
Kasbah: An Agent Marketplace for Buying and

Selling Goods

Anthony Chavez Pattie Maes

MIT Media Lab

20 Ames Street

Cambridge, MA 02139

asc/pattie@media.mit.edu

Abstract

While there are many Web services which help users �nd things to buy, we know

of none which actually try to automate the process of buying and selling. Kasbah is

a virtual marketplace on the Web where users create autonomous agents to buy and

sell goods on their behalf. Users specify parameters to guide and constrain an agent's

overall behavior. A simple prototype has been built to test the viability of this concept.

Introduction

Kasbah is a Web-based system where users create autonomous agents that buy and sell
goods on their behalf.

Our original idea was to reinvent the classi�ed ads. We observed that there are many
sites on the Web that post ads. Some of these sites allow users to perform keyword searches

on the ads (Seattle Times/PI 1996). Some have their ads nicely categorized, making it

easier to �nd ones of interest (ADWorld 1996). Other sites have more advanced searching
capabilities. For example, Stanford's Infomaster (Infomaster 1995) (Geddis et al. 1995)

allows users to �ll out a form that precisely describes the kind of apartment they are looking
for. Infomaster searches the ad databases of several local newspapers and returns those

which describe apartments that match the user's speci�cation.
These \classi�ed ad" sites all provide tools to help the user �nd ads of interest. Certainly,

such tools are useful. Yet they only assist with one step in the multi-step process of buying

and selling, that of �nding ads which match what one is looking for. The idea behind Kasbah

is to help users with the other major step in the process, the negotiations between buyer and

seller, by providing agents which can autonomously negotiate and make the \best possible
deal" on the user's behalf.

Overview of Kasbah

Kasbah is a Web site where users go to buy and sell things. They do this by creating

buying and selling agents, which then interact in the marketplace. Kasbah is thus a multi-

agent system. The marketplace is designed to handle any type of agent that supports the

appropriate protocol (discussed later), though the current prototype only has a single kind

of relatively simple buying and selling agents. It is these agents that will be described in

the remainder of the paper. The agents themselves are not tremendously smart (although

they are completely autonomous); they do not use any AI or Machine Learning techniques,

though we are currently working on agents which do. What makes Kasbah fundamentally

interesting is its multi-agent aspect | the interaction and competition between the agents

in the marketplace.

Selling and Buying Agents

Think of a selling agent as being analogous to a classi�ed ad. When a user creates a new

selling agent, they give it a description of the item they want it to sell. Unlike the traditional
classi�ed ad, though, which sits passively in its medium and waits for someone to notice it,
Kasbah's selling agents are pro-active. Basically, they try to sell themselves, by going into
the marketplace, contacting interested parties (namely, buying agents) and negotiating with
them to �nd the best deal.

A selling agent is autonomous in that, once released into the marketplace, it negotiates
and makes decisions on its own, without requiring user intervention. The user does have
high-level control of its behavior. When the user creates a new selling agent, they set several
parameters to guide it as it tries to sell the speci�ed item. These parameters are:

� Desired date to sell the item by. People usually have a deadline by which they want
to sell something. For example, a graduating student might want to sell their bicycle
before they leave school, because they cannot take it with them.

� Desired price. This is the price the user would like to sell their good for.

� Lowest acceptable price. This is the lowest price the user will sell their good for. If
the user has junk in their basement that they want to get rid of, they may set the
desired price rather high, hoping someone might be willing to pay it, and also set the

lowest acceptable price to a more realistic level. On the other hand, a person willing

to accept nothing less than their asking price would set the lowest acceptable price to

be the desired price.

The above parameters can be changed by the user at any time after the agent has been
created.

These parameters de�ne the agent's goal: to sell the item in question for the highest
possible price | ideally, the desired price, but as low as the lowest acceptable price, if that

is what it takes to attract buyer interest in the time frame given. Exactly how to achieve

this goal is left to the agent. The appropriate metaphor here is that of a personal assistant

(Maes 1994). You tell your personal assistant what you would like to be done (\sell this for

the best possible price"), and trust it to �gure out how to accomplish this task, freeing your

time and energy for more interesting pursuits. In addition, we hope that agents might be

able to sell (and buy) goods better (e.g. at a higher price) than the user would be able to,

by taking advantage of their edge in processing speed and communication bandwidth.

While an agent is \free" in terms of how to achieve its objective, the parameters described

above suggest how it works. The crude heuristic used by the agents in the current version

is: begin by o�ering the item at the desired price. If there are willing buyers, great. If not,

as time goes along, lower the asking price to entice more interest. When the desired date to

sell the good by rolls around, the asking price should be about the lowest acceptable price.

Of course, all the interesting action is in the subtleties and nuances of how the selling agent
goes about lowering the price. It is possible that there will be no buyers (perhaps the lowest

acceptable price is too high, or no one interested in what the agent is selling). In this case,
the agent fails to achieve its goal.

The user has some control over the agent's negotiation \strategy". The user can specify
the \decay" function the agent uses to lower the asking price over its given time frame. The
user has three choices: linear, quadratic, and cubic. Figure 1 shows the shape of the asking

price as a function of time for each type of decay function. More sophisticated agents would
have di�erent parameters or \knobs" allowing the user to tune its selling strategy as desired.

Figure 1: Shape of a selling agent's asking price over time, for the three possible decay

functions: linear, quadratic, and cubic. (Note: values on the axes are arbitrary)

The user can check on its selling agents, see which other agents they have talked to, and

what prices they have been o�ered. This information might prompt the user to do something

like lower an agent's price parameters, if they see that o�ers are coming in much lower than

expected.

The user always has �nal control over their agents. When a selling agent reaches an

agreement with a buying agent, their users may want to give the ok, so to speak, before

the agents \shake hands" on the deal. The user has a couple of controls they can set when

creating both selling and buying (discussed below) agents:

� Get user approval before �nalizing deal.

� Send email noti�cation when agreement reached. The user might not be logged into

Kasbah when the agent reaches a tentative agreement, and sending email is a conve-

nient way to alert them.

The six parameters given above are by no means exhaustive. One can imagine many
more controls a user might want to set on their agents, depending on the complexity of these
agents. For instance, there might be a parameter that tells the agent to only negotiate with

agents whose users are in a certain physical region (e.g., within the city of Boston).
Figure 2 is a screen shot from the Kasbah Prototype showing the HTML form the user

�lls out to create a selling agent that sells a playing card (playing cards are the prototype's
test domain). For agents that sell things other than playing cards, the part of the form that
describes the item to sell will be di�erent.

Thus far we have discussed selling agents. There are also buying agents. They are
essentially the symmetric opposite of selling agents. Their job is to buy goods on behalf
of users. One can think of a buying agent as a want ad which actively seeks to �nd and
buy what it's looking for. When creating a buying agent, the user describes their item of
interest. Alternatively, they could specify a set of selling agents already in the marketplace

and direct their buying agent to buy from one of them. Like for selling agents, the user also
sets parameters to guide the agent's negotiations.

� Date to buy the item by.

� Desired price. What the user wants to pay for the good.

� Highest acceptable price. The highest price the user is willing to pay for the good.

Once created, the buying agent is released into the marketplace, where it negotiates with
selling agents, trying to make the best possible deal.

As with selling agents, the user is also able to specify the shape of the agent's price \raise"
function from among three choices: linear, quadratic, and cubic. A plot of the asking price

versus time for these three functions would be those shown in Figure 1 but ipped about a

line parallel to the x-axis.

Once a buying and selling agent have reached agreement on a price and gotten their

respective user's approval, then the physical transaction of the good can occur. At this
point, the humans must take over. In the future, agents may be able to do this too, using

electronic cash, and if the goods in question are things which do not require a physical

medium, such as information and knowledge.

Figure 2: Form that allows users to create a new selling agent.

Users can currently only choose from a standard set of agents developed by us. In the
future, though, people may want to use Kasbah for a variety of market applications | not

just buying and selling goods a la the classi�eds, but for things like stock markets, auctions,

vendor-based markets, electronic malls, etc. For each of these types of market, there will need
to be specialized agents. An agent that buys in a classi�eds Kasbah will have a completely
di�erent strategy than one that buys, say, in an auction Kasbah.

In future versions, Kasbah's architecture will allow agents that speak the appropriate lan-

guage to be easily \plugged" into the marketplace, thus allowing outside parties, including

end-users, to build and use agents that suit their own specialized needs. We are considered

using Telescript, a mobile agent language developed by General Magic (White 1996) to im-
plement this architecture. Telescript allows agents to transport themselves over the Internet

and to send messages to one another. Using Telescript, a user could create their own buying
or selling agents on their machine. The agents would then be shipped over the network to

the machine housing the Kasbah marketplace, where they would do their thing.

We think Kasbah's buying and selling agents will prove useful to the everyday end-user.
Here are some of the services and bene�ts which these agents will provide:

� Spare the user from having to �nd, negotiate, and in general deal with buyers and

sellers. Kasbah will be eliminating human-human contact, which might sound like a

bad thing. But a lot of people don't like talking to strangers, which is generally required

when buying or selling something via the newspaper classi�eds. Language barriers and

misunderstandings are often a problem. With agents doing the talking, though, the

process is depersonalized. Here technology is not increasing human interaction, but

reducing it, freeing people to pursue their more meaningful relationships.

� Know who are prospective buyers and sellers. The buying and selling agents we are

building remember everyone they have talked to. This information can be accessed by

their creators, which can be very useful. Suppose that a potential buyer asks you to

clarify the description of an item you are selling. You respond to their request, but you
may receive several similar requests, and answering them as they come in is annoying.
Armed with information about which users' buying agents have contacted your selling
agent, you can pre-emptively send out a clari�cation to all of those users.

� Enable better pricing. In addition to recording who they have talked to, the agents
also record the content of their conversations (e.g., Agent 14 made an o�er of $60.)
This allows users to gather price information. They may see that they are asking too
much, or alternatively, asking too little.

The Marketplace

Buying and selling agents meet and negotiate in the Kasbah marketplace. The marketplace's
job is to facilitate interaction between the agents. There are many roles the marketplace

could play depending on the type of market. At a minimum, the marketplace needs to
ensure that the agent's participating in it speak a common language. Kasbah's marketplace
also matches up agents interested in buying or selling the same kinds of things. When a
selling agent is created, the marketplace asks what the agent is interested in selling. The

marketplace then sends the agent a list of all the potential buyers of that particular item.

The marketplace also sends messages to all of these potential buyers informing them of

the existence of the new selling agent. The same thing happens when a buying agent is

created. When an agent leaves the marketplace, the marketplace noti�es all of its potential
customers (if it is a selling agent) or all the agents for whom it was a potential customer (if it

is a buying agent). Think of this as the marketplace forming \tents" of interest within itself.
For example, there might be a tent for cars, a tent for apartments in Cambridge, a tent for

stereo equipment, etc. The marketplace also determines the terminology spoken, that is,
how goods are described. In future versions of Kasbah, this terminology will be extendible

by users.

We can consider more complex marketplaces. We might want a marketplace which reg-
ulates the activities that occur within it. As agents become more intelligent, we can easily

imagine malicious and deceitful agents, trying to rip o� honest ones. In such a world, there

will need to be some kind of law enforcement. We might have regulator agents roaming the

marketplace to ensure that no illegal activity occurs. We have not yet considered in depth

the social issues associated with complex agent communities, but we are aware of them, and

a lot of theoretical research has been done in this area (Rosenschein and Zlotkin 1994).

Very important is that Kasbah's marketplace architecture is agent independent. As

long as an agent speaks the common marketplace language, i.e., supports the appropriate

protocols, then it can participate in the marketplace.

Kasbah Prototype

To test the validity of what has been described, we have built a Kasbah Prototype.

Implementation

The Kasbah Prototype is implemented in CLOS using Harlequin Lisp. As is standard in
CLOS, everything is an object (an instance of a class) | the marketplace, the agents, the
item descriptions, etc.

The marketplace language is implemented by requiring agents to support certain methods

that can be called on them. All of the following methods can be called on both buying and
selling agents.

� accept-offer?(agent, from-agent, offer)

This method is used to ask agent whether or not they accept the o�er of offer from
from-agent. agent returns either \accepted" or \rejected".

� what-is-price?(agent, from-agent)

This method is called by from-agent to ask agent what its o�ering price is, which is
returned. If agent is a buying agent, then its price is how much it is at that moment

willing to pay. If agent is a selling agent, then its price is how much it is at that

moment willing to sell for.

� what-is-item?(agent, from-agent)

This method is called by from-agent to ask agent what item it is trying to sell or

buy, depending on whether agent is a buying or selling agent. An item description is

returned.

These methods allow an agent or the marketplace to talk directly to another agent. There
is no way for an agent to \overhear" a conversation between two other agents. In the future,

we will implement methods that allow an agent to broadcast a message to all interested

parties in parallel.
A marketplace object contains buying and selling agents. Agents are added to the mar-

ketplace by calling the methods add-sell-agent and
add-buy-agent. When an agent is added to the marketplace, it is noti�ed of agents who are

interested in buying (selling) the item it is selling (buying). In addition, those agents are

noti�ed of the existence of the new agent. The marketplace does this noti�cation by calling

the following two methods, which must be supported by all agents:

� add-potential-customers(sell-agent, potential-customers)

Noti�es sell-agent that the buying agents speci�ed by

potential-customers want to purchase the type of item it is selling.

� add-potential-sellers(buy-agent, potential-sellers)

Noti�es buy-agent that the selling agents speci�ed by

potential-sellers wish to sell the type of item it wants to buy.

In addition, buying and selling agents must also support the methods

remove-potential-sellers and remove-potential-customers, which the marketplace

calls to notify agents that other agents are no longer of interest (because they have ter-
minated or already reached a deal with someone else).

Agents also need to be able to send messages to the marketplace. There are two methods
which the marketplace supports:

� agent-terminated(marketplace, agent)

Called by agent to notify marketplace that it has ceased to exist.

� deal-made(marketplace, sell-agent, buy-agent, item, price)

Noti�es marketplace that sell-agent and buy-agent have agreed to transact item
for the given price.

The items that are bought and sold are described by feature vectors. These vectors
consists of (feature, feature value) pairs. Describing items in this way makes it easy to
determine if two item descriptions match.

Conceptually, buying and selling agents in the marketplace are constantly talking to one

another, all at the same time. Because we cannot really run the agents in parallel, the
marketplace simulates this by implementing a simple scheduling algorithm. The algorithm

works as follows. Each agent is allowed exactly one \slice" of execution time per marketplace

\cycle". During this slice, an agent can do whatever | talk to other agents, do internal
computations, etc. There needs to be a mechanism that limits how much processing time

an agent can consume per slice, but this has not been implemented. The order in which the
agents execute per cycle is determined randomly. To execute an agent during its slice, the

marketplace calls the method do thing, which all agents must support.
We will now describe how selling and buying agents work. We refer to selling agents;

buying agents work in the obviously symmetrical way. (While it is possible to build buying

and selling agents which use di�erent strategies, we chose for convenience to have ours use

the same framework.)

An agent consists of the following components: control parameters, negotiation history,
and internal state. Each of these will be described in turn. An agent also stores a timestamp

of when it was created and a description of what it is selling (or buying).

The control parameters are the six user-speci�ed parameters described earlier in the

paper.

The negotiation history records each conversation that the agent has had with other

agents. It consists of a list of (date, event) pairs, where each event describes the conversation

that occured on that particular date. An example conversation is \I o�ered Agent 3 a price

100. They rejected the o�er.", or \Agent 14 asked my selling price. I replied 91." Recording

all the conversations that an agent has had can provide useful information to the user.

The internal state of an agent contains information that the agent uses to decide what

it will do during its slice, i.e. when do thing is called. The internal state stores a list of

\potential contacts", which are those agents interested in buying (selling) what that agent is

selling (buying). With each potential contact is recorded its last known o�ering price (i.e.,

what that agent is willing to buy or sell the item for), and whether it has been asked this
round (explained later). The internal state also stores the agent's own current asking price.

The strategy an agent uses to decide what to do each slice is very simple, and is described
below.

1. Determine the current asking price.

The agent lowers (increases) its asking price according to the speci�ed price decay
(raise) function. When the agent is created, its asking price is set to the desired price.
By the date to sell by, the asking price is the lowest price. At any moment in between,
the current asking price can be interpolated according to the decay/raise function.

2. Decide which agent to talk to.

The agent's strategy is to talk to each potential contact exactly once per \round". In
other words, an agent will never talk to a given potential contact until it has �rst talked

to all other potential contacts. If a potential contact makes an o�er to the agent, this
is considered equivalent to the agent having talked to that contact during the current
round. The algorithm for deciding which potential contact to talk to during a slice

works as follows: Consider the potential contacts that have not yet been spoken to in
the current round. If all have been spoken to, then begin a new round and consider
all the potential contacts. From this set of considered agents, pick one that has never

been contacted, or, if all agents under consideration have been contacted, then pick

the one whose last know o�ering price is the highest (lowest). The idea is to �rst talk
to those agents which seem the most promising | �rst those who have never been

spoken to, and then agents who have indicated a willingness to pay a higher (or sell
for a lower) price.

3. Talk to the potential contact.

The agent o�ers to sell (buy) the item at its current asking price. If the contacted

agent accepts, then the agent's job is done. If the contacted agent rejects the o�er,
then it is asked what its o�ering price is. This price is recorded for that potential

contact, and its asked-this-round ag is set to true.

Agent ID: 1 | type sell

agent created on: Wed 24 Jan 21:20:14 1996

the control parameters:

Sell by: Wed 24 Jan 21:24:00 1996

Desired price: 100

Lowest possible price: 50

Price decay function: linear

the item description: Ace of Spades

Agent ID: 2 | type buy

agent created on: Wed 24 Jan 21:20:14 1996

the control parameters:
Buy by: Wed 24 Jan 21:24:00 1996

Desired price: 50
Highest possible price: 85
Price raise function: linear
the item description: Ace of anything

Agent ID: 3 | type buy
agent created on: Wed 24 Jan 21:20:14 1996
the control parameters:
Buy by: Tue 24 Jan 21:25:00 1996
Desired price: 70

Highest possible price: 110
Price raise function: linear
the item description: Anything of Spades

Figure 3: Important features of Agents 1, 2, and 3.

A Simple Example

To illustrate how the agents work, we give a simple example: a marketplace containing three

agents buying and selling playing cards.

Agent 1 wants to sell an Ace of Spades. Agent 2 wants to buy any card with an Ace
face value. Agent 3 wants to buy any cards of the Spades suit. So, Agent 1 is a potential
seller for Agents 2 and 3, which are potential customers for Agent 1. Figure 3 shows the

important features of these agents.

Agents 1, 2, and 3 were added to the marketplace, which was then run for several cycles,
each about twenty seconds apart. Eventually, Agent 3 agreed to buy the Ace of Spades from

Agent 1 for a price of 79. Figure 4 shows the entire negotiation history of Agent 1. The

histories for Agents 2 and 3 are similar and thus not shown. Note that agents record both
conversations initiated by themselves (\I o�ered Agent 3...") and those initiated by other

agents (\Agent 2 o�ered...").

Experimental Results

To test the Kasbah Prototype, we conducted a simple experiment where users bought and

sold playing cards amongst themselves by creating buying and selling agents. The goal for

each user was to maximize the \quality" of their hand as in poker. The medium of exchange

was virtual \play" money, of which each user was given a �xed amount at the start of

the experiment, so there was incentive for users to create selling as well as buying agents.

Although this test domain was not a realistic one, it provided insight into what users expect

from agents that negotiate on their behalf. Here are our major qualitative observations:

� In general, feedback was positive. Participants in the experiment seemed to think it

was quite fun. But we cannot easily extrapolate from this to assume that people would
use Kasbah to buy and sell real goods for real money.

� Users expect their agent not to do clearly stupid things. Even though most participants

knew the details of how the agents worked, they were disappointed when the agents did
\dumb" things that a human would never do, such as accept an o�er when a better one
was available. This happened because the agents always accept the �rst o�er which
meets their asking price; however, there might be another o�er which also meets the
asking price but is even better. If Kasbah's agents are to serve as intelligent assistants

to the user, then they will have to be made free of such \bugs".

� Users want agents that reason more like people and are more pro-active in terms of
making decisions. When people buy and sell things, there are many factors they take

into account, e.g. the competition, the level of buyer interest, etc. It is doubtful,
though, if the normal person could explicitly delineate the strategy they use to buy or
sell. When they turn the the task of buying and selling over to someone else, be it a

real-life agent or one of Kasbah's, they don't want to have to give it precise instructions.
Rather, they trust that the agent will consider the factors that they themselves would

consider. Any direction given the agent should be at a higher, more motivational
level. You don't tell your real estate agent, \It's taking an awfully long time to sell

my house. Switch from a cubic price decay to a linear one." Instead you say, \It's
taking an awfully long time to sell my house" and leave it to the agent to work out

the nuances of adjusting the price. We found that even specifying a desired price is

something that many users would rather have their agent decide, by looking at agents

buying/selling comparable items.

Our experiment demonstrated the need and desire for \smarter" agents whose decision-

making processes more closely mimic those of people and which can be directed at a more

abstract, motivational level. Future work on Kasbah is headed in this direction.

the negotiation history:

Date: Wed 24 Jan 21:20:15 | Event: O�ered agent 3 100. Rejected.

Date: Wed 24 Jan 21:20:15 | Event: Asked agent 3 their price. Replied 70.

Date: Wed 24 Jan 21:20:15 | Event: Agent 2 o�ered 50. I rejected.

Date: Wed 24 Jan 21:20:15 | Event: Agent 2 asked my price. I replied 100.

Date: Wed 24 Jan 21:20:16 | Event: Agent 3 o�ered 70. I rejected.

Date: Wed 24 Jan 21:20:16 | Event: Agent 3 asked my price. I replied 100.

Date: Wed 24 Jan 21:20:34 | Event: O�ered agent 3 96. Rejected.

Date: Wed 24 Jan 21:20:34 | Event: Asked agent 3 their price. Replied 73.
Date: Wed 24 Jan 21:20:34 | Event: Agent 3 o�ered 73. I rejected.
Date: Wed 24 Jan 21:20:34 | Event: Agent 3 asked my price. I replied 96.
Date: Wed 24 Jan 21:20:35 | Event: Agent 2 o�ered 53. I rejected.
Date: Wed 24 Jan 21:20:35 | Event: Agent 2 asked my price. I replied 95.

Date: Wed 24 Jan 21:20:53 | Event: Agent 3 o�ered 75. I rejected.
Date: Wed 24 Jan 21:20:53 | Event: Agent 3 asked my price. I replied 91.
Date: Wed 24 Jan 21:20:53 | Event: Agent 2 o�ered 56. I rejected.
Date: Wed 24 Jan 21:20:53 | Event: Agent 2 asked my price. I replied 91.
Date: Wed 24 Jan 21:20:54 | Event: O�ered agent 3 91. Rejected.

Date: Wed 24 Jan 21:20:54 | Event: Asked agent 3 their price. Replied 76.
Date: Wed 24 Jan 21:21:12 | Event: Agent 2 o�ered 59. I rejected.
Date: Wed 24 Jan 21:21:12 | Event: Agent 2 asked my price. I replied 87.
Date: Wed 24 Jan 21:21:12 | Event: Agent 3 o�ered 78. I rejected.
Date: Wed 24 Jan 21:21:12 | Event: Agent 3 asked my price. I replied 87.

Date: Wed 24 Jan 21:21:13 | Event: O�ered agent 3 87. Rejected.
Date: Wed 24 Jan 21:21:13 | Event: Asked agent 3 their price. Replied 78.

Date: Wed 24 Jan 21:21:31 | Event: Agent 3 o�ered 81. I rejected.

Date: Wed 24 Jan 21:21:31 | Event: Agent 3 asked my price. I replied 83.
Date: Wed 24 Jan 21:21:31 | Event: O�ered agent 2 83. Rejected.
Date: Wed 24 Jan 21:21:31 | Event: Asked agent 2 their price. Replied 62.

Date: Wed 24 Jan 21:21:32 | Event: Agent 2 o�ered 62. I rejected.

Date: Wed 24 Jan 21:21:32 | Event: Agent 2 asked my price. I replied 83.
Date: Wed 24 Jan 21:21:50 | Event: O�ered agent 3 79. Accepted.

Figure 4: Negotiation history of Agent 1.

Related Work

Much work has been done over the past few years on software agents (Maes and Kozierok

1993) (Lashkari et al. 1994). The overall goal of this work is to help people deal with

\information and work overload", and that it is what we are trying to do with Kasbah.

The notion of autonomous agents is not a new one. It appears extensively throughout

computer science literature, in several di�erent contexts. In the �eld of Distributed AI,

agents are entities which collaborate to solve a speci�c common problem (Demazeau and

Muller 1990). In Decentralized AI, the focus is more on the interactions of agents with

di�erent motivations. The underlying notion, though, is that the agent interaction should

further some organizational goals (Demazeau and Muller 1990).

This notion of agents is somewhat di�erent from the one we take: Kasbah's agents not
only don't share common goals, they often have diametrically opposing aims. This contrasts
to a system such as Firey (Shardanand and Maes 1995), where agents serve individual users
(to make music recommendations), yet cooperate and exchange information in a mutually
bene�cial fashion.

A lot of work has also been done in the area of agent communication. KQML is perhaps
the most notable attempt to design a general purpose agent language (Labrou and Finin
1994). We have chosen not to use KQML thus far, since our agents are all locally built and
thus can be made to communicate via a prede�ned set of methods. We are considering using
KQML in the future to easily allow agents developed by outside parties to participate in the

marketplace.
As Kasbah's agents evolve and becomemore advanced, they will require a richer semantics

of communication to enable more complex and subtle negotiations. The �eld of speech acts
(Winograd and Flores 1986) has investigated such theoretical issues in depth.

Conclusion

Kasbah is a system where users create agents to negotiate for the purchase and sale of goods

on their behalf. We have built a simple prototype to test the basic concepts and feasibility

and conducted some simple experiments. Future work is focussed on making smarter agents

which are directable at a more natural level for users. Though we have only just scratched

the surface in terms of making a truly useful system, we are excited about this work and
think it has the chance to fundamentally change the way people buy and sell goods and

services in the not-too-distant future.

References

[AdWorld 1996] AdWorld, 1996.

http://www.scbe.on.ca/int/adworld.html

[Seattle Times/PI 1996] Seattle Times/PI, 1996.

http://webster.seatimes.com/classi�ed/index.html

[Infomaster 1995] Infomaster, 1995.

http://infomaster.stanford.edu:4000/ASK/RENTAL

[Demazeau and Muller 1990] Demazeau, Y., and Muller, J. 1990. Decentralized Arti�cial In-

telligence. In: Decentralized AI. Eds. Demazeau and Muller. Elsevier Science Publishers,

North Holland.

[Geddis et al.] Geddis, D., Genesereth, M., Keller, A., and Singh., N. 1995. "Infomaster:

A Virtual Information System". In Proceedings of CIKM 95 Workshop on Intelligent

Information Agents. Baltimore, Maryland.

[Labrou and Finin 1994] Labrou, Y., and Finin, T. 1994. "A Semantics approach for KQML
| a general purpose communication language for software agents." In Proceedings of
CIKM 94. New York: ACM Press.

[Lashkari et al. 1994] Lashkari, Y., Metral, M., and Maes, P. \Collaborative Interface
Agents." 1994. In Proceedings of the 12th National Conference on Arti�cial Intelligence.

Seattle, Washington: AAAI Press.

[Maes and Kozierok 1993] Maes, P., and Kozierok, R. 1993. \Learning Interface Agents."
1993. In Proceedings of AAAI 93 Conference. Washington, DC: AAAI Press.

[Maes 1994] Maes, P. 1994. Agents that Reduce Work and Information Overload. Commu-

nication of the ACM Vol. 37, No. 7. 31-40.

[Rosenschein and Zlotkin 1994] Rosenschein, J., and Zlotkin, G. 1994. Rules of encounter:

designing conventions for automated negotiation among computers. Cambridge, Mass.:
MIT Press.

[Shardanand and Maes 1995] Shardanand, U., and Maes, P. 1995. "Social Information Fil-

tering: Algorithms for Automating Word of Mouth". In Proceedings of CHI 95 Confer-
ence, Denver, Colorado.

[White 1996] White, J. 1996. Telescript Technology: Mobile Agents. General Magic White
Paper.

