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1. Introduction

The rapid growth of the Internet and the World Wide Web is transforming the way information
is being accessed and used. Newer and innovative models for distributing, sharing, linking, and
marketing the information are appearing. As with any major medium, a major way of financially
supporting this growth has been advertising (popularly known as Internet Advertising or Web
Advertising). The advertisers-supported web site is one of the successful business models in the
emerging web landscape. The rise of Internet advertising has witnessed a range of advertising
formats. The major advertising formats on the web are Banner Ads or Display Ads, Rich Media
Ads, Email Attachment Ads, Classified, and Search Ads. A detailed description of the various
advertising formats can be found in Seda (2004), Hoffman and Novak (2000), Adams (2003), and
Zeff (1999). The Interactive Advertising Bureau is another rich source of the information about
various advertising formats (URL: http://www.iab.net/). In today’s web advertising industry,
Search Ads constitute the highest revenue generating model among all Internet advertising formats.
In this format, advertisers pay on-line companies to list and/or link their company site domain
names to a specific search word or phrase. In this format, the text links appear at the top or side
of the search results for specific keywords. The more the advertiser pays, the higher the position
it gets. When a user clicks on the sponsored link, he is sent to the advertiser’s web page. The
advertiser then pays the search engine for sending the user to its web page. Such pricing models are
known as Pay-Per-Click (PPC) Models. The PPC models were originally introduced by Overture
in 1997 and today they have almost become a standard pricing model for search engine companies,
such as Google, MSN, and Yahoo!. The PPC models for the search engines basically rely on some
or other form of the auction models. These auctions are popularly known as Sponsored Search
Auctions.
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Figure 1 Result of a search performed on Google

1.1. Sponsored Search Auctions

When an Internet user (which we will sometimes refer to as the user, searcher, or customer) enters
a keyword (i.e. a search term) into a search engine, he gets back a page with results, containing
both the links most relevant to the query and the sponsored links, i.e., paid advertisements. When
a user clicks on a sponsored link, he is sent to the respective advertiser’s web page. The advertiser
then pays the search engine for sending the user to its web page. Figure 1 depicts the result of a
search performed on Google using the keyword ’auctions’. There are two different stacks - the left
stack contains the links that are most relevant to the query term and the right stack contains the
sponsored links. Sometimes, a few sponsored links are placed on top of the search search results as
shown in the Figure 1. Typically, a number of merchants (advertisers) are interested in advertising
alongside the search results of a keyword. However, the number of slots available to display the
sponsored links is limited. Therefore, against every search performed by the user, the search engine
faces the problem of matching the advertisers to the slots. In addition, the search engine also
needs to decide on a price to be charged to each advertiser. Note that each advertiser has different
desirability for different slots on the search result page. The visibility of an Ad shown at the top
of the page is much better than an Ad shown at the bottom and, therefore, it is more likely to be
clicked by the user. Therefore, an advertiser naturally prefers a slot with higher visibility. Hence,
search engines need a system for allocating the slots to advertisers and deciding on a price to be
charged to each advertiser. Due to increasing demands for advertising space, most search engines
are currently using auction mechanisms for this purpose. In a typical sponsored search auction,
advertisers are invited to submit bids on keywords, i.e. the maximum amount they are willing
to pay for an Internet user clicking on the advertisement. This is typically referred by the term
Cost-Per-Click (CPC). Based on the bids submitted by the advertisers for a particular keyword,
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Table 1 Historical revenue performance of the Internet advertising industry (revenues in
billions of US dollars)

Year Q1 Q2 Q3 Q4
Annual
Revenue

Year/Year
Growth

Market
Share of
Sponsored
Search

Market
Share of
Display
Ads

2005 2.802 2.985 3.1 3.6 12.487 +30% - -

2004 2.230 2.369 2.333 2.694 9.626 +33% 40% 19%

2003 1.632 1.660 1.793 2.182 7.267 +21% 35% 21%

2002 1.520 1.458 1.451 1.580 6.010 -16% 15% 29%

2001 1.872 1.848 1.773 1.641 7.134 -12% 04% 36%

2000 1.922 2.091 1.951 2.123 8.087 +75% 01% 48%

1999 0.693 0.934 1.217 1.777 4.621 +141% - 56%

1998 0.351 0.423 0.491 0.656 1.920 +112% - 56%

1997 0.130 0.214 0.227 0.336 0.907 +239% - 55%

Source: Interactive Advertising Bureau. URL: http://www.iab.net/resources/ad revenue.asp
(accessed on March 20, 2006)

the search engine (which we will sometimes refer to as the auctioneer or the seller) picks a subset
of advertisements along with the order in which to display. The actual price charged also depends
on the bids submitted by the advertisers. There are many terms currently used in practice to refer
to these auctions models, e.g. search auctions, Internet search auctions, sponsored search auctions,
paid search auctions, paid placement auctions, AdWord auctions, slot auctions, etc.

In a relatively short time (not more than 10 years), advertising on the Internet has become a
common activity embraced by advertisers and marketers across all industry sectors; Table 1 gives
a quick estimate of the size of the market dominated by Internet advertising and the pace with
which it is growing. The columns Q1 through Q4 represent the revenue generated from Internet
advertising in each quarter of the years 1997–2005. The Annual Revenue and Year/Year columns
give the annual revenue generated and year-by-year growth of the Internet advertising industry.
The last two columns are important in the sense they give an estimate of the market share of
two major formats of the Internet advertising - sponsored search and display Ads. As pointed out
by Edelman et al. (2006), it is believed that Google’s total revenue in 2004 was equal to $ 3.189
billion. Over 98% of the revenue came from Internet advertising. Similarly, Yahoo!’s total revenue
in 2004 was equal to $ 3.574 billion and over 50% of it came from Internet advertising. Thus, Table
1 shows that sponsored search is a key factor in deciding the revenue performance of any search
engine company. In this paper, we are interested in studying appropriate mechanisms for sponsored
search auction and investigate their performance.

1.2. Related Literature

The motivation for our work comes from several recent research articles. The work of Edelman
et al. (2006) investigates the Generalized Second Price (GSP) mechanism for sponsored search
auction under static settings. The work assumes that the value derived out of a single user-click by
an advertiser is publicly known to all the rival advertisers, and then they analyze the underlying
static one-shot game of complete information. Our approach generalizes their analysis to the more
realistic case of incomplete information through a detailed analysis of the induced Bayesian game.

Another strand of work which is closely related to ours is due to Lahaie (2006). The objective
of this paper is to clarify the incentive, efficiency, and revenue properties of the two popular slot
auctions - first price and second price, under settings of incomplete and complete information. The
work does not attempt to derive any optimal mechanism.
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Another line of work that is closely related to ours is due to Feng (2005) where the author studies
the allocation mechanisms under a setting in which the advertisers have a consistent ranking of
advertising positions but different rates of decrease in absolute valuation. The model and underlying
assumptions of this paper are quite different than ours. Among other interesting work in this area,
is the work of Feng et al. (2003, 2005), where they examine the paid-placement ranking strategies
of the two dominant firms in this industry, and compare their revenue under different scenarios via
computational simulation.

In a recent paper, Varian (2006) analyzes the equilibria of an assignment game that arises in the
context of Ad auctions. These equilibria are closely related to the equilibria of assignment game
studied by Shapley and Shubik (1972), Demange et al. (1986), and Roth and Sotomayor (1990).
The author characterizes the symmetric Nash equilibria of such assignment games and uses it to
derive an upper bound and a lower bound on the revenue generated by the search engine. Further,
this revenue is also compared with the revenue in the VCG mechanism.

In another related work by Aggarwal et al. (2006), the authors design a simple truthful auction
for a general class of ranking functions that includes direct ranking and revenue ranking. More
specifically, the authors study the case where the merchants are assigned arbitrary weights which
do not depend on the bids, and then ranked in decreasing order of their weighted bids. They call
such an auction as laddered auction, since the price for a merchant builds on the price of each
merchant ranked below it. They show that this auction is truthful.

We would also like to mention some interesting papers in this area which have some indirect
connections to our work. Bhargava and Feng (2002) have formulated the search engine design
problem as a tradeoff between placement revenue and user-based revenue. Borgs et al. (2005) study
a multi-unit (corresponds to a sequence of searches each with a single slot) auction with multiple
agents, each of whom has a private valuation and budget. Aggarwal and Hartline (2005) consider
a special version of Ad auction as the private value knapsack problem. Mehta et al. (2005) address
the online version of the sponsored search auctions problem. Balcan et al. (2005) use techniques
from sample-complexity in machine learning theory to reduce the design of revenue maximizing
incentive-compatible mechanisms to algorithmic pricing questions relevant to sponsored search.

1.3. Contributions and Outline of the Paper

In this paper, we first develop a framework to model the sponsored search auction problem as a
mechanism design problem. Using this framework, we describe three well known auction mech-
anisms - Generalized First Price (GFP), Generalized Second Price (GSP), and Vickrey-Clarke-
Groves (VCG). We then pursue the objective of designing a mechanism that is superior to the
above three mechanisms. For this, we impose the following well known requirements, which we
believe are practical requirements for sponsored search auction, for any mechanism in this setting
- revenue maximization, individual rationality, and Bayesian incentive compatibility or dominant
strategy incentive compatibility. Motivated by this, we propose a new mechanism which we call
the Optimal (OPT) mechanism. This mechanism maximizes the search engine’s expected revenue
subject to achieving Bayesian incentive compatibility and individual rationality. Next, we compare
the OPT mechanism with the GSP and the VCG mechanisms along different dimensions such as
incentive compatibility, expected revenue earned by the search engine, individual rationality, and
computational complexity. The following are the findings and contributions of our study.
1. The expected revenue earned by the search engine is the same for all the mechanisms GSP,

VCG, and OPT, provided the advertisers are symmetric and the number of slots is strictly less
than the number of advertisers. This is a direct consequence of a revenue equivalence theorem
for sponsored search auctions which we state and prove.

2. We derive expressions for the expected revenue generated by the search engine in equilibrium
under all the three mechanisms, under general conditions. To do this, we compute an equilibrium
for the GSP mechanism.
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3. We show that the GSP and the VCG mechanisms are individually rational in the specific context
of sponsored search.

4. We evaluate the computational complexity of all the three mechanisms. Under reasonable
assumptions, the worst case complexity of the OPT mechanism is the same as that of the VCG
mechanism and this complexity is higher than that of the GSP mechanism.

The rest of the paper is organized as follows. In Section 2, we model the sponsored search auction
as a mechanism design problem and use this as the basic framework in the subsequent sections to
study the different mechanisms for sponsored search auction. In this framework, we describe the
allocation and payment rules for the Generalized First Price (GFP), the Generalized Second Price
(GSP), and the Vickrey-Clarke-Groves (VCG) mechanisms. In Section 3, we propose a new mech-
anism for sponsored search auctions, namely Optimal (OPT) mechanism. Subsection 3.3 discusses
a special case of the OPT mechanism where advertisers are symmetric. In Section 4, we undertake
a detailed comparison of the GSP, VCG, and OPT mechanisms. First, we investigate the incentive
compatibility of the three auction mechanisms, namely GSP, VCG, and OPT. In particular, we
show that the GSP mechanism is not incentive compatible. In Section 4.2, we present an interesting
result which we call as the revenue equivalence theorem for sponsored search auctions. We use this
theorem to show the revenue equivalence of the GSP, the VCG, and the OPT mechanisms under
some special conditions. Section 4.3 is devoted to computing the expected revenue generated by
the three mechanisms under fairly general conditions. In Section 4.4, we investigate the individual
rationality of the three mechanisms. In Section 4.5, we investigate the computational complexity
of the three mechanisms. Section 5 summarizes the contributions of this paper and proposes a few
direction for further research in this area.

2. Sponsored Search Auction as a Mechanism Design Problem in Linear
Environment

Consider a search engine that has received a query from an Internet user and it immediately
faces the problem of conducting an auction for selling its advertising space among the available
advertisers for this particular query word. Let us assume that
1. There are n advertisers interested in this particular keyword and N = {1,2, . . . , n} represents

the set of these advertisers. Also, there are m slots available with search engine to display the
Ads and M = {1,2, . . . ,m} represents the set of these advertising slots.

2. αij is the probability that a user will click on the ith advertiser’s Ad if it is displayed in the
jth position (slot), where the first position refers to the top most position. We assume that the
following condition is satisfied.

1≥ αi1 ≥ αi2 ≥ . . .≥ αim ≥ 0 ∀i∈N (1)

Note here that we are assuming that click probability αij does not depend on which other
advertiser has been allocated to what other position. We refer to this assumption as absence of
allocative externality among the advertisers.

3. Each advertiser precisely knows the value derived out of each click performed by the user on
his Ad but does not know the value derived out of a single user-click by the other advertisers.
Note that this value should be independent of the position of the Ad and should only depend on
whether or not a user clicks on the Ad. Formally, this is modeled by supposing that advertiser
i observes a parameter, or signal θi that represents his value for each user click. The parameter
θi is referred to as advertiser i’s type. The set of possible types of advertiser i is denoted by Θi.

4. Each advertiser perceives any other advertiser’s valuation as a draw from some probability
distribution. Similarly, he knows that the other advertisers regard his own valuation as a draw
from some probability distribution. More precisely, for advertiser i, i = 1,2, . . . , n, there is some
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probability distribution Φi(·) from which he draws his valuation θi. Let φi(·) be the corresponding
PDF. We assume that the θi takes values from a closed interval

[
θi, θi

]
of the real line. That is,

Θi =
[
θi, θi

]
. We also assume that any advertiser’s valuation is statistically independent from

any other advertiser’s valuation. That is, Φi(·), i = 1,2, . . . , n are mutually independent. This is
the classical independent private values assumption. Note that the probability distribution Φi(·)
can be viewed as the distribution of a random variable that gives the profit earned by advertiser
i when a random customer clicks on the advertiser’s Ad.

5. Each advertiser i is rational and intelligent in the sense of Myerson (1997). This fact is modeled
by assuming that the advertisers always try to maximize a Bernoulli utility function ui : X ×
Θi →R, where X is the set of outcomes which will be defined shortly.

6. The probability distribution functions Φi(·), the type sets Θ1, . . . ,Θn, and the utility functions
ui(·) are assumed to be common knowledge among the advertisers. Note that utility function
ui(·) of advertiser i depends on both the outcome x and the type θi. The type θi is not a common
knowledge; but by saying that ui(·) is common knowledge we mean that for any given type θi,
the auctioneer (that is, search engine in this case) and every other advertiser can evaluate the
utility function of advertiser i.

In view of the above modeling assumptions, the sponsored search auction problem can now be
restated as follows. For any query word, each interested advertiser i bids an amount bi ≥ 0, which
depends on his actual type θi. Now each time the search engine receives this query word, it first
retrieves the information from its database of all the advertisers who are interested in displaying
their Ads against the search result of this query and their corresponding bid vector b = (b1, . . . , bn).
The search engine then decides the winning advertisers and the order in which their Ads will be
displayed against the search results and the amount that will be paid by each advertiser if the user
clicks on his Ad. These are called as allocation and payment rules, respectively. A sponsored search
auction can be viewed as an indirect mechanism M= ((Bi)i∈N , g(·)), where Bi ⊂R+ is the set of
bids that an advertiser i can report to the search engine and g(·) is an allocation and payment
rule. Note, if we assume that for each advertiser i, the set of bids Bi is the same as the type
set Θi, then the indirect mechanism M = ((Bi)i∈N , g(·)) becomes a direct revelation mechanism
D= ((Θi)i∈N , f(·)), where f(·) becomes the allocation and payment rule. In the rest of this paper,
we will assume that Bi = Θi ∀ i = 1, . . . , n. Thus, we regard a sponsored search auction as a direct
revelation mechanism. The various components of a typical sponsored search mechanism design
problem are listed below.

Outcome Set X

An outcome in the case of sponsored search auction may be represented by a vector x =
(yij, pi)i∈N,j∈M , where yij is the probability that advertiser i is allocated the slot j and pi denotes
the price-per-click charged from the advertiser i. The set of feasible alternatives is then

X =

{
(yij, pi)i∈N,j∈M

∣∣∣∣∣yij ∈ [0,1] ∀i∈N, ∀j ∈M,
n∑

i=1

yij ≤ 1 ∀j ∈M,
m∑

j=1

yij ≤ 1 ∀i∈N,

pi ≥ 0 ∀i∈N}
Note that the randomized outcomes are also included in the above outcome set. This implies that
randomized mechanisms are also part of the design space.

Utility Function of Advertisers ui(·)
The Bernoulli utility function of advertiser i, for x = (yij, pi)i∈N,j∈M , is given by

ui(x, θi) =

(
m∑

j=1

yijαij

)
(θi− pi)
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Allocation and Payment Rule f(·)
The general structure of the allocation and payment rule for this case is

f(b) = (yij(b), pi(b))i∈N,j∈M

where b = (b1, . . . , bn) is a bid vector of the advertisers. The functions yij(·) form the allocation rule
and the functions pi(·) form the payment rule.

Linear Environment

Through a slight modification in the definition of allocation rule, payment rule, and utility func-
tions, we can show that sponsored search auction is indeed a mechanism in linear environment. To
transform the underlying environment to a linear one, we redefine the allocation and payment rule
as below.

f(b) = (y(b), ti(b))i∈N,j∈M

where y(b) = (yij(b))i∈N,j∈M and ti(b) =
(∑m

j=1 yij(b)αij

)
pi(b). The quantity ti(b) can be viewed

as the average payment made by the advertiser i to the search engine against every search query
received by the search engine and when the bid vector of the advertisers is b = (b1, . . . , bn).

Now, we can rewrite the utility functions in following manner

ui(f(b), θi) = θivi(y(b))− ti(b)

where vi(y(b)) =
(∑m

j=1 yij(b)αij

)
. The quantity vi(y(b)) can be interpreted as the probability that

advertiser i will receive a user click whenever there is a search query received by the search engine
and when the bid vector of the advertisers is b = (b1, . . . , bn). Now, it is easy to verify that the
underlying environment is linear.

2.1. Generalized First Price (GFP) Mechanism

In 1997, Overture introduced the first auction mechanism ever used for sponsored search. The
term Generalized First Price Auction is coined by Edelman et al. (2006).

2.1.1. Allocation Rule The m advertising slots are allocated to advertisers in descending
order of their bids. If two advertisers place the same bid, then the tie can be broken by an
appropriate rule. In order to define the allocation rule yij(·) for the GFP mechanism, we define
b(k) to be the kth highest element in (b1, . . . , bn) and (b−i)(k) to be the kth highest element in
(b1, . . . , bi−1, bi+1, . . . , bn). In view of these definitions, we can say that for all i∈N and all j ∈M ,

yij(b) =
{

1 : if bi = b(j)

0 : otherwise (2)

2.1.2. Payment Rule Every time a user clicks on a sponsored link, an advertiser’s account
is automatically billed the amount of the advertiser’s bid. That is, if b = (b1, b2, . . . , bn) is the profile
of bids received from the n advertisers then, for all i∈N ,

pi(b) =
{

bi : if advertiser i’s Ad is displayed
0 : otherwise (3)
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2.2. Generalized Second Price (GSP) Mechanism

The primary motivation for this auction mechanism was the instability of the GFP mechanism.
The difficulties with the GFP mechanism are discussed by Edelman et al. (2006). In particular,
it has been shown that under the GFP mechanism, truth-telling is not an equilibrium bidding
strategy for the advertisers and this fact leads to instability in the system which in turn leads
to inefficient investments on behalf of the advertisers. The GFP mechanism also creates volatile
prices which in turn causes allocative inefficiencies. There are three different versions of the GSP
mechanism (depending on the allocation rule).

2.2.1. Allocation Rule
1. Yahoo!/Overture’s Allocation Rule: This rule is the same as the allocation rule of GFP

mechanism.
2. Greedy Allocation Rule: The primary motivation for this rule is allocative efficiency (which

we will discuss later). In this rule, the first slot is allocated to the advertiser i∈N for whom the
quantity αi1bi is the maximum. If there is a tie then it is broken by an appropriate rule. The
winning advertiser is removed from the set N and an advertiser among the remaining ones is
chosen for whom αi2bi is maximum and the second slot to allocated to this advertiser. In similar
fashion, the rest of the slots are allocated.

3. Google’s Allocation Rule: In practice, Google uses a stylized version of the greedy allocation
rule. In Google’s actual version of GSP mechanism, for each advertiser Google computes its
estimated Click-Through-Rate (CTR), that is the ratio of the number of clicks received by the
Ad to the number of times the Ad was displayed against the search results-popularly known
as number of impressions. Now the advertisers are ranked in decreasing order of the ranking
scores, where the ranking score of an advertiser is defined as the product of the advertiser’s bid
and estimated CTR.

In order to understand the relationship among these three allocation rules, we need to first under-
stand the relationship between click probability and CTR.

2.2.2. Relationship between Click Probability and CTR Recall the following definitions
that we presented earlier:

αij = Probability that a user will click on the ith advertiser’s Ad if it is displayed in jth position
CTRi = Probability that a user will click on the ith advertiser’s Ad if it is displayed

yij = Probability that advertiser i’s Ad is displayed in position j

It is easy to verify that

CTRi =
m∑

j=1

yijαij ∀ i∈N

⇒ CTRi ≤
m∑

j=1

αij ∀ i∈N

In practice, the click probabilities (αij) and CTR are learned by means of available data. Immorlica
et al. (2005) have proposed different ways in which one can learn these quantities.

2.2.3. Relationship among Different Allocation Rules Assume that b = (b1, b2, . . . , bn)
is the profile of bids received from the n advertisers. Consider the following optimization problem

Maximize
n∑

i=1

bivi(y(b)) =
n∑

i=1

m∑
j=1

(biαij)yij(b)
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subject to
n∑

i=1

yij(b)≤ 1 ∀j ∈M

m∑
j=1

yij(b)≤ 1 ∀i∈N

yij(b)≥ 0 ∀i∈N, ∀j ∈M

It is easy to see that for a given click probabilities αij, where these probabilities satisfy the condition
(1), the greedy allocation rule basically provides a solution of the above optimization problem. Such
an allocation would be an efficient allocation. The Yahoo!/Overture’s allocation rule and Google’s
allocation rule become special cases of the greedy allocation rule under certain conditions that are
summarized in following propositions.

Proposition 1. If
1. click probabilities satisfy the assumption of absence of allocative externality among the advertis-

ers, that is, 1≥ αi1 ≥ αi2 ≥ . . .≥ αim ≥ 0 ∀i∈N
2. click probabilities depend only on the positions of the Ads and are independent of the identities

of the advertisers, that is, α1j = α2j = . . . = αnj = αj ∀j ∈M
then for any bid vector b = (b1, . . . , bn), both the greedy allocation rule and the Yahoo!/Overture’s
allocation rule result in the same allocation.

Proposition 2. If
1. click probabilities satisfy the assumption of absence of allocative externality among the advertis-

ers, that is, 1≥ αi1 ≥ αi2 ≥ . . .≥ αim ≥ 0 ∀i∈N
2. click probabilities depend only on the identities of the advertisers and are independent of the

positions of the Ads, that is, αi1 = αi2 = . . . = αim = αi = CTRi ∀i∈N
then for any bid vector b = (b1, . . . , bn), both the greedy allocation rule and the Google’s allocation
rule result in the same allocation.

In rest of the paper, we will stick to the following assumptions:
1. Click probabilities depend only on the positions of the Ads and are independent of the identities

of the advertisers. That is, α1j = α2j = . . . = αnj = αj ∀j ∈M
2. The allocation rule in GSP mechanism is the same as the greedy allocation rule, which would

be the same as Yahoo!/Overture’s allocation rule because of the previous assumption.

2.2.4. Payment Rule In the GSP auction mechanism, every time a user clicks on a sponsored
link, an advertiser’s account is automatically billed the amount of the advertiser’s bid who is just
below him in the ranking of the displayed Ads plus a minimum increment (typically $0.01). The
advertiser whose Ad appears at the bottom-most position is charged the amount of the highest bid
among the disqualified bids plus the minimum increment. If there is no such bid then he is charged
nothing. If b = (b1, b2, . . . , bn) is the profile of bids received from the n advertisers, then because of
the assumptions we have made regarding the allocation rule in GSP mechanism, the price per click
that is charged to an advertiser i is given by

pi(b) =
{∑m

j=1

(
b(j+1)yij(b)

)
: if either m < n or n≤m but bi 6= b(n)

0 : otherwise

where b(j+1) is the (j + 1)th highest bid which is the same as the bid of an advertiser whose Ad
is allocated to position (j + 1). We have ignored the small increment $0.01 because all the future
analysis and results are insensitive to this amount.
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2.3. Vickrey-Clarke-Groves (VCG) Mechanism

2.3.1. Allocation Rule By definition, the VCG mechanism is allocatively efficient. Therefore,
in the case of sponsored search auction, the allocation rule y∗(·) in the VCG mechanism is

y∗(·) = argmax
y(·)

n∑
i=1

bivi(y(b)) = argmax
yij(·)

n∑
i=1

m∑
j=1

(biαij)yij(b) (4)

In the previous section, we have already seen that the greedy allocation rule is a solution to (4).
Moreover, under the assumption that click probabilities are independent of advertisers’ identities,
the allocation y∗(·) allocates the slots to the advertisers in the decreasing order of their bids. That
is, if b = (b1, b2, . . . , bn) is the profile of bids received from the n advertisers then y∗(·) must satisfy
the following condition

y∗ij(b) =
{

1 : bi = b(j)

0 : otherwise (5)

We state below an interesting observation regarding GFP and GSP mechanisms which is based on
the above observations.

Proposition 3. If click probabilities depend only on the positions of the Ads and are independent
of the identities of the advertisers, then
1. The GFP mechanism is allocatively efficient.
2. The GSP mechanism is allocatively efficient if it uses greedy allocation rule which is the same

as Yahoo!/Overture’s allocation rule.
3. The allocation rule for the VCG mechanism, which is an efficient allocation, is given by (5).

Moreover, this allocation rule is precisely the same as the GFP allocation rule and the Yahoo!/

Overture’s allocation rule.

2.3.2. Payment Rule As per the definition of the VCG mechanism given in Mas-Colell et al.
(1995), the expected payment ti(b) made by an advertiser i, when the profile of the bids submitted
by the advertisers is b = (b1, . . . , bn), must be computed using the following Groves payment formula:

ti(b) =

[∑
j 6=i

bjvj(y∗(b))

]
+hi(b−i) (6)

where hi(b−i) is an arbitrary function of b−i. A special case of the above Groves payment scheme
is the Clarke’s payment scheme in which the payment rule is given by the following formula:

ti(b) =

[∑
j 6=i

bjvj(y∗(b))

]
−

[∑
j 6=i

bjvj(y∗−i(b))

]
(7)

where y∗−i(·) is an efficient allocation of the slots among the advertisers when advertiser i is removed
from the scene. Substituting the value of y∗(·) from Equation (5)and making use of the fact that
vi(y∗(b)) =

∑m

j=i y
∗
ij(b)αj, Equation (7) can be written as follows

Case 1 (m < n):

p(j)(b) =
1
αj

t(j)(b) =





1
αj

[∑m−1

k=j βkb
(k+1)

]
+ αm

αj
b(m+1) : if 1≤ j ≤ (m− 1)

b(m+1) : if j = m
0 : if m < j ≤ n

(8)

where
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— t(j)(b) is the expected payment made by the advertiser whose Ad is displayed in jth position,
for every search query received by the search engine and when the bid profile of the advertisers
is b = (b1, . . . , bn),

—p(j)(b) is the payment made by the advertiser, whose Ad is displayed in jth position, for every
click made by the user and when the bid profile of the advertisers is b = (b1, . . . , bn),

—and βj = (αj −αj+1)
— b(j) has its usual interpretation.

Case 2 (n≤m):

p(j)(b) =
1
αj

t(j)(b) =

{
1

αj

∑n−1

k=j βkb
(k+1) : if 1≤ j ≤ (n− 1)

0 : if j = n
(9)

Thus, we can say that Equation (5) describes the allocation rule for the VCG mechanism and
Equations (8) and (9) describe the payment rule for the VCG mechanism.

3. Optimal (OPT) Mechanism

We believe that a mechanism for sponsored search auction must satisfy three basic properties
- revenue maximization, individual rationality, and dominant strategy incentive compatibility or
Bayesian incentive compatibility. Myerson (1981) first studied such an auction mechanism in the
context of selling a single indivisible good. Myerson called such an auction mechanism as optimal
auction. Following the same terminology, we would prefer to call a similar mechanism for the
sponsored search auction as optimal mechanism for sponsored search auction (OPT mechanism for
short). In this section, our goal is to compute the allocation and payment rule f(·) that results
in an optimal mechanism for the sponsored search auction. This calls for extending Myerson’s
optimal auction to the case of the sponsored search auction. We follow a line of attack which is
similar to that of Myerson (1981). Recall that we formulated the sponsored search auction as a
direct revelation mechanism D= ((Θi)i∈N , f(·)) in linear environment, where the Bernoulli utility
function of an advertiser i is given by

ui(f(b), θi) =

(
m∑

j=1

yij(b)αj

)
(θi− pi(b))

= vi(y(b))(θi− pi(b))
= θivi(y(b))− ti(b)

where vi(y(b)) =
(∑m

j=1 yij(b)αj

)
is known as value function of the advertiser i.

3.1. Allocation Rule

It is convenient to define
• ti(bi) = Eθ−i

[ti(bi, θ−i)] is the expected payment made by advertiser i when he bids an amount
bi and all the advertisers j 6= i bid their true types.

• vi(bi) = Eθ−i
[vi(y(bi, θ−i))] is the probability that advertiser i will receive a user click if he bids

an amount bi and all the advertisers j 6= i bid their true types.
• Ui(θi) = θivi(θi)− ti(θi) gives advertiser i’s expected utility from the mechanism conditional on

his type being θi when he and all other advertisers bid their true types.
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The problem of designing an optimal mechanism for the sponsored search auction can now be
written as one of choosing functions yij(·) and Ui(·) to solve:

Maximize
n∑

i=1

θi∫

θi

(θivi(θi)−Ui(θi))φi(θi)dθi

subject to
(i) vi(·) is non-decreasing ∀i∈ N
(ii)yij(θ)∈ [0,1],

∑m

j=1 yij(θ)≤ 1,
∑n

i=1 yij(θ)≤ 1 ∀i∈N, ∀j ∈M, ∀θ ∈Θ

(iii) Ui(θi) = Ui(θi)+
θi∫
θi

vi(s)ds ∀i∈N, ∀θi ∈Θi

(iv) Ui(θi)≥ 0 ∀i∈N, ∀θi ∈Θi

In the above formulation, the objective function is the total expected payment received by the
search engine from all the advertisers. Note that constraints (iv) are the advertisers’ interim
individual rationality constraints while constraint (ii) is the feasibility constraint. Constraints (i)
and (iii) are the necessary and sufficient conditions for the allocation and payment rule f(·) =
(yij(·), ti(·))i∈N,j∈M to be Bayesian incentive compatible. These constraints are taken from Myerson
(1981). We have a critical observation to make here. Note that in the above optimization problem,
we have replaced the bid bi by the actual type θi. This is because we are imposing the Bayesian
incentive compatibility constraints on the allocation and payment rule and, hence, every advertiser
will bid his true type. Thus, while dealing with the OPT mechanism, we can safely interchange θi

and bi for any i∈N . Define, as in Myerson (1981),

Ji(θi) = θi− 1−Φi(θi)
φi(θi)

Then, following the same line of arguments as in Myerson (1981), we can show that if the constraint
(i) is ignored then yij(·) is a solution to the above problem iff no slot is allocated to any advertiser
having negative value Ji(θi), and the rest of the advertisers’ Ads are displayed in the same order
as the values of Ji(θi). That is,

yij(θ) =





0 ∀j = 1,2, . . . ,m : if Ji(θi) < 0
1 ∀j = 1,2, . . . ,m < n : if Ji(θi) = J (j)

1 ∀j = 1,2, . . . , n≤m : if Ji(θi) = J (j)

0 : otherwise

(10)

where J (j) is the jth highest values among Ji(θi)s.
Now, recall the definition of vi(·). It is easy to write down the following expression:

vi(θi) = Eθ−i
[vi(y(θi, θ−i))] = Eθ−i

[
m∑

j=1

yij(θi, θ−i)αj

]
(11)

Now if we assume that Ji(·) is non-decreasing in θi, it is easy to see that the above solution
yij(·), given by (10), will be non-decreasing in θi, which in turn implies, by looking at expres-
sion (11), that vi(·) is non-decreasing in θi. Thus, the solution to this relaxed problem actually
satisfies constraint (i) under the assumption that Ji(·) is non-decreasing. Assuming that Ji(·) is
non-decreasing, the solution given by (10) appears to be the solution of the optimal mechanism
design problem for sponsored search auction. The condition that Ji(·) is non-decreasing in θi is
met by most distribution functions such as Uniform and Exponential. In the rest of this paper,
we will stick to the assumption that for every advertiser i, Ji(·) is non-decreasing in θi. We have
interesting observations to make here.
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Proposition 4. If the advertisers have non-identical distribution functions Φi(·) then the adver-
tiser who has the kth largest value of Ji(bi) is not necessarily the advertiser who has bid the kth

highest amount. Thus the OPT mechanism need not be allocatively efficient and therefore, need not
be ex post efficient.

Proposition 5. If the advertisers are symmetric in following sense
• Θ1 = . . . = Θn = Θ,
• Φ1(·) = . . . = Φn(·) = Φ(·),
and for every advertiser i, we have Ji(·) > 0 and Ji(·) is non-decreasing, then
• Ji(·) = . . . = Jn(·) = J(·)
• The rank of an advertiser in the decreasing order sequence of J1(b1), . . . , Jn(bn) is precisely the

same as the rank of the same advertiser in the decreasing order sequence of b1, . . . , bn.
• For a given bid vector b, the OPT mechanism results in the same allocation as suggested by the

GFP, the GSP, and the VCG mechanisms.
• The OPT mechanism is allocatively efficient.

3.2. Payment Rule

Following Myerson (1981) line of attack , the optimal expected payment rule ti(·) must be chosen
in such a way that it satisfies

ti(θi) = Eθ−i
[ti(θi, θ−i)] = θivi (θi)−Ui (θi) = θivi (θi)−

θi∫

θi

vi(s)ds (12)

Looking at the above formula, we can say that if the payment rule ti(·) satisfies the following
formula (13) then it would also satisfy the formula (12).

ti(θi, θ−i) = θivi (y(θi, θ−i))−
θi∫

θi

vi(s, θ−i)ds ∀ θ ∈Θ (13)

The above formula can be rewritten in a more intuitive way for which, we need to define the
following quantities for any vector θ−i.

zi1(θ−i) = inf
{
θi|Ji(θi) > 0 and Ji(θi)≥ J

(1)
−i

}

zi2(θ−i) = inf
{
θi|Ji(θi) > 0 and J

(1)
−i > Ji(θi)≥ J

(2)
−i

}

... =
...

ziγ(θ−i) = inf
{
θi|Ji(θi) > 0 and J

(γ−1)
−i > Ji(θi)

}

where γ = m if m < n, otherwise γ = n. The quantity J
(k)
−i is the kth highest value among

J1(θ1), . . . , Ji−1(θi−1), Ji+1(θi+1), . . . , Jn(θn). The quantity zik(θ−i) is the infimum of all the bids for
advertisers i which can win him the kth slot against the bid vector θ−i from the other advertisers.
In view of the above definitions, we can write

vi(y(θi, θ−i)) =





α1 : if θi ≥ zi1(θ−i)
α2 : if zi1(θ−i) > θi ≥ zi2(θ−i)
... :

...
0 : if ziγ(θ−i) > θi
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This gives us the following expression for
θi∫
θi

vi(s, θ−i)ds. In these expressions, r is the position of

the advertiser i’s Ad.

θi∫

θi

vi(y(s, θ−i))ds =





αr(θi− zir(θ−i))+
γ∑

j=(r+1)

αj

(
zi(j−1)(θ−i)− zij(θ−i)

)
: if 1≤ r≤ (γ− 1)

αγ(θi− ziγ(θ−i)) : if r = γ
0 : otherwise

Substituting the above value for
θi∫
θi

vi(y(s, θ−i))ds in formula (13), we get

pi(θi, θ−i) =
1
αr

ti(θi, θ−i) =





αγ

αr
ziγ(θ−i)+ 1

αr

γ−1∑
j=r

βjzij(θ−i) : if 1≤ r≤ (γ− 1)

ziγ(θ−i) : if r = γ
0 : otherwise

(14)

The above relations say that an advertiser i must pay only when his Ad receives a click, and he
pays an amount equal to pi(θ). Note that in above expressions, we have expressed the payment rule
pi(·) as a function of the actual type profile θ of the advertisers rather than the bid vector b. This
is because in OPT mechanism, each advertiser bids his true type and we have bi = θi ∀ i = 1, . . . , n.
Thus, we can say that Equation (10) describes the allocation rule for the OPT mechanism and
Equation (14) describe the the payment rule for the OPT mechanism.

In what follows, we discuss an important special cases of the OPT mechanism when the adver-
tisers are symmetric.

3.3. OPT Mechanism and Symmetric Advertisers

Let us assume that advertisers are symmetric in the following sense:
• Θ1 = . . . = Θn = Θ = [L,U ]
• Φ1(·) = . . . = Φn(·) = Φ(·)

Also, we assume that
• J(·) is non-decreasing over the interval [L,U ]
• J(x) > 0 ∀ x∈ [L,U ]

Note that if J(L) > 0 then we must have L > 0.
Proposition 5 shows that if the advertisers are symmetric, then the allocation rule under the

OPT mechanism is the same as the GFP, the GSP, and the VCG mechanisms. Coming to the
payment rule, it is easy to verify that if advertiser i is allocated the slot r for the bid vector (θi, θ−i)
then we should have
Case 1 (m < n):

zij(θ−i) =
{

θ(j) : if 1≤ j ≤ (r− 1)
θ(j+1) : if r≤ j ≤m

(15)

Case 2 (n≤m):

zij(θ−i) =





θ(j) : if 1≤ j ≤ (r− 1)
θ(j+1) : if r≤ j ≤ (n− 1)
L : if j = n

(16)

If we substitute Equations (15) and (16) into Equation (14) then we get the following payment
rule for the OPT mechanism when the advertisers are symmetric.
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Case 1 (m < n)

pi(θi, θ−i) =
1
αr

ti(θi, θ−i) =





αm
αr

θ(m+1) + 1
αr

m−1∑
j=r

βjθ
(j+1) : if 1≤ r≤ (m− 1)

θ(m+1) : if r = m
0 : otherwise

(17)

Case 2 (n≤m)

pi(θi, θ−i) =
1
αr

ti(θi, θ−i) =





αn
αr

L+ 1
αr

n−1∑
j=r

βjθ
(j+1) : if 1≤ r≤ (n− 1)

L : if r = n
0 : otherwise

(18)

Compare the above equations with the payment rule of the VCG mechanism given by Equations
(8) and (9). This comparison leads to the following proposition.

Proposition 6. If the advertisers are symmetric in following sense
• Θ1 = . . . = Θn = Θ = [L,U ]
• Φ1(·) = . . . = Φn(·) = Φ(·)
and for every advertiser i, we have Ji(·) > 0 and Ji(·) is non-decreasing over the interval [L,U ],
then
• the payment rule for Case 1 coincides with the corresponding payment rule in the VCG mecha-

nism,
• and the payment rule for the Case 2 differs from the corresponding payment rule of the VCG

mechanism just by a constant amount L.

Note that L cannot be zero because of the assumption that J(L) > 0.

4. Comparison of GSP, VCG, and OPT Mechanisms

We now compare the mechanisms GSP, VCG, and OPT along four dimensions:
1. Incentive compatibility
2. Expected revenue earned by the search engine
3. Individual rationality
4. Computational complexity

For the purpose of comparison we will make the following assumptions which include the symmetry
of advertisers:
• Θ1 = . . . = Θn = Θ = [L,U ]
• Φ1(·) = . . . = Φn(·) = Φ(·)
• J(·) is non-decreasing over the interval [L,U ]
• J(x) > 0 ∀ x∈ [L,U ]

4.1. Incentive Compatibility

Note that by design itself, the OPT mechanism is Bayesian incentive compatible and the VCG
mechanism is dominant strategy incentive compatible. In this section, we show that the GSP
mechanism is not Bayesian incentive compatible. Our proof follows a line of attack similar to
the one used by McAfee and McMillan McAfee and McMillan (1987) to compute the equilibrium
bidding strategy of the buyers during the auction of a single indivisible good.

Consider an advertiser i, whose actual type is θi. He conjectures that the other advertisers are
following a bidding strategy s(·): that is, he predicts that any other advertiser j will bid an amount
s(θj) if his type is θj (although advertiser i does not know this type). Assume that
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1. L≤ s(θj)≤ θj ∀ θj ∈ [L,U ]
2. s(·) is a monotonically increasing function in θj

What is the advertiser i’s best bid? Advertiser i chooses his bid bi to maximize his expected utility,
which in this case is given by

Case 1 (m < n):

πi(θi, bi) =

ξ∫

L

(
m∑

j=1

[
αj j

(
n− 1

j

)
[Φ(ξ)]j−1 Φ(x)n−j−1

])
(θi− s(x))φ(x)dx (19)

Case 2 (n≤m):

πi(θi, bi) = αnθi[Φ(ξ)]n−1 +

ξ∫

L

(
n−1∑
j=1

[
αj j

(
n− 1

j

)
[Φ(ξ)]j−1Φ(x)n−j−1

])
(θi− s(x))φ(x)dx (20)

where
• ξ = s−1(bi)
• Φ(·) = 1−Φ(·)
• The quantity

ξ∫
L

αj j
(

n−1
j

)
[Φ(ξ)]j−1[Φ(x)]n−j−1φ(x)dx gives the probability that advertiser i will

be allocated to slot j if he bids bi and all the other advertisers bid according to the strategy s(·).
Thus, advertiser i chooses bid bi such that

∂π(θi, bi)
∂bi

= 0 (21)

Note that due to the Envelope Theorem, we can write

dπi(θi, bi)
dθi

=
∂πi(θi, bi)

∂bi

dbi

dθi

+
∂πi(θi, bi)

∂θi

(22)

Thus, by substituting Equation (21) in Equation(22), we get the following condition which an
optimally chosen bid bi must satisfy

dπi(θi, bi)
dθi

=
∂πi(θi, bi)

∂θi

(23)

By differentiating (19) and (20), we get

dπi(θi, bi)
dθi

=
γ∑

j=1

[
αj

(
n− 1
j− 1

)
[Φ(ξ)]j−1 Φ(ξ)n−j

]
(24)

where γ = m if m < n, otherwise γ = n.
So far, we have examined advertiser i’s best response to an arbitrary bidding strategy s(·) being

used by his rivals. Now we impose the Nash requirement: the rivals’ use of the bidding strategy
s(·) must be consistent with the rivals themselves acting rationally. Together with an assumption
of symmetry (any two advertisers with the same type will submit the same bid), this implies that
advertiser i’s bid bi, satisfying (23), must be the bid implied by the decision rule s(·) - in other
words, at a Nash equilibrium, bi = s(θi) or equivalently ξ = θi. When we substitute this Nash
condition into (24), we obtain the following equations

dπi(θi)
dθi

=
γ∑

j=1

[
αj

(
n− 1
j− 1

)
[Φ(θi)]j−1 [Φ(θi)]n−j

]
(25)
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We solve the above differential equations for πi simply by integrating in conjunction with the
boundary condition s(L) = L. This results in the following expressions for πi.

πi(θi) =





θi∫
L

m∑
j=1

[
αj

(
n−1
j−1

)
[Φ(x)]j−1 [Φ(x)]n−j

]
dx : if m < n

αnL+
θi∫
L

n∑
j=1

[
αj

(
n−1
j−1

)
[Φ(x)]j−1 [Φ(x)]n−j

]
dx : if n≤m

(26)

We now use the definition of πi (Equations (19) and (20)) and Nash condition si(θi) = bi or
equivalently ξ = θi to obtain the following relations:
Case 1 (m < n):

θi∫

L

m∑
j=1

[
αj

(
n− 1
j− 1

)
[Φ(x)]j−1 [Φ(x)]n−j

]
dx =

θi∫

L

(
m∑

j=1

[
αj j

(
n− 1

j

)
[Φ(θi)]j−1 [Φ(x)]n−j−1

])
(θi− s(x))φ(x)dx

Case 2 (n≤m):

αnL+

θi∫

L

n∑
j=1

[
αj

(
n− 1
j− 1

)
[Φ(x)]j−1 [Φ(x)]n−j

]
dx = αnθi[Φ(θi)]n−1 +

θi∫

L

(
n−1∑
j=1

[
αj j

(
n− 1

j

)
[Φ(θi)]j−1 [Φ(x)]n−j−1

])
(θi− s(x))φ(x)dx

Differentiating the above equations with respect to θi, we get each advertiser’s bidding strategy
s(·) as a solution of the following integral equations

s(θi) =





θi− 1
g(θi,m)

θi∫
L

f(x, θi,m)s′(x)dx : if m < n

θi− 1
g(θi,(n−1))

θi∫
L

f(x, θi, (n− 1))s′(x)dx : if n≤m

(27)

where

f(x, θi, k) =
k∑

j=1

αj(j− 1)
(

n− 1
j− 1

)
[Φ(θi)]j−2[Φ(x)]n−j

g(θi, k) =
k−1∑
j=1

[
βj j

(
n− 1

j

)
[Φ(θi)]j−1[Φ(θi)]n−j−1

]
+ kαk

(
n− 1

k

)
[Φ(θi)]k−1[Φ(θi)]n−k−1

It is easy to see from the above equations that truth-telling is not an equilibrium strategy of the
advertisers and, therefore, the allocation and payment rule for GSP mechanism is not Bayesian
incentive compatible. Observe that if m = 1 and 1 < n, then this is precisely the scenario of auc-
tioning a single indivisible good with n bidders. For this scenario, the allocation and payment
rules under GSP coincides precisely with the allocation and payment rules of classical Second Price
(Vickrey) Auction.
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4.2. Revenue Equivalence Theorem for Sponsored Search Auctions

Here we show that under some reasonable set of assumptions, the mechanisms we have discussed for
sponsored search will fetch the same expected revenue to the search engine. We call this the revenue
equivalence theorem for sponsored search auctions. The classical revenue equivalence theorem is
a key result in the literature of single object auction and different versions of this theorem are
presented in Mas-Colell et al. (1995), McAfee and McMillan (1987), and Milgrom and Weber
(1982).

Theorem 1 (A Revenue Equivalence Theorem for Sponsored Search Auctions). Consider
a sponsored search auction setting, in which
1. The advertisers are risk neutral,
2. The advertisers are symmetric, i.e.

• Θ1 = . . . = Θn = Θ = [L,U ]
• Φ1(·) = . . . = Φn(·) = Φ(·),

3. For each advertiser i, we have φi(·) > 0; and
4. The advertisers draw their types independently.
Consider two different auction mechanisms, each having a symmetric and increasing Bayesian
Nash equilibrium, such that
1. For each possible realization of (θ1, . . . , θn), every advertiser i has an identical probability of

getting slot j in the two mechanisms; and
2. Every advertiser i has the same expected utility level in the two mechanisms when his type θi is

at its lowest possible level, i.e. L.
Then these equilibria of the two mechanisms generate the same expected revenue for the search
engine against every search query.

Proof: By the revelation principle, we know that any given indirect mechanism can be converted
into a Bayesian incentive compatible direct revelation mechanism that results in the same outcome
as the original mechanism for every type profile θ of the advertisers. This implies that the expected
revenue earned by the search engine under both of these mechanisms will be the same. There-
fore, we can establish the above theorem by showing that if two Bayesian incentive compatible
direct revelation mechanisms have the same allocation rule (yij(θ))i∈N,j∈M and the same value of
(Ui(L))i∈N then they generate the same expected revenue for the search engine.

To show this, we derive an expression for the search engine’s expected revenue from an arbitrary
Bayesian incentive compatible direct revelation mechanism. Note, first, that the search engine’s
expected revenue from an arbitrary Bayesian incentive compatible direct revelation mechanism,
under the assumption of risk neutral, symmetric, and independent advertisers, is equal to

R = n

U∫

θi=L

ti(θi)φ(θi)dθi = n

U∫

θi=L

(θivi(θi)−Ui(θi))φ(θi)dθi (28)

We have already seen that due to the result of Myerson (1981) about characterization of Bayesian
incentive compatible mechanisms, a direct revelation mechanism is Bayesian incentive compatible
iff

(i) vi(·) is non-decreasing ∀i∈ N

(ii) Ui(θi) = Ui(θi)+
θi∫
θi

vi(s)ds ∀i∈N, ∀θi ∈Θi

Therefore, substituting for Ui(θi) Equation (28), we get

R = n

U∫

θi=L


vi(θi)θi−Ui(θi)−

θi∫

s=L

vi(s)ds


φi(θi)dθi
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Integrating by parts implies that

R =

U∫

L

. . .

U∫

L

[
n∑

i=1

vi(y(θi, θ−i))Ji(θi)

][
n∏

i=1

φi(θi)

]
dθn . . . dθ1−

n∑
i=1

Ui(θi)

=

U∫

L

. . .

U∫

L

[
n∑

i=1

(
m∑

j=1

yij(θi, θ−i)

)
Ji(θi)

][
n∏

i=1

φi(θi)

]
dθn . . . dθ1−

n∑
i=1

Ui(θi) (29)

where Ji(θi) = θi− 1−Φi(θi)

φi(θi)
. By inspection of (29), we see that any two Bayesian incentive compatible

direct revelation mechanisms that generate the same allocation functions (yij(·))i∈N,j∈M and the
same values of (U1(L), . . . ,Un(L)) generate the same expected revenue for the search engine.

Q.E.D.

Proposition 7 (Revenue Equivalence of GSP, VCG, and OPT Mechanisms). Consider a
sponsored search auction setting, in which
1. The advertisers are risk neutral,
2. The advertisers are symmetric, i.e.

• Θ1 = . . . = Θn = Θ = [L,U ]
• Φ1(·) = . . . = Φn(·) = Φ(·),

3. For each advertiser i, we have φi(·) > 0; and
4. The advertisers draw their types independently,
5. For each advertiser i, we have Ji(·) > 0 and Ji(·) is non-decreasing function.
If RGSP,RVCG and ROPT be the expected revenue earned by the search engine, against every search
query received by the search engine, under the GSP, the VCG, and the OPT mechanisms, respec-
tively, then

RGSP = RVCG = ROPT : if m < n
RVCG ≤RGSP ≤ROPT : if n≤m

Proof: Recall Proposition 5 which says that under the assumptions which are stated above, the
VCG and the OPT mechanisms result in the same allocation for any given bid vector b = (b1, . . . , bn).
Also, recall that the VCG and the OPT mechanisms are incentive compatible which implies that
the advertisers bid their true types under both of these two mechanisms. Therefore, we can conclude
that under the assumptions stated above, the VCG and the OPT mechanisms result in the same
allocation for any given type profile θ = (θ1, . . . , θn). Note that this result holds irrespective of
whether m < n or n≤m. Now coming to the GSP mechanism, the Equation (27) shows that the
GSP mechanism has a symmetric and increasing Bayesian Nash equilibrium. Therefore, if θ =
(θ1, . . . , θn) is the type profile of the advertisers then the bid profile would be (s(θ1), . . . , s(θn)), where
s(·) is given by Equation (27). Because s(·) is increasing, the ordering of the bids s(θ1), . . . , s(θn) is
the same as the ordering of the types θ1, . . . , θn. Therefore, the GSP mechanism will also result in
the same allocation as the VCG and the OPT. Once again this result holds irrespective of whether
m < n or n≤m. Thus, we have shown that irrespective of whether m < n or n≤m, for any given
type profile θ = (θ1, . . . , θn) of the advertisers, advertiser i has an identical probability of getting
slot j in all the three mechanisms namely GSP, VCG, and OPT. This confirms the first condition
required for the revenue equivalence theorem.

In order to show the second condition, we need to consider three scenarios separately. It is easy to
see that if an advertiser i has θi = L, then under each one of these three mechanisms, the outcome
of the mechanism will conform to one of the following three scenarios.
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1. The advertiser i does not get any slot: Note that this scenario occurs only when m < n.
In such a situation, irrespective of the auction mechanism, the advertiser i neither pays any amount
to the search engine nor gets any click in return. Therefore, the utility of the advertiser i under
this scenario is zero for all the three mechanisms.

2. The advertiser i gets the last slot: This scenario may arise in both the cases - m < n and
n≤m. We analyze these cases separately.

(a) m < n: It is straightforward to verify that all the loosing bids will be equal to L under all
the three mechanisms. This is because the VCG and the OPT mechanisms are incentive compatible.
Hence, no bid can be smaller than L for these mechanisms. Similarly, for the GSP mechanism, by
virtue of Equation (27), we have s(L) = L and moreover the function s(·) is increasing. This again
implies that all the losing bids will be equal to L for the GSP mechanism as well. By invoking
the respective payment rules for these three mechanisms, we can verify that under this case, the
advertiser i needs to pay an amount L to the search engine for every click received from a user
under each one of the three mechanisms. Thus, the advertiser i pays an amount L for each user
click and gets a benefit of L under each mechanism. Therefore, the net utility of the advertiser
under this case is zero for each one of the three mechanisms.

(b) n≤m: Here, no advertiser loses. Therefore, by invoking the respective payment rules for
the three mechanisms, we can say that under this case, the advertiser i needs to pay an amount
equal to 0,0, and L under the GSP, the VCG, and the OPT mechanisms, respectively. This implies
that the advertiser’s utility for every user click is L,L, and 0 for the GSP, the VCG, and the OPT
mechanisms, respectively.

3. The advertiser i gets a slot other than the last slot: Note that this scenario can arise
under both the cases - m < n and n≤m. Let us analyze each case.

(a) m < n: It is straightforward to verify that under all the three mechanisms, the bid of an
advertiser must be equal to L if either the advertiser gets a slot that is below the advertiser i or the
advertiser does not get any slot. Now by invoking the respective payment rules, we can claim that
in this case, the advertiser i needs to pay an amount L to the search engine for every click received
from a user under each of the three mechanisms. Thus, we see that for this case, the advertiser i
pays an amount L for each user click and gets a benefit of L under each mechanism. Therefore,
the net utility of the advertiser under this case is zero for each mechanism.

(b) n≤m: Similar to the previous case, it is easy to verify in this case that under all the
three mechanisms, the bid of an advertiser must be equal to L if the advertiser gets a slot that is
below the advertiser i. By invoking the respective payment rules for the three mechanisms, we can
say that the advertiser i needs to pay an amount equal to L,L(1− αn

αj
), and L under the GSP, the

VCG, and the OPT mechanisms, respectively. Here αj is the click probability of the slot at which
advertiser i’s Ad is displayed. This implies that the utility of advertiser i for every user click is
0,Lαn

αj
, and 0 for the GSP, the VCG, and the OPT mechanisms, respectively.

The above discussion implies that advertiser i has zero expected utility level in all the three
mechanisms when his type θi is at its lowest possible level and when m < n. Thus, we can now
invoke the revenue equivalence theorem and get the first part of the desired result, that is

RGSP = RVCG = ROPT if m < n

In order to get the second part, observe that in Equation (29), if the allocation rule is the same
then the expected revenue of the search engine depends solely on the values of Ui(θi). In the above
discussion we have shown that for any advertiser i we have,

UOPT
i (θi)≤UGSP

i (θi)≤UVCG
i (θi)
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The above inequality can be used in conjunction with Equation (29) to conclude the second part
of the desired result, that is

RGSP ≤RVCG ≤ROPT if n≤m

Q.E.D.
In what follows, we actually derive the exact expressions for the expected revenue earned by the

search engine under these three different mechanisms.

4.3. Expected Revenue under GSP, VCG, and OPT

We first compute the equilibrium bidding strategies of the advertisers under each mechanism. Next
we compute the expected revenue earned by the search engine under each mechanism assuming that
the advertisers will respond with corresponding equilibrium bidding strategies. We have already
seen that
• Truth revelation constitutes a dominant strategy equilibrium under the VCG mechanism
• Truth revelation constitutes a Bayesian Nash equilibrium under the OPT mechanism
• Truth revelation does not constitute an equilibrium under the GSP mechanism.
We follow the assumptions made in Section 4 in the rest of the discussion.

4.3.1. Expected Revenue under the VCG Mechanism Under the assumption of the
symmetric advertisers, we compute the expected revenue, RVCG, earned by the search engine in the
following way.

RVCG = Eθ

[
min(m,n)∑

j=1

αjp
(j)(θ)

]
, (30)

where p(j)(θ) is the payment made by the advertiser, whose Ad is displayed in the ith position, to
the search engine against every click made by the user and when the bid profile of the advertisers
is θ = (θ1, . . . , θn). Since truth-telling is a dominant strategy equilibrium for the advertisers in the
VCG mechanism, the reported type (or bid) profile of the advertisers is indeed their actual type
profile. We consider two cases separately:

Case 1 (m < n): Substituting Equation (8) in Equation (30), we get the following relation

RVCG = Eθ

[
mαmθ(m+1) +

m−1∑
j=1

jβjθ
(j+1)

]
(31)

Now we need to compute the expectation of each term separately. For this, notice that the
advertisers are assumed to be symmetric and they choose their bids independently, therefore,
the probability that (j +1)th highest bid lies in an interval [x,x + dx] can be given by

n

(
n− 1

j

)
[1−Φ(x)]j[Φ(x)]n−j−1φ(x)dx

where j = 0, . . . , n− 1 and x ∈ [L,U ]. Therefore, the expected value of the (j + 1)th highest bid
is given by

Eθ

[
θ(j+1)

]
=

U∫

L

x n

(
n− 1

j

)
[1−Φ(x)]j[Φ(x)]n−j−1φ(x)dx (32)
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Substituting Equation (32) in Equation (31), we get the following relation for expected revenue
earned by the search engine under this case

RVCG =

U∫

L

[
mαm

(
n− 1
m

)
[Φ(x)]m[Φ(x)]n−m−1 +

m−1∑
j=1

jβj

(
n− 1

j

)
[Φ(x)]j[Φ(x)]n−j−1

]
xnφ(x)dx

(33)

where Φ(·) = 1−Φ(·).

Case 2 (n≤m): Substituting Equation (9) in Equation (30), we get the following relation

RVCG = Eθ

[
n−1∑
j=1

jβjθ
(j+1)

]
(34)

Following the same approach as for the case 1, we get the following relation for expected revenue
earned by the search engine:

RVCG =

U∫

L

[
n−1∑
j=1

jβj

(
n− 1

j

)
[Φ(x)]j[Φ(x)]n−j−1

]
xnφ(x)dx (35)

4.3.2. Expected Revenue under the OPT Mechanism Because of the symmetric adver-
tisers assumption and the fact that truth-telling is a Bayesian Nash equilibrium for the advertisers
under the OPT mechanism, the expected revenue, ROPT, earned by the search engine under the
OPT mechanism can be computed by Equation (30) that were discussed earlier in the context of
RVCG. Once again, We consider two cases separately.

Case 1 (m < n): Substituting Equation (17) in Equation (30), we get the following relation

ROPT = Eθ

[
mαmθ(m+1) +

m−1∑
j=1

jβjθ
(j+1)

]
(36)

Following the same approach as for the case 1 of RVCG, we get the following relation for expected
revenue earned by the search engine under this case

ROPT =

U∫

L

[
mαm

(
n− 1
m

)
[Φ(x)]m[Φ(x)]n−m−1 +

m−1∑
j=1

jβj

(
n− 1

j

)
[Φ(x)]j[Φ(x)]n−j−1

]
xnφ(x)dx

(37)

It is easy to verify that ROPT = RVCG for the case when m < n. This matches with the previous
result about revenue equivalence of the OPT and the VCG mechanisms stated in the form of
Proposition 7.

Case 2 (n≤m): Substituting Equation (18) in Equation (30), we get the following relation

ROPT = Eθ

[
nαnL+

n−1∑
j=1

jβjθ
(j+1)

]
(38)



Garg, Narahari, and Reddy: An Optimal Mechanism for Sponsored Search Auctions
Article submitted to Operations Research; manuscript no. xxxxxxx 23

Following the same approach as for the case 1, we get the following relation for expected revenue
earned by the search engine under this case

ROPT = nαnL+

U∫

L

[
n−1∑
j=1

jβj

(
n− 1

j

)
[Φ(x)]j[Φ(x)]n−j−1

]
xnφ(x)dx (39)

It is easy to verify that RVCG ≤ROPT for the case when n≤m. The equality holds if and only
if L = 0. This matches with the previous result about revenue equivalence of the OPT and the
VCG mechanisms stated in the form of Proposition 7.

4.3.3. Expected Revenue under the GSP Mechanism Recall that truth-telling need
not be a Bayesian Nash equilibrium for the advertisers under the GSP mechanism. Therefore, the
methods for computing the expected revenue of the search engine under this auction mechanism
can be modified in following manner.

Method 1:

RGSP = n

U∫

θi=L

ti(s(θi))φ(θi)dθi (40)

where s(·) is the symmetric equilibrium bidding strategy of the advertiser i and is given by
Equation (27).

Method 2:

RGSP = Eθ

[
min(m,n)∑

j=1

αjp
(j)(s(θ1), . . . , s(θn))

]
(41)

where s(·) is the symmetric equilibrium bidding strategy of the advertiser i and is given by
Equation (27).

Note that computing the exact expression for expected revenue RGSP is a difficult problem because
computing the exact expression for s(·) by solving the Equation (27) is a hard problem. We,
therefore, take a different approach here and instead of computing the exact expression for RGSP,
we appeal to the Proposition 7 which says that

RGSP = RVCG = ROPT : if m < n
RVCG ≤RGSP ≤ROPT : if n≤m

Note that we have already computed RVCG and ROPT for both the cases - m < n and n ≤ m.
Therefore, we can get the exact expression for RVCG when m < n, and an upper and a lower bound
when n≤m by making use of the Equations (33), (37), (35), and (39).

4.4. Individual Rationality

We know that the OPT mechanism satisfies interim individual rationality by definition. In order
to check whether or not the GSP mechanism satisfies it, we need to make the observation that
under the GSP mechanism, an advertiser would never pay more than what he has has bid for
each user click on his Ad. Therefore, as long each advertiser i uses a bidding strategy si(θi) such
that si(θi)≤ θi ∀ θi ∈Θi, it will immediately imply that Ui(θi)≥ 0 ∀ θi ∈Θi. This would satisfy the
interim individual rationality constraints. It is easy to verify that under the symmetry assumption,
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no equilibrium of the GSP mechanism will ever have si(θi) > θi for any advertiser i and for any
θi ∈Θi. This proves that the GSP mechanism always satisfies interim individual rationality.

The VCG mechanism is also interim individually rational. This can be verified by observing that
in the VCG mechanism, the payment made by an advertiser against each user click is always less
than or equal to his bid amount and the bid amount of each advertiser is always his true valuation.
To show that the payment made by an advertiser per user click is less than or equal to his bid
amount, we start with the payment rule of the VCG mechanism which is given by Equations (8)
and (9). We consider each case separately.

Case 1 (m < n): Notice that under this case,
—If an advertiser is not allocated any slot then by virtue of Equation (8), he pays nothing,

which ensures interim IR
—If an advertiser i, with his bid θi, is allocated the last position, i.e. the mth position, then as

per Equation (8), he pays an amount θ(m+1) for each user click. It is easy to see that θ(m+1) ≤ θi

because in the VCG mechanism, the advertisers are allocated the slots in decreasing order of
their bids and advertiser i has received the mth slot. This again ensures interim IR.

—If an advertiser i, with his bid θi, is allocated the position r, where 1 ≤ r ≤ (m− 1), then
according to Equation (8), he will be paying an amount

pi(θi, θ−i) =
1
αr

[
m−1∑
j=r

βjθ
(j+1)

]
+

αm

αr

θ(m+1)

for every user click. Notice that because in the VCG mechanism, the advertisers are allocated
the slots in decreasing order of their bids and the advertiser i has already received the rth

slot, we must have

pi(θi, θ−i) ≤ 1
αr

[
m−1∑
j=r

βjθi

]
+

αm

αr

θi = θi

[
m−1∑
j=r

αj −αj+1

αr

+
αm

αr

]
= θi

This ensures interim IR even for this case.
Case 2 (n≤m): For this case we make use of Equation (9) and go about applying similar argu-

ments which we used in the previous case and show that the VCG mechanism is interim IR even
under this case as well. Therefore, we can say that the VCG mechanism is interim individually
rational.

4.5. Computational Complexity

Note that in all the discussed auction schemes, after receiving the query word, the search engine
needs to retrieve from its database the bids of the advertisers who are interested in displaying
their Ads. After getting these bid values, say b1, . . . , bn, the search engine needs to sort them in
decreasing order if it is either the GSP or the VCG mechanism. As is well known, the worst case
complexity of sorting n numbers is O(n logn). The sorted bids b(1), . . . , b(n) can now be used for
computing the allocation and the payment of each advertiser. It is easy to verify that the allocation
operation has a worst case complexity of O(min(m,n)) for both the GSP and the VCG mechanisms.
The payment operation has a worst case complexity of O(min(m,n)) for the GSP mechanism and
O((min(m,n))2) for the VCG mechanism. Thus, the worst case computational complexity of the
GSP is O(n logn + min(m,n)), which is the same as O(n logn), and the worst case complexity of
the VCG mechanism is O(n logn+(min(m,n))2).

The practical implementation of the OPT mechanism has its own challenges. Recall that the
design of the OPT mechanism intrinsically assumes that the search engine precisely knows the
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type distribution Φi(·) of each advertiser i. However, in practice this may not be true. The search
engine typically has no information about an advertiser except his bid value and the history of click
streams. However, the search engine can always learn the type distribution Φi(·) of each advertiser i
from these given data. Assuming that the search engine knows the type distributions Φi(·) for each
advertiser i and that φi(·) is a positive function for each i and Ji(·) is a non-decreasing function for
each i, our objective here is to compute the computational complexity of the OPT mechanism. Note
that after receiving the bid values (which is same as actual types), say θ1, . . . , θn, from its database,
the search engine needs to compute J1(θ1), . . . , Jn(θn). This is an O(n) operation. Next, the search
engine needs to sort J1(θ1), . . . , Jn(θn) in decreasing order which is an O(n logn) operation. The
search engine can use these sorted values to compute the assignment of the advertisers which is an
O(min(m,n)) operation. Thus the complexity of the allocation operation under OPT mechanism
is O(n + n logn + min(m,n)), which is the same as O(n logn). As for the payment determination,
note that the search engine needs to compute the quantities zij(θ−i) for each advertiser i. Assuming
that functions Ji(θi) are invertible (a popular example is the uniform distribution), computing
the quantity zij(θ−i) is a constant time operation. To illustrate this, suppose the advertiser i is
allocated the rth position, then we have

zij =
{

J−1
i (J (j)) : if j = 1, . . . , r− 1

J−1
i (J (j+1)) : if j = r, . . . ,min(m,n)

where J (j) is the value of the quantity Jk(θk) for an advertiser k whose Ad is allocated to the jth

position. In view of the assumption of invertibility of the functions Ji(·), we can say that comput-
ing the quantities zij(θ−i) is an O((min(m,n))2) operation. After computing these quantities the
payment for the advertisers can be computed in O((min(m,n))2) time. Thus the complexity of the
payment operation under the OPT mechanism is O((min(m,n))2). Therefore, the computational
complexity of the OPT mechanism, under the assumption that the function Ji(·) is invertible for
every i, is O(n logn+(min(m,n))2) which is the same as the computational complexity of the VCG
mechanism.

5. Summary

In this paper, we formulated the sponsored search auction as a mechanism design problem in
linear environment and then showed that three well known mechanisms, GFP, GSP, and VCG
can be conveniently described in this framework. Next, we proposed a new mechanism, called the
OPT mechanism. We compared the OPT mechanism with the GSP and VCG mechanisms from
the point of view of incentive compatibility, expected revenue earned by the search engine, and
individual rationality. We derived a symmetric equilibrium bidding strategy of the advertisers for
the GSP mechanism and this was instrumental in showing that the GSP is not a Bayesian incentive
compatible mechanism. We extended the classical revenue equivalence theorem to the setting of
sponsored search auction and used it to show the revenue equivalence of the three mechanisms.
Finally, we also computed expressions for the expected revenue earned by the search engine under
the GSP, the VCG, and the OPT mechanisms.

We can summarize the results of the comparative study for three different sponsored search
auction mechanisms in the form of Table 2.
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