, and each bid specifies an unrestricted number of
units desired from each good. We prove the correctness of
our branch-and-bound algorithm, which incorporates a spe-
cialized dynamic programming procedure. We then provide
very encouraging initial experimental results from an imple-
mented version of the algorithm.

Introduction
Auctions are the most widely studied mechanism in the
mechanism design literature in economics and game the-
ory (Fudenberg & Tirole 1991). This is due to the fact
that auctions are basic protocols, serving as the building
blocks of more elaborated mechanisms. Given the wide
popularity of auctions on the Internet and the emergence
of electronic commerce, where auctions serve as the most
popular game-theoretic mechanism, efficient auction design
has become a subject of considerable importance for re-
searchers in multi-agent systems (e.g. (Wellmanet al. 1998;
Monderer & Tennenholtz 2000)). Of particular interest are
multi-object auctions where the bids name bundles of goods,
called combinatorial auctions (CA). For example, imagine
an auction of used electronic equipment. A bidder may wish
to bid x for a particular TV andy for a particular VCR, but
z 6= x + y for the pair. In this example all the goods at auc-
tion are different, so we call the auction a single-unit CA.
In contrast, consider an electronics manufacturer auctioning
100 identical TVs and 100 identical VCRs. A retailer who
wants to buy 70 TVs and 30 VCRs would be indifferent be-
tween all bundles having 70 TVs and 30 VCRs. Rather than
having to bid on each of the

(100
70

)

·
(100

30

)

distinct bundles,
she would prefer to place the single bid (price,{70 TVs, 30

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

VCRs}). We call an auction that allows such a bid a multi-
unit CA.

In a combinatorial auction, a seller is faced with a set of
price offers for various bundles of goods, and his aim is to
allocate the goods in a way that maximizes his revenue. This
optimization problem is intractable in the general case, even
when each good has only a single unit (Rothkopf, Pekec,
& Harstad 1998). Given this computational obstacle, two
parallel lines of research have evolved. The first exposes
tractable sub-cases of the combinatorial auctions problem.
Most of this work has concentrated on identifying bidding
restrictions that entail tractable optimization; see (Rothkopf,
Pekec, & Harstad 1998; Nisan 1999; Tennenholtz 2000;
Vries & Vohra 2000). Also, the case of infinitely divisible
goods may be tractably solved by linear programming tech-
niques. The other line of research addresses general com-
binatorial auctions. Although this is a class of intractable
problems, in practice it is possible to address interestingly-
large datasets with heuristic methods. It is desirable to
do so because many economic situations are best modeled
by a general CA, and bidders’ strategic behavior is highly
sensitive both to changes in the auction mechanism and
to approximation of the optimal allocation (Nisan & Ro-
nen 2000). Previous research on the optimization of gen-
eral CA problems has focused exclusively on the simpler
single-unit CA (Fujishima, Leyton-Brown, & Shoham 1999;
Sandholm 1999; Lehmann, O’Callaghan, & Shoham 1999)).
The general multi-unit problem has not previously been
studied, nor have any heuristics for its solution been intro-
duced.

In this paper we present a novel algorithm, termed CA-
MUS (Combinatorial Auction Multi-Unit Search), to com-
pute the winners in a general, multi-unit combinatorial auc-
tion. A generalization and extension of our CASS algo-
rithm for winner determination in single-unit CA’s (Fu-
jishima, Leyton-Brown, & Shoham 1999), CAMUS intro-
duces a novel branch-and-bound technique that makes use of
several additional procedures. A crucial component of any
such technique is a function for computing upper bounds
on the optimal outcome. We present such an upper bound

function, tailored specifically to the multi-unit combinatorial
auctions problem. We prove that this function gives an up-
per bound on the optimal revenue, which enables us to show
that CAMUS is guaranteed to find optimal allocations. We
also introduce dynamic programming techniques to more
efficiently handle multi-unit single-good bids. In addition,
we present techniques for pre-processing and caching, and
heuristics for determining search orderings, further capital-
izing on the inherent structure of multi-unit combinatorial
auctions.

In the next section we formally define the general multi-
unit combinatorial auction problem. In Section 3 we de-
scribe CAMUS. In Section 4 we deal in some more detail
with some of CAMUS’s techniques. Due to lack of space,
we cannot present all the CAMUS procedures in detail; how-
ever, this section will clarify its most fundamental compo-
nents. In Section 5 we present our experimental setup and
some experimental results.

Problem Definition
We now define the computational problem associated with
multi-unit combinatorial auctions.

Let G = {g1, g2, . . . , gm} be a set of goods. Letq(j)
denote the number of available units of goodj. Con-
sider a set of bidsB = {b1, . . . , bn}. Bid bi is a pair
(p(bi), e(bi)) wherep(bi) is the price offer of bidbi, and
e(bi) = (e(bi)1, e(bi)2, . . . , e(bi)m) where e(bi)j is the
number of requested units of goodj in bi. If there is no bid
requestingk units of goodi and 0 units of all goodsj 6= i
(for some1 ≤ i ≤ m and some1 ≤ k ≤ q(i)) then, w.l.o.g,
we augmentB with a bid of price 0 for that bundle. An al-
locationπ ⊆ B is a subset of the bids whereΣb∈πe(b)j ≤
q(j) (1 ≤ j ≤ m). A partial allocationπpartial is an al-
location where, for somej, Σb∈πpartiale(b)j < q(j). A full
allocation is an allocation that is not partial. LetΠ denote the
set of all allocations. The multi-unit combinatorial auction
problem is the computation of an optimal allocation, that is,
argmaxπ∈ΠΣb∈πp(b). In short, we are searching for a sub-
set of the bids that will maximize the seller’s revenue while
allocating each available unit at most once.

Note that the definition of the optimal allocation assumes
that bids are additive–that an auction participant who sub-
mits multiple bids may be allocated any number of these
bids for a price that equals the sum of each allocated bid’s
price offer. In some cases, however, a participant may wish
to submit two or more bids but require that at most one will
be allocated. We permit such additional constraints through
the use ofdummy goods, introduced already in (Fujishima,
Leyton-Brown, & Shoham 1999). Dummy goods are normal
single-unit goods which do not correspond to actual goods in
the auction, but serve to enforce mutual exclusion between
bids. For example, if bidsb1 and b2 referring to bundles
e(b1) ande(b2) are intended to be mutually exclusive, we
add a dummy goodd to each bid:e(b1) becomese(b1) ∪ d,

ande(b2) becomese(b2) ∪ d. Since the goodd can be al-
located only once, at most one of these bids will be in any
allocation. (More generally, it is possible to introducen-unit
dummy goods to enforce the condition that no more thann
of a set of bids may be allocated.) While dummy goods in-
crease the expressive power of the bidding language, their
use has no impact on the optimization algorithm. Hence, in
the remainder of this paper we do not discriminate between
dummy goods and real goods, and we assume that all bids
are additive.

In the sequel, we will also make use of the following no-
tation. Given an allocationπ and a goodi, we will denote
the total number of units allocated inπ, and the total number
of units of goodi allocated inπ, byunits(π) andunitsi(π)
respectively. In additionunits(total) will denote the total
number of units over all goods.

Algorithm Definition

Branch-and-Bound Search

Given a set of bids, CAMUS systematically compares the
revenue from all full allocations in order to determine the
optimal allocation. This comparison is implemented as a
depth-first search: we build up a partial allocation one bid at
a time. Once we have constructed a full allocation we back-
track, removing the most recently added bid from the partial
allocation and adding a new bid instead. Sometimes we can
safelyprunethe search tree, backtracking before a full allo-
cation has been constructed. Every time a bid is added to the
current allocation, CAMUS computes an estimate of the rev-
enue that will be generated by the unallocated goods which
remain. Provided that this estimate functiono() always pro-
vides an upper bound on the actual revenue, we can prune
wheneverp(π) + o(π) ≤ p(πbest), whereπ is the current
allocation,p(π) = Σb∈πp(b) andπbest is the best allocation
observed so far.

Bins

Binsare partitioned sets of bids. Consider some ordering of
the goods. There is one bin for each good, and each bid be-
longs to the bin corresponding to its lowest-order good. Dur-
ing the search we start in the first bin and consider adding
each bid in turn. After adding a bid to our partial alloca-
tion we move to the bin corresponding to the lowest-order
good with any unallocated units. For example, if the first
bid we select requests all units of goods 1, 2 and 4, we next
proceed to bin 3. Besides making it easy to avoid consid-
eration of conflicting bids, bins are powerful because they
allow the pruning function to consider context without sig-
nificant computational cost. If bids inbini are currently be-
ing considered then the pruning function must only take into
account bids frombini . . . binm. Because the partitioning
of bids into bins does not change during the search we may

compute the pruning information for each bin in a prepro-
cessing step.

Subbins
In the multi-unit setting, we will often need to select more
than one bid from a given bin. This leads to the idea of
subbins. A subbin is a subset of the bids in a bin that is con-
structed during the search. Since subbins are created dynam-
ically they cannot provide precomputed contextual informa-
tion; rather, they facilitate the efficient selection of multiple
bids from a given bin. Every time we add a bid to our partial
allocation we create a new subbin containing the next set of
bids to consider. If the search moves to a new bin, the new
subbin is generated from the new bin by removing all bids
that conflict with the current partial allocation. If the search
remains in the same bin, the new subbin is created from the
current subbin by removing conflicting bids as above, and
additionally: if bid1, bid2, . . . , bidi is the ordered set of ele-
ments in the current subbin andbidj is the bid that was just
chosen, then we remove allbidk, k ≤ j. In this way we con-
sider all combinations of non-conflicting bids in each bin,
rather than all permutations.

Dominated Bids
Some bids may be removed from consideration in a
polynomial-time preprocessing step. For each pair of bids
(b1,b2) where both name the same goods butp(b1) ≥ p(b2)
ande(b1)j ≤ e(b2)j for every goodj, we may removeb2

from the list of bids to be considered during the search, asb2

is never preferable tob1 (hence we say thatb1 dominatesb2).
However, it is possible that an optimal allocation contains
both b1 and b2. For this reason we storeb2 in a secondary
data structure associated withb1, and consider adding it to
an allocation only after addingb1.

Dynamic Programming
Singleton bids (that is, bids that name units from only one
good) deserve special attention. These bids will generally
be among the most computationally expensive to consider–
the number of nodes to search after adding a very short bid
is nearly the same as the number of nodes to search after
skipping the bid, because a short bid allocates few units
and hence conflicts with few other bids. Unfortunately, we
expect that singleton bids will be quite common in a vari-
ety of real-world multi-unit CA’s. CAMUS simplifies the
problem of singleton bids by applying a polynomial-time
dynamic programming technique as a preprocessing step.
We construct a vectorsingletong for each goodg, where
each element of the vector is a set of singleton bids nam-
ing only goodg. singletong(j) evaluates to the revenue-
maximizing set of singleton bids totalingj units of goodg.
This frees us from having to consider singleton bids indi-
vidually; instead, we consider only elements of the single-
ton vector and treat these elements as atomic bids during

the search. Also, there is never a need to add more than
one element from each singleton vector. To see why, imag-
ine that we add bothsingletong(j) andsingletong(k) to
our partial allocation. These two elements may have bids
in common, and additionally there may be singleton bids
with more thanmax(j, k) elements that would not conflict
with our partial allocation but that we have not considered.
Clearly, we would be better off adding the single element
singletong(j + k).

Caching

Consider a partial allocationπ1 that is reached during the
search phase. If the search proceeds beyondπ1 theno(π1)
was not sufficiently small to allow us to backtrack. Later in
the search we may reach an allocationπ2 which, by combin-
ing different bids, covers exactly the same number of units
of the same goods asπ1. CAMUS incorporates a mechanism
for caching the results of the search beyondπ1 to generate
a better estimate for the revenue givenπ2 than is given by
o(π2). (Sinceπ1 andπ2 do not differ in the units of goods
that remain,o(π1) = o(π2).) Consider all the allocations ex-
tendingπ1 upon consideration of which the algorithm back-
tracked, denoteds1, s2, . . . , sf . When we backtracked at
eachsi we did so becausep(si) + o(si) ≤ p(πbest), as ex-
plained above. It follows thatmaxi(p(si) + o(si)) is an
overestimate of the revenue attainable beyondπ1, and that it
is a smaller overestimate thano(π1) (if it were not, we would
have backtracked atπ1 instead). Since in generalp(π1) 6=
p(π2), we cache the valuemaxi(p(si)+ o(si))− p(π1) and
backtrack whenp(π2) + cache(π2) ≤ p(πbest). Our cache
is implemented as a hash table, since caching is only bene-
ficial to the overall search if lookup time is inconsequential.
A consequence of this choice of data structure is that cache
data may sometimes be overwritten; we overwrite an old en-
try in the cache when the search associated with the new
entry examined more nodes. Even when we do overwrite
useful data the error is not catastrophic, however: in the
worst case we must simply search a subtree that we might
otherwise have pruned.

Heuristics

Two ordering heuristics are used to improve CAMUS’s per-
formance. First, we must determine an ordering of the
goods; that is, which good corresponds to the first bin, which
corresponds to the second, etc. For each goodi we compute
scorei = numbidsi·q(i)

avgunitsi
, wherenumbidsi is the number of

bids that request goodi andavgunitsi is the average num-
ber of total units (i.e., not just units of goodi) requested
by these bids. We designate the lowest-order good as the
good with the lowest score, then we recalculate the score for
the remaining goods and repeat. The intuition behind this
heuristic is as follows:

• We want to minimize the number of bids in low-order

bins, to minimize early branching and thus to make each
individual prune more effective.

• We want to minimize the number of units of goods corre-
sponding to low-order bins, so that we will more quickly
move beyond the first few bins. As a result, the pruning
function will be able to take into account more contextual
information.

• We want to maximize the total number of units requested
by bids in low-order bins. Taking these bids moves us
more quickly towards the leaves of the search tree, again
providing the pruning function with more contextual in-
formation.

Our second heuristic determines the ordering of bids within
bins. Given current partial allocationπ, we sort bids
in a given bin in descending order ofscore(bj), where

score(bj) = p(bj)
units(bj)

+ o(π∪ bj). The intuition behind this
heuristic is that the average price per unit ofbidj is a mea-
sure of how promising the bid is, while the pruning overesti-
mate foro(π∪bidj) is an estimate of how promising the un-
allocated units are, given the partial allocation. This heuris-
tic helps CAMUS to find good allocations quickly, improv-
ing anytime performance and also increasingπbest, making
pruning more effective. Because the pruning overestimate
depends onπ, this ordering is performed dynamically rather
than as a pre-processing step.

CAMUS Outline

Based on the above, it is now possible to give an outline of
the CAMUS algorithm:

• Process dominated bids.

• Determine an ordering on the goods,
according to the good-ordering heuris-
tic.

• Using the dynamic programming tech-
nique, determine the optimal combina-
tion of singleton bids totaling 1 . . . q(j)
for each good j.

• Partition all non-singleton bids into
bins, according to the good ordering.

• Precompute pruning information for
each bin.

• Set i = 1 and π = {}.
• Recursive entry point:

– For j = 1 ...number of bids in the
current subbin of bini.

∗ π = π ∪ bidj .

∗ If (p(π) + cache(π) ≤ p(πbest)) backtrack.

∗ If (p(π) + o(π) ≤ p(πbest)) backtrack.

∗ If (units(π) = units(total)) record π if
it is the best; backtrack.

∗ Set i to the index of the lowest-
order good in π where unitsi(π) < q(i).
(i may or may not change)

∗ Construct a new subbin based on the
previous subbin of bini (which is bini

itself if i changed above):

· Include all bidk from current sub-
bin, where k > j.

· Include all dominated bids associ-
ated with bidj .

· Include singletoni(q(i)− unitsi(π)).
· Sort the subbin according to the

subbin-ordering heuristic.

· Recurse to the recursive entry
point, above, and search this new
subbin.

∗ π = π − bidj .

– End For

• Return the optimal allocation: πbest.

CAMUS procedures: a closer look
In this section we examine two of CAMUS’s fundamental
procedures more formally. Additional details will be pre-
sented in our full paper.

Pruning

In this subsection we explain the implementation of CA-
MUS’s pruning function and demonstrate that it is guar-
anteed not to underestimate the revenue attainable given a
partial allocation. Consider a point in the search where we
have constructed some partial allocationπ. The task of our
pruning function is to give an upper bound on the optimal
revenue attainable from the unallocated items, using the re-
maining bids (i.e., the bids that may be encountered during
the remainder of the search). Hence, in the sequel when we
refer to goods, the number of units of a good and bids, we
refer to what remains at our point in the search.

First, we provide an intuitive overview. For every (re-
maining) goodj we will calculate a valuev(j). Simplifying
slightly, this value is the largest average price per unit of
all the (remaining) bids requesting units of goodj that do
not conflict withπ, multiplied by the number of (remaining)
units ofj. The sum ofv(j) values for all goods is an upper
bound on optimal revenue because it relaxes the constraint
that the bids in the optimal allocation may not conflict.

More formally, let G = {g1, g2, . . . , gm} be a set of
goods. Letq′(j) denote the number of available units of
goodj. Consider a set of bidsB = {b1, . . . , bn}. Bid bi is
associated with a pair(p(bi), e(bi)) wherep(bi) is the price
offer of bid bi, and e(bi) = (e(bi)1, e(bi)2, . . . , e(bi)m)

wheree(bi)j is the requested number of units of goodj in

bi. For each bidbi, let a(bi) = p(bi)
Σ1≤j≤me(bi)j

be the aver-
age price per unit of bidbi. Notice that the average price
per unit may change dramatically from bid to bid, and it is a
non-trivial notion; our technique will work for any arbitrary
average price per unit. LetL(j) be a sorted list of the bids
that refer to non-zero units of goodj; the list is sorted in a
monotonically decreasing manner according to theai’s. Let
|L(j)| denote the number of elements inL(j), and letL(j)k

denote thek-th element ofL(j).
v(j) is determined by the following algorithm:

Let v(j):=0;
Let m(j):=0;
For i := 1 to |L(j)| do
if m(j) < q′(j) then
{let d := min(e(L(j)i)j , q(j) − m(j)); m(j) = m(j) +
d; v(j) = v(j) + a(L(j)i) · d}

Theorem 1 LetBo = {b0
1, b

0
2, . . . , b

0
s} be the bids in an op-

timal allocation. Then,Ro = Σb∈Bop(b) ≤ Σ1≤j≤mv(j).

Sketch of proof: Consider the bidbo ∈ Bo. Then,
p(bo) = Σ1≤j≤ma(bo) · e(bo)j . Hence,Ro = Σb∈Bop(b) =
Σb∈BoΣ1≤j≤ma(b) · e(b)j . By changing the order of sum-
mation we get thatRo = Σ1≤j≤mΣb∈Boa(b) · e(b)j . No-
tice that, given a particularj, the contribution of bidb to
Σb∈Boa(b) · e(b)j is a(b) · e(b)j . Recall now thatv(j)
has been constructed from the set of all bids that refer to
goodj by choosing the maximal available units of goodj
from the bids inL(j), where these bids are sorted accord-
ing to the average price per unit of good. Hence, we get
v(j) ≥ Σb∈Boa(b) · e(b)j . Given that the above holds for
every goodj, this implies thatΣ1≤j≤mv(j) ≥ Σb∈Bop(b),
as requested.

The above theorem is the central tool for proving the fol-
lowing theorem:

Theorem 2 CAMUS is complete: it is guaranteed to find
the optimal allocation in a multi-unit combinatorial auction
problem.

Pre-Processing of Singletons
In this subsection we explain the construction of the
singletong vector described above, and demonstrate that
singletong(j) is the revenue-maximizing set of singleton
bids for goodg that request a total not exceedingj units.

Let b1, b2, . . . , bl be bids for a single goodg, where the
total number of available units of goodg is q. Let p(bi)
ande(bi) be the price offer and the quantity requested bybi,
respectively. Our aim is to compute the optimal selection of
bi’s in order to allocatek units of goodg, for 1 ≤ k ≤ q.
Consider a two dimensional grid of size[1 . . . l] × [1 . . . q]
where the(i, j)-th entry, denoted byU(i, j), is the optimal
allocation ofj units considering only bidsb1, b2, . . . , bi. The

value ofU(i, j), denoted byV (i, j), is the sum of the price
offers of the bids inU(i, j). U(1, j) will be b1 if b1 requests
no more thanj units, and otherwise will be the empty set.
Now we can defineU(i, j) recursively:

1. e(bi) > j: U(i, j) = U(i− 1, j);

2. e(bi) = j: if p(bi) > V (i − 1, j) thenU(i, j) = bi. Else
U(i, j) = U(i− 1, j).

3. e(bi) < j: if V (i − 1, j) ≥ p(bi) + V (i − 1, j − e(bi))
thenU(i, j) = U(i − 1, j). ElseU(i, j) = bi ∪ U(i −
1, j − e(bi)).

This dynamic programming procedure is polynomial, and
yields the desired result; the optimal allocation ofk units is
given byU(l, k). Setsingletong(k) = U(l, k), 1 ≤ k ≤ q.

Experimental results
Unfortunately, no real-world data exists to describe how bid-
ders will behave in general multi-unit combinatorial auc-
tions, precisely because the determination of winners in
such auctions was previously unfeasible. We have there-
fore tested CAMUS on sets of bids drawn from a random
distribution. We created bids as follows, varying the pa-
rametersnumgoods andnumbids, and fixing the parameters
unitsmax = 5, avgpricebase = 50, avgpricevar = 25,
prob1 = 0.8, prob2 = 0.65, pricevar = 0.5:

1. Set the number of units that exist for each good:

(a) For each goodi, randomly chooseunitsi from the
range[1 . . . unitsmax].

(b) If Σiunitsi 6=
numgoodsΣunitsmax

j=1 j
unitsmax

(the expectation on
Σiunitsi) then go to (a). This ensures that each trial
involves the same total number of units.

2. Set an average price for each good:avgpricei is drawn
uniformly randomly from the range[avgpricebase −
avgpricevar . . . avgpricebase + avgpricevar].

3. Select the number of goods in the bid. This number is
drawn from a decay distribution:

(a) Randomly choose a good that has not already been
added to this bid

(b) With probabilityprob1, if more goods remain then go
to (a)

4. Select the number of units of each good, according to an-
other decay distribution:

(a) Add a unit
(b) With probabilityprob2, if more units remain then go to

(a)

5. Set a price for this bid:price = rand(1 − pricevar, 1 +
pricevar) · Σi∈bid(avgpricei · unitsi)

This distribution has the following characteristics that we
consider to be reasonable. Bids will tend to request a small
number of goods, independent of the total number of goods.

Such data cases are computationally harder than drawing a
number of goods uniformly from a range, or than scaling the
average number of goods per bid to the maximum number
of goods. Likewise, bids will tend to name a small num-
ber of units per good. Prices tend to increase linearly in the
number of units, for a fixed set of goods. This is a harder
case for our pruning technique, much harder than drawing
prices uniformly from a range. In fact, it may be reason-
able for prices to be superlinear in the number of units, as
the motivation for holding a CA in the first place may be
that bidders are expected to value bundles more than indi-
vidual goods. However, this would be an easier case for our
pruning algorithm, so we tested on the linear case instead.
The construction of realistic, hard data distributions remains
a topic for further research.

Our experimental data was collected on a Pentium III-
733 running Windows 2000, with 25 MB allocated for CA-
MUS’s cache. Our figureNumber of Bids vs Timeshows
CAMUS’s performance on the distribution described above,
with each line representing runs with a different number of
goods. Note that, for example, CAMUS solved problems
with 35 objects (14 goods) and 2500 bids in about two min-
utes, and problems with 25 objects (10 goods) and 1500 bids
in about a second. Because the lines in this graph are sub-
linear on the logarithmic scale, CAMUS’s performance is
sub-exponential in the number of bids, though it remains ex-
ponential in the number of goods. Our figurePercentage Op-
timality shows CAMUS’s anytime performance. Each line
on the graph shows the time taken to find solutions with rev-
enue that is some percentage of the optimal, calculated after
the algorithm terminated. Note that the time taken tofind the
optimal solution is less than the time taken for the algorithm
to finish, proving that this solution is optimal. These any-
time results are very encouraging–note that CAMUS finds a
99% optimal solution an order of magnitude more quickly
than it takes for the algorithm to run to completion. This
suggests that CAMUS could be useful on much larger prob-
lems than we have shown here if an optimal solution were
not required.

Conclusions
In this paper we introduced CAMUS, a novel algorithm for
determining the optimal set of winning bids in general multi-
unit combinatorial auctions. The algorithm has been tested
on a variety of data distributions and has been found to solve
problems of considerable scale in an efficient manner. CA-
MUS extends our CASS algorithm for single-unit combina-
torial auctions, and enables a wide extension of the class of
combinatorial auctions that can be efficiently implemented.
In our current research we are studying the addition of ran-
dom noise into our good and bin ordering heuristics, com-
bined with periodic restarts and the deletion of previously-
searched bids, to improve performance on hard cases while
still retaining completeness.

Number of Bids vs. Time (s)

0.01

0.1

1

10

100

1000

10000

0 500 1000 1500 2000 2500

Number of Bids

Ti
m

e
(s

)
av

er
ag

e
ov

er
 1

0
ru

ns

25 units (10 goods) 30 units (12 goods) 35 units (14 goods) 40 units (16 goods)

Percentage Optimality

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500

Number of Bids
Ti

m
e

(s
)

av
er

ag
e

ov
er

 1
0

ru
ns

0.8 0.97 0.98 0.99 1 finished

References
Fudenberg, D., and Tirole, J. 1991.Game Theory. MIT Press.

Fujishima, Y.; Leyton-Brown, K.; and Shoham, Y. 1999. Taming
the computational complexity of combinatorial auctions: Optimal
and approximate approaches. InIJCAI-99.

Lehmann, D.; O’Callaghan, L.; and Shoham, Y. 1999. Truth
revalation in rapid, approximately efficient combinatorial auc-
tions. InACM Conference on Electronic Commerce.

Monderer, D., and Tennenholtz, M. 2000. Optimal Auctions
Revisited. Artificial Intelligence, forthcoming.

Nisan, N., and Ronen, A. 2000. Computationally feasible vcg
mechanisms. To appear.

Nisan, N. 1999. Bidding and allocation in combinatorial auctions.
Working paper.

Rothkopf, M.; Pekec, A.; and Harstad, R. 1998. Computation-
ally manageable combinatorial auctions.Management Science
44(8):1131–1147.

Sandholm, T. 1999. An algorithm for optimal winner determina-
tion in combinatorial auctions. InIJCAI-99.

Tennenholtz, M. 2000. Some tractable combinatorial auctions.
To appear in the proceedings of AAAI-2000.

Vries, S., and Vohra, R. 2000. Combinatorial auctions: A brief
survey. Unpublished manuscript.

Wellman, M.; Wurman, P.; Walsh, W.; and MacKie-Mason, J.
1998. Auction protocols for distributed scheduling. Working pa-
per (to appear in Games and Economic Behavior).

