‘ Design Patterns I

Y. Narahari I

Computer Science and Automation

Indian Institute of Science

Bangalore - 560 012

‘ DESIGN PATTERNS '

Simple and elegant solutions to specific,
commonly occurring problems in software

design

Fach design pattern addresses an important
and recurring design problem in object
oriented design

DPs make it easier to reuse successful designs
and architectures of experienced and

professional designers

DPs improve documentation and

maintenance of software

FEach pattern describes a problem that occurs
over and over again and sketches a solution
for the problem in a way that the solution can

be reused 1n numerous contexts

‘What Constitutes a DP?'

Pattern name and classification
Intent of the pattern

Motivation for the pattern

Applicability

Structure
Participants
Collaborations
Consequences
Implementation
Sample Code

Known uses and related patterns

Catalog of Patterns I

e Gamma, Helm, Johnson, and Vlissides
describe 23 patterns in their book -
Design Patterns: Elements of Reusable
Object-Oriented Software

e Patterns keep evolving and are updated:

http://st-www.cs.uiuc.edu/users/patterns

e Three types of Patterns:

1. Creational: concerned with creation of

objects

. Structural: concerned with composition

of classes or objects

. Behavioral: characterize the ways in
which classes and objects interact and

distribute responsibility

Creational Patterns I

Abstract Factory: Provide an interface for
creating families of related or dependent
objects without specifying their concrete
classes

Builder: Separate the construction of a
complex object from its representation so
that the same construction process can create
different representations

Factory Method: Define an interface to
create an object, but let subclasses decide

which class to instantiate (Instantiation is

deferred to subclasses)

Prototype: Specify the kinds of objects to
create using a prototypical instance, and
create new objects by copying this prototype

Singleton: Ensure a class has only one
instance and provide a global point of access
to 1t

‘ Structural Patterns I

Adapter: Convert the interface of a class into
another interface that clients expect

Bridge: Decouple an abstraction from its
implementation so that the two can vary
independently

Composite: Compose objects into tree
structures to represent part- whole hierarchies.

(Let clients treat individual objects and

compositions of objects in a uniform way)

Decorator: Attach additional responsibilities to
an object dynamically to provide a flexible
alternative to subclassing

Facade: Provide a unified interface to a set of
interfaces in a subsystem, enabling easier use of
the subsystem

Flyweight: Use sharing to support large
numbers of fine-grained objects efficiently

Proxy: Provide a surrogate or placeholder for
another object to control access for it

Behavioral Patterns - 1.

Chain of Responsibility: Avoid coupling
the sender of a request to its receiver by
giving more than one object a chance to
handle the request (chain the receiving

objects and pass the request along until an
object handles it)

Command: Encapsulate a request as an
object, thereby enabling to parameterize
clients with different requests, queue or log

requests, and support special operations

Interpreter: Given a language, define a
representation for its grammar along with an
interpreter that uses the representation to
interpret sentences in the language

Iterator: Provide a way to access the
elements of an aggregate object sequentially
without exposing its representation

Behavioral Patterns - 2.

Mediator: Define an object that
encapsulates how a set of objects interact, to
promote loose coupling by keeping objects

from referring to each other explicitly and

enabling to vary their interaction
independently

Memento: Without violating encapsulation,
capture and externalize an object’s internal
state so that the object can be restored to

this state later

Observer: Define to one-to-many
dependency between objects so that when one
object changes state, all its dependents are
notified and updated automatically

State: Allow an object to alter its behavior
when its internal state changes. The object

will appear to change its class

Behavioral Patterns - 3.

Mediator: Define an object that
encapsulates how

Strategy: Define a family of algorithms,
encapsulate each one, and make them
interchangeable, enabling the algorithm to
vary independently from clients that use it

Template Method: Define the skeleton of
an algorithm in an operation, deferring some
steps to subclasses. This will let subclasses

redefine certain steps of an algorithm without

changing the structure of the algorithm

Visitor: Represent an operation to be
performed on the elements of an object
structure, enabling to define a new operation
without changing the classes of the elements

on which it operates.

Why Design Patterns? - 1'

e Enable best practices in design to be used
commonly

— Program to interface, not implementation
— Abstract Factory, Builder,
Factory Method, Prototype,
Singleton

— Prefer interface inheritance over
implementation inheritance

— Chain of Resp, Composite,
Command, Observer, State,
Strategy

— Favour object composition and delegation
over class inheritance
— State, Strategy, Visitor,
Mediator, Chain of Resp, Bridge

— Use small inheritance hierarchies, avoid

complex compositions, use a judicious miz

— Composite, Strategy, Abstract Factory

10

‘Why Design Patterns? - 2'

Find appropriate objects during design

— Strategy, Composite, State

Determine object granularity

— Facade, Flyweight, Abstract Factory,
Builder, Visitor, Command

Specify object interfaces

— Memento, Decorator, Proxy, Visitor

Specify object implementations

— Composite, Chain of Responsibility,

Command, Observer, State, Strategy

11

‘Why Design Patterns? - 3'

Enable effective use of reuse mechanisms
Inheritance
Composition
Delegation
Parameterized types
Relating run-time and compile-time

structures: DPs enable a better mapping
between the two

— Composite, Decorator, Chain of

Responsibility, Observer

Enable design for change: DPs ensure that a
system can change in specific and structured

ways only

Lead to high quality designs of application

programs, toolkits, and frameworks

12

Design for Change - 1'

Create objects indirectly and avoid creating

and object by explicitly specifying a class

— Abstract Factory, Factory Method,
Prototype

Design so as to limit platform dependencies

— Abstract Factory, Bridge

Reduce dependence on object representation

or implementation by hiding the internals

from clients

— Abstract Factory, Bridge, Memento,
Proxy

Reduce algorithmic dependencies by isolating

algorithms that are likely to change

— Builder, Iterator, Strategy,
Template Method, Visitor

13

‘Design for Change - 2'

e Promote loosely coupled classes

— Abstract Factory, Bridge, Chain of
Responsibility, Facade, Mediator,

Observer

e Avoid subclassing as a means to extend

functionality; use composition instead

— Bridge, Chain of Responsibility,
Composite, Decorator, Observer,
Strategy

e Enable convenient alteration of classes

— Adapter, Decorator, Visitor

14

Toolkits and Frameworks.

e Lead to high quality application programs by
promoting

— internal reuse, maintainability,
extensibility

e [ead to better Toolkits

— A toolkit is a set of related and reusable
classes designed to provide useful, general
purpose functionality

— Code reuse and flexibility are important

e Lead to better Frameworks

— A set of cooperating classes that make up

a reusable design for a specific class of
software

— Comprises abstract classes from which
application-specific subclasses can be
created to build a particular customized
application

— Design reuse and flexibility are important

15

Creational Patterns '

Abstract the instantiation process and help
make a system independent of how its objects
are created, composed, and represented.

Class Creational Patterns

— Factory Method

— use inheritance to vary the class that is

instantiated

Object creational Patterns

— Abstract Factory, Builder, Prototype,

Singleton
— use delegation to instantiate classes
Creational patterns gain importance as

systems evolve to depend more on object
composition rather than class inheritance

16

‘ Creational Patterns I

Recurring Themes:

— encapsulate knowledge about which concrete

classes the system uses

— hide how instances of these classes are create§

and put together

Provide flexibility in what gets created, who
creates it, how it gets created, and when.

Competitive: Abstract Factory and Prototype

Complementary: Builder and Prototype;

Builder and Abstract Factory; Abstract
Factory and factory Method; Prototype and

Singleton; etc.

17

‘Abstract Factory Pattern'

e Intent: Provide an interface for creating
families of related or dependent objects
without specifying their concrete classes

e Motivation:

— Provide portability across look and feel

standards (InterViews)

— Provide portability across different
window systems (ET++)

e Applicability: Use this pattern when

— a system should be independent of how its
products are created, composed, and
represented

— a system should be configured with one of
multiple families of products

— a family of related product objects is
designed to be used together and there is a
need to enforce this constraint

18

— it is required to provide a class library of

products where only interfaces are to be
revealed

e Participants:

1.

AbstractFactory: declares an interface
for operations that create abstract product

objects

. ConcreteFactory: implements the

operations to create concrete product

objects

. AbstractProduct: declares an interface

for a type of product object

. ConcreteProduct: defines a product

object to be created by the corresponding
factory; implements the interface of the
AbstractProduct class

. Client: uses only interfaces declared by
AbstractFactory and AbstractProduct
classes

19

e (Collaborations:

1. A single instance of ConcreteFactory class is
created at run time. This creates product
objects having a particular implementation

2. AbstractFactory defers creation of product

objects to its ConcreteFactory subclass

e Consequences:
+ 1isolates concrete classes
+ makes exchanging product families easy
+ promotes consistency among products
— makes it cumbersome to support new kinds o
products at run time.
e Implementation:

1. Each ConcreteFactory is best implemented

using a Singleton pattern

2. ConcreteProduct subclasses create the

products; the Factory Method pattern or the
Prototype pattern can be used for this purpoge

3. Defining extensible factories is not that easy

20

Motivational Example for Abstract Factory'

WidgetFactory

CreateScrollBar
CreateéWindow()

PMWindow MotifWindow

MotifWidgetFactory PMWidgetFactory

CreateScrol|Bar() CreateScrol|Bar()

CreateWindow() CreateWindow()

PM ScrollBar MotifScrollBar

21

Structure of Abstract Factory Pattern

AbstractFactory

CreateProductA()
CreateProductB()

AbstractProductA

T

ProductA2 ProductAl

ConcreteFactoryl ConcreteFactory?2

CreateProductA () CreateProductA ()
CreateProductB() CreateProductB() AbstractProductB

T

ProductB2 ProductB1

22

‘ Builder Pattern I

e Intent: Separate the construction of a
complex object from its representation so
that the same construction process can create
different representations

e Applicability: Use this pattern when

— the algorithm for creating a complex

object should be independent of the parts
that make up the object and how they are
assembled

— the construction process must allow
different representations for the object
that is constructed

23

e Participants:

1. Builder:specifies an abstract interface for

creating parts of a Product object

. ConcreteBuilder:

— constructs and assembles parts of the
product by implementing the Builder

interface

— defines and keeps track of the representatiqn
1t creates

— provides an interface for retrieving the

product

. Director: constructs an object using the
Builder interface

. Product:

— represents the complex object under

construction.

— includes classes that define the constituent
parts, including interfaces for assembling tije
parts into the final result

24

e (Collaborations:

— The client creates the Director object and

configures it with the desired Builder object

Director notifies the builder whenever a part
of the product should be built

Builder handles requests from the Director
and adds parts to the Product

The client retrieves the product from the
Builder
e Consequences:

+ enables to vary a product’s internal

representation

-+ isolates code for construction and

representation

+ gives finer control over the construction
process since the pattern constructs a produd
step by step under the Director’s control.

25

e Implementation

— The Builder class interface must be general
enough to allow construction of products for
all kinds of concrete builders

— The products produced by the concrete
builders can differ so greatly that there is little
justification for having an abstract class for

products

e Related Patterns

— Composite: A composite is what a Builder
often builds

— Abstract Factory: Builder focuses on

constructing a complex object step by step.

Abstract Factory emphasizes families of
product objects. Builder returns the product
as a final step whereas the Abstract Factory

returns the product immediately

26

Motivational Example for Builder

RTFReader

builders

TextConverter

<Q/uilder

ParseRTF()

while (t=get the next token) {

switch t.Type{
CHAR:

builder->ConvertCharacter(t.Char)
FONT:
builder->ConvertFontChange(t.Font)
PARA:
builder->ConvertParagraph()
}
}

ConvertCharacter(char)
ConvertFontChange(Font)
ConvertParagraph()

JAN

ASCIIConverter

TexConverter

TextWidgetConverter

ConvertCharacter(char)

GetASCIIText()

ConvertCharacter(char)
ConvertFontChange(Font)
ConvertParagraph()
GetTexText()

ConvertCharacter(char)
ConvertFontChange(Font)
ConvertParagraph()
GetTextWidget()

- ASCIIText

27

TextWidget

Director

Builder Pattern '

Construct() Q
]
I
|
|
I
I
|

for all objects in structure {

}

builder -> BuildPart()

]

28

Builder

BuildPart()

ConcreteBuilder

Product

BuildPart()
GetResult()

Interactions in Builder Pattern'

aC’ient a Director aCopcreteBuiIder

new ConcreteBuilder '

Construct() BuildPartA()

BuildPart(B)

BuildPartC()

GetResult()

29

Factory Method (Virtual Constructor

e Intent: Define an interface for creating an
object but let subclasses decide which class to
instantiate (defer class instantiation to
subclasses)

e Motivation:
— Creating objects through Frameworks
— Classes to be instantiated may often be
application specific
e Applicability: Use this pattern when

— a class cannot anticipate the class of
objects it must create

— a class wants its subclasses to specify the
objects it creates

— classes delegate responsibility to one of
several helper subclasses, and it is
desirable to localize the knowledge of
which helper subclass is the delegate

30

e Participants:

1. Product: defines the interface of objects the
factory method creates

. ConcreteProduct: implements the product

interface

. Creator:
— declares the factory method, which returns

an object of type Product

— may define a default implementation of th

factory method to return a default
ConcreteProduct object

— may call the factory method to create a
Product object

. ConcreteCreator: overrides the factory
method to return an instance of a

ConcreteProduct

e Collaborations:

— Creator relies on its subclasses to define the
factory method so that it returns an instance
of the appropriate ConcreteProduct

31

e Consequences:

+ eliminate the need to bind application-specifi

classes into our code

+ gives subclasses a hook for providing an
extended version of an object

+ define connection between parallel class
hierarchies

e Implementation:

— There could be two main variations of Factorg
Methods:

x Creator is abstract and does not provide a
implementation for the factory method it
declares

x Creator is concrete and provides a default

implementation for the factory method

— Parameterized Factory Method: The pattern
can be enabled to create multiple kinds of

products

32

e Related Patterns:

— Abstract Factory: is often implemented
with factory methods

— Template Method: Factory methods are
often called within Template Methods

— Prototype: Prototypes don’t require
subclassing Creator (required by Factory

Method), but often require an Initialize

operation on the Product class (not required
by Factory Method).

33

Motivational Example: Factory Method '

Document

Application

Open()

Close()
Save()
Revert()

CreateDocument()
NewDocument() O- - - -
OpenDocument()

N

Document* doc = CreateDocument();
docs.Add(doc);
doc -> Open();

MyDocument

MyApplication

CreateDocument() O- -

N

return new MyDocument

34

Product

‘ Factory Method Pattern '

Creator

FactoryMethod()
AnOperation()

ConcreteProduct

product = FactoryMethod()

ConcreteCreator

FactoryMethod()

O__

35

return new ConcreteProduct

‘ Factory Method Pattern '

Figure

CreateManipulator()

JAN

LineFigure

TextFigure

Manipulator

DownClick()
Drag()
UpClick()

JAN

CreateManipulator()

CreateManipulator()

LineManipulator

TextManipulator

DownClick()

Drag()
UpClick()

DownClick()

Drag()
UpClick()

36

Prototype Pattern I

e Intent: Specify the kinds of objects to create
using a prototypical instance, and create new
objects by copying this prototype

e Applicability: Use this pattern when the
system should be independent of how its
products are created, composed, and
represented; and

— when the classes to instantiate are
specified at run time, for example, by
dynamic loading; or

— to avoid building a class hierarchy of
factories that parallels the class hierarchy

of products; or

— when instances of a class can have one of

only a few different combinations of state

37

e Participants:

1. Prototype: declares an interface for cloning
itself

. ConcretePrototype: implements an
operation for cloning itself

. Client: creates a new object by asking a
prototype to clone itself

Collaboration: A client asks a prototype to

clone itself

Consequences:

+ hides concrete product classes from the client]
thereby reducing the number of names clients
know about

enables a client to work with
application-specific classes without
modification

clients can install and remove prototypes at

run times

38

+ reduces greatly the number of classes a systel

needs

+ obviates the need for a separate Creator classg
hierarchy as in factory methods

— each subclass of Prototype must implement
the clone operation

¢ Related Patterns:

— Abstract Factory: A prototype is often a
competitor for Abstract Factory; however th
two patterns can often be used together

— Composite and Decorator: Designs that
make intensive use of Composite and

Decorator can benefit from Prototype

39

Motivational Example for Prototype

Tool

Manipulate()

T

RotateT ool

GraphicT ool

<—
prototype

Manipulate()

Manipulate()

}

p = prototype->Clone()

while(user drags mouse) {
p -> Draw(new position)

insert p into drawing

AN

Graphic

Draw(Position)
Clone()

T

Staff

Draw(Position)
Clone()

40

MusicalNote

WholeNote

HalfNote

Draw(Position)
Clone() 0

Draw(Position)
Clone() 0

return copy of selfk

return copy of selfk

‘ Prototype Pattern '

Client

prototype

Prototype

Operation()

Clong()

1

p = prototype -> Clone()

ConcretePrototypel

Clone() ©)

return copy of self

41

ConcretePrototype2

Clone() Q

return copy of self

‘ Singleton I

e Intent: Ensure that a class has only one
instance and provide a global point of access
to it.

Applicability: Use this pattern when

— there must be exactly one instance of a
class, and it must be accessible from a

well-known access point.

when the sole instance should be
extensible by subclassing, and clients
should be able to use an extended instance
without modifying their code.

Key Idea: Make the class itself responsible
for keeping track of its sole instance. The

class can intercept requests to create new

objects and thus guarantee that no other

instance can be created; it can also provide a

way to access the instance.

42

e Participants:

1. Singleton:
— defines an Instance operation that lets
clients access to its unique instance
— may be responsible for creating its own

unique instance.

e Collaboration: Clients access a Singleton

instance solely through Singleton’s instance

operation

e Consequences:

+ improvement over global variables: controlled
aCcCcess

+ permits refinement of operations and

representation

+ permits a variable number of instances

43

Singleton Pattern '

Singleton

static Instance() O--- return uniquel nstance k

SingletonOperation()
GetSingletonData()

static uniquel nstance
singletonData

44

Summary of Creational Patterns I

e Factory Method uses subclassing: subclass
the class that creates the objects

— can require a new subclass just to change
the class of the product; such changes can
cascade

e Abstract Factory, Prototype, and Builder use
object composition

— all three patterns involve creating a new
factory object whose responsibility is to

create product objects

— Abstract Factory has the factory object
producing objects of several classes

— Builder has the factory object building a
complex product

— Prototype has the factory object building

a product by copying a prototype object

45

e Factory Method makes a design more
customizable and only a little more complex

since it only requires a new operation

e Other patterns are even more flexible ;

however, require new classes and are more

complex

46

Structural Patterns I

e Concerned with classes and objects can be

assembled to form larger structures

e Class Structural Patterns use inheritance
to assemble interfaces or implementations
— Class version of Adapter

— Multiple inheritance

e Object Structural Patterns describe ways

to compose objects to realize new

functionality

— Composite, Decorator, Bridge, etc.

47

‘ Composite Pattern I

e Intent: Compose objects into tree structures
to represent part-whole hierarchies. Lets
clients treat individual objects and
compositions of objects uniformly

e Motivation:

— Graphics applications which use a variety
of simple to complex diagrams made of
smaller components

— Financial applications where a portfolio

aggregates individual assets
— Parse trees in compilers which are
composites of subclasses
e Applicability: Use this pattern when

— there is a need to represent part-whole
hierarchies

— there is a need for clients to be able to
ignore the difference between compositions
of objects and individual objects

48

e Participants:

1. Component:

— declares the interface for objects in the

composition

— implements default behavior for the
interface, common to all classes, as
appropriate

— declares an interface for accessing and

managing its child components

2. Leaf: represents leaf objects in the
composition and defines behavior for primitive
objects in the composition

3. Composite:
— defines behavior for components having
children
— stores child components
— implements child-related operations in the

Component interface

4. Client manipulates objects in the compositiqn
through the Component interface

49

e Collaborations:

— Clients use the Component interface to

interact with objects in the composite

structure

— If the recipient is a Leaf, the request is
handled directly

— If the recipient is a Composite, it usually
forwards requests to child components, with

possible preprocessing and post processing.

e Consequences:

+ defines class hierarchies consisting of primitivg

objects and composite objects
+ makes the client simple

+ makes it easier to add new types of

components

— can make the design overly general - makes it

harder to restrict the components of a

composite

50

e Implementation

— Explicit parent references can simplify the

traversal and management of a composite

structure

— To make clients unaware of the specific leaf o
composite classes they are using, the
Component class should define as many

common operations as possible

e Related Patterns

— Decorator: Often decorators and composite
are used together

— Iterator:can be used to traverse composites

— Visitor:localizes operations and behavior thqt
would otherwise be distributed across
Composite and Leaf classes

51

‘Motivational Example for Composite '

Graphic

Draw()

Add(Graphic)
Remove(Graphic)
GetChild(int)

/\

Rectangle

Picture

Draw()

Draw()
IAdd(Graphicg) O- -
Remove(Graphic)
GetChild(int)

O____

fordl gin X\

graphics g.Draw()

~| add g to list of graphics

52

Structure of the Composite Pattern'

Qe @ *

Client Component |«

Operation()
Add(Component)
Remove(Component)
GetChild(int)

I

L eaf Composite

Operation() Operation() O- - - - forall gin children
Add(Component) g.Operation();

Remove(Component
GetChild(int)

53

‘ Decorator Pattern '

e Intent: Attach additional responsibilities to
an object dynamically. Decorators provide a
flexible alternative to subclassing for

extending functionality

e Motivation:

— In GUI applications, properties like
borders and scrolling need to be provided
in a flexible way to individual user

interface components

— In general, add additional responsibilities

to individual objects, not to an entire class

— Inheritance can be used but is inflexible

because it is static.

54

e Applicability: Use this pattern

— to add responsibilities to individual objects
dynamically and transparently, that is,
without affecting other objects

— for responsibilities that can be withdrawn

— when extension by subclassing is impractical.

Sometimes, there could be an explosion of

subclasses to support every combination.

e Participants:

1. Component: defines an interface for object
that can have responsibilities added to them

dynamically

. ConcreteComponent: defines an object to
which additional responsibilities can be
attached

. Decorator: maintains a reference to a
Component object and defines an interface

that conforms to Component’s interface

. ConcreteDecorator: adds responsibilities tf
the component

55

e (Collaborations:

— Decorator forwards requests to its Compone
object

— Decorator may optionally perform additional
operations before and after forwarding the
request

e Consequences:

+ Provides more flexibility than inheritance:
responsibilities can be added and removed at
run time by simply attaching and detaching
them; properties can be added multiple times

Enables functionalities to be incrementally
added through composition, thus avoiding

feature-laden classes high up in the hierarchy

A decorator acts as a transparent enclosure; :
decorated component is not to be mistaken f
the component itself

Use of Decorators can often result in systems
composed of numerous little objects whose
interactions are difficult to learn, understand
and debug.

56

e Implementation:

1. A decorator object’s interface must conform fo
the interface of the component it decorates.
ConcreteDecorator classes must therefore

inherit from a common class

. To ensure a conforming interface, component§
and decorators must descend from a commo

lightweight Component class
e Related Patterns:

— Adapter: A decorator only changes an
object’s responsibilities, not its interface;an
adapter will give an object a totally new

interface

Composite: A decorator is like a degenerate
composite with only one component. It is no
intended for object aggregation. On the othe
hand, it adds additional responsibilities

Strategy: A decorator enables to change the

skin of an object; a strategy enables to changf
the guts

57

Motivational Example for Decorator

aBorderDecorator

aBorderDecorator

component

Some apllications would benefit
from using objects to model every
aspect of their functionality, but
anaive design approach would be
prohibitively expensive.

For example, most document editors
modularize their text formatting

and editing facilities to some

extent. However, they invariably
stop short of using objects to
represent each character and
graphical element in the document.
Doing so would promote flexibility

aScrollDecorator

“
‘

component

58

‘ Decorator for Motivational Example I

Visual Component|

Draw()

T

Decorator

component
>

Draw() o- - -

1

ScrollDecor ator

Draw()
ScrollTo()

scrollPosition

AN

component->Draw()

Border Decor ato

Draw() 0O---
DrawBorder()

Decorator: :Draw%

DrawBorder();

borderWidth

59

| Structure of Decorator Pattern '

Component

Operation()

T

Concrete

Component

Operation()

Decorator

component|

Operation()O- - -

1

Concrete
Decor ator A

Operation()

addedState

AN

component->Operation()

Concrete
Decor ator B

Operation()o- - -
AddedBehavior(

Decorator::Operation();
AddedBehavior();

60

‘ Bridge (Handle/Body) Pattern I

e Intent: Decouple an abstraction from its
implementation so that the two can vary
independently

e Motivation:

— When an abstraction can have several
possible implementations, one can use
inheritance; however, this will bind an
implementation to the abstraction
permanently

— To make client code platform independent

e Applicability: Use this pattern when

— it is required to avoid a permanent
binding between an abstraction and its

implementation (for example when the

implementation must be selected or
switched at run time)

— both abstractions and implementations
should be extensible by subclassing

61

— changes in the implementation of an
abstraction should have no impact on the
clients

— there is a proliferation of classes which
indicates the need for splitting an object
into two parts

— you want to share an implementation
among multiple objects
e Participants:

1. Abstraction : defines the abstraction’s
interface and maintains a reference to an

object of type Implementor

. Refined Abstraction: extends the
interface defined by Abstraction

. Implementor: defines the interface for

implementation classes (this interface
could be different from that of
Abstraction)

. Concretelmplementor: implements the
interface of the Implementor

62

e Collaborations:

1. Abstraction forwards client requests to its

Implementor object

e Consequences:

+ decouples interface and implementation;
consequently,
x implementation of an abstraction can be
configured at run time
x an object can change its implementation af

run time
x eliminates compile-time dependencies on tlje
implementation

x encourages layering and better structuring

+ the Abstraction and Implementor hierarchies

can be extended independently

+ hide implementation details from clients

63

e Implementation:

1. In situations where there is only one

implementation, creating an abstract

Implementor class is not necessary, but is sti

recommended

. It is important to resolve how, when, and
where to decide which implementor class to

instantiate

. A true Bridge cannot be implemented with

multiple inheritance

e Related Patterns
— Abstract Factory: An Abstract Factory caj

create and configure a particular bridge

— Adapter: The Adapter pattern makes
unrelated classes work together and is appliec
to systems after they are designed. Bridge is

used up-front.

64

‘ Motivation for Bridge Pattern '

Window

1

XWindow

PMWindow

Window

1

XWindow

PMWindow lconWindow

65

T

X1 conWindow

PM | conWindow

‘ Example of Bridge Pattern'

Window

DrawText()
DrawRect() © T

JAN

Windowl mp
DevDrawText()
DevDrawLing()

JAN

imp->DevDrawLine(
imp->DevDrawLine(
imp->DevDrawLine(
imp->DevDrawLine(

TransientWindow

|conWindow

DrawBorder() ©

DrawCloseBox() ¢

DrawText()

DrawRect() N

DrawRect() AN

66

Xwindowl mp

PMWindowlmp

DevDrawText() o -
DevDrawLine()p

DevDrawLine()
DevDrawText()

XDrawLine()

XDrawString()

‘ Structure of Bridge Pattern '

Abstraction

Operator()0

imp->Operationl mp();

RedefinedAbstraction

I mplementor

Operationlmp()

Concretelmplementor A Concretelmplementor H

OperationImp()

Operationlmp()

67

Adapter (Wrapper) I

e Intent:

— Convert interface of a class into another
interface that clients expect

— Lets classes work together that couldn’t

otherwise because of incompatible

interfaces

e Motivation: Often toolkit classes are not
reusable only because the interface does not
match the domain-specific interface an

application requires

e Key Idea: To make a class adapt to another,

use either inheritance or composition

68

e Applicability: Use this pattern when:

one wants to use an existing class whose

interface does not match the one you need

it 1s needed to create a reusable class that
cooperates with unrelated or unforeseen

classes (classes with incompatible interfaces)

(applies to object adapters only) you need to

use several existing subclasses but it is
impractical to adapt their interface by
subclassing everyone

e Participants:

Target: defines a domain-specific interface

Client: collaborates with objects conforming
to the Target interface

Adaptee: defines an existing interface that
needs adopting

Adapter: adapts interface of Adaptee to the
target interface

69

e (Collaborations:

— Clients call operations on an Adapter instande

— In turn, Adapter calls Adaptee operations thjt
carry out the request

e Consequences:

— Class Adapters

x adapts Adaptee to Target by committing t§
a concrete Adapter class; hence will not
work if we need to adapt a class and all its
subclasses
lets Adapter override some of Adaptee’s
behavior
introduces only one object, and no
additional pointer indirection is needed to
get to the adaptee

— Object Adapters

* lets a single Adapter work with many

Adaptees

x Adapter can also add functionality to all
Adaptees at once

x it is harder to override Adaptee behavior

70

e Related Patterns:

— Bridge: Has a structure similar to that of
Adapter, but has a very different intent

— Decorator: enhances another object withou
changing its interface and is thus more

transparent

— Proxy: defines a surrogate for another objec

and does not change its interface

71

Motivational Example for Adapter

DrawingEditor

Shape

BoundingBox()

CreateManipulator ()

TextView

GetExtent()

Line

TextShape

BoundingBox()

CreateManipulator()

BoundingBox() O - A
CreateManipulator() O- -

return text-> GetExtent()

72

return new TextManipulator

Adapter Pattern '

Target

Request()

1

Adaptee

SpecificRequest()

i

| | (implementation)

Adapter

Request () O

73

Specifi cRequest()\

Adapter Pattern '

Target Adaptee

Request() SpecificRequest()

adaptee

Adapter

Request () O- adaptee -> SpecificRequest() \

74

Facade Pattern I

e Intent:

— Provide a unified interface to a set of

interfaces in a subsystem

— Defines a higher-level interface that makes

the subsystem easier to use

e Motivation: Often applications need direct
access to different subsytems of a system, for

example, a compiler.

e Key Idea: To make a class adapt to another,

use either inheritance or composition

75

e Applicability: Use this pattern when:

— you want to provide a simple interface to a
complex subsystem (a simple default view of
the subsystem that is good enough for most

clients)

there are many dependencies between clients
and the implementation classes of an
abstraction; facade will decouple the
subsystem from clients and other subsystems
thus promoting subsystem independence and

portability

you want to layer your subsystems; facade wijl
define an entry point to each subsystem level
e Participants:

— Facade: knows which subsystem classes are
responsible for a request and delegates client
requests to appropriate subsystem objects.

— Subsystem Classes: implement subsystem
functionality and handle work assigned by thf

Facade object; do not have knowledge of the

facade to the Target interface

76

e Collaborations:

— Clients communicate with the subsystem by
sending requests to Facade, which forwards

them to appropriate subsystem object(s).

— Facade may have to do work of its own to
translate its its interface to subsystem

interfaces

e Consequences:

— Facade shields clients from subsystem
components, making the client simple and

subsystem easier to use

Facade promotes weak coupling between the

subsystem and its clients; this lets you vary
the components of subsystem without affectirg

clients significantly

Facade does not prevent applications from
using subsystem classes if they need to; thus
one can choose between ease of use and

granularity

77

e Related Patterns:

— Abstract Factory: can be used with Facady
to provide an interface for creating subsyste

objects in a subsystem-independent way. Ca

also be used as an alternative to facade to hic

platform specific classes.

Mediator: abstracts functionality of existing
classes, like the Facade does; however, a
Mediator’s colleagues are aware of the
Mediator

78

Motivational Example for Facade Pattern'
client classes

| Facade

. subsystem classes |)

79

| Facade Pattern .

Compiler

Compile()

Symbol

BytecodeStream * ProgramNodeBuilder ProgramNode

N\

StatementNode

CodeGenerator - -

JAN

ExpressionNode

StackM achineCodeGener ator RI1SCCodeGenerator VariableNode

80

| Facade Pattern .

Facade

subsystem classes

81

Flyweight Pattern I

e Intent: Use sharing to support large
numbers of fine-grained objects efficiently

Motivation: Some applications such as
document editors can benefit immensely by
using a large number of objects to promote
flexibility at the finest levels in the
application; however this makes run time

overheads prohibitive

Key Idea: Define shared objects which can
be used in multiple contexts simultaneously

through distinction between intrinsic (

context-independent) state and extrinsic
(context-dependent) state

82

e Applicability: Use this pattern when all the

following are true:
— An application uses a large number of objects

Storage costs are high because of the sheer

quantity of objects
Most object state can be made extrinsic.

Many groups of objects can be replaced by
relatively few shared objects once extrinsic

state is removed
The application does not depend on object
identity

e Participants:

— Flyweight: declares an interface through
which flyweights can receive and act on

extrinsic state

— ConcreteFlyweight: implements the

Flyweight interface and adds storage for

intrinsic state

83

— UnsharedConcreteFlyweight: implements

the Flyweight and represents a Flyweight

subclass that is not shared

— FlyweightFactory: creates and manages
Flyweight objects; ensures that flyweights arq
shared properly

— Client: maintains a reference to flyweight(s)
computes or stores the extrinsic state of
flyweight(s).

e Collaborations:

— State that a flyweight needs to function must

be characterized as either intrinsic or extrinsi

— Clients pass the extrinsic state to the flyweight

when they invoke its operations

— Clients must obtain ConcreteFlyweight objecfs
exclusively from the FlyweightFactory object
to ensure they are shared properly

84

e Consequences:

— Flyweights may introduce some run time cosfs
which are however offset by space savings dug
to sharing of flyweights

— Storage savings are enhanced by:
x more flyweights being shared
% increasing the amount of shared state
x computing rather than storing the extrinsig
state

e Related Patterns:

— Composite: Flyweight is often combined
with the Composite to implement a logically

hierarchical structure

— It is best to implement State and Strategy

objects as flyweights

85

‘ Motivational Example for Flyweight '

rlvgsdfj jklfjsff1 sadifsdf sfff sof
| aksslfj skfjsk ' asdf dff sdfsdf
| sadff&d. | assdf fsdf sdifsd
asdfsd fxisdf | sdf sdfsdf fdf
Sdfff sdf sd‘rS{ dfsf dfdf dsfff
fisd sdiff folsff | sgfffsd fsf soffdf
| afsf sdfsdffd . dsfeffsdfsoifsoff
(= — — — N

character

|_— objects

|
DO

—

86

‘ Flyweight Pattern '

=

87

Flyweight Pattern

flyweight pool

88

Flyweight Pattern

Glyph

Draw(Context)
Inter sects(Point, Context)

JAN

——<> Row Character Column
children

K>—
children

Draw(Context) Draw(Context) Draw(Context)
I ntersects(Point, Context) I ntersects(Point, Context) Intersects(Point, Context)

char c

89

Flyweight Pattern

flyweights
FlyweightFactory Flyweight

GetFlyweight(key) o) Operation(extrinsictate)

| i AN

if (flyweight[key]exists) { N
return existing flyweight;

} else{
create new flyweight;
add it to pool of flyweights;
return the new flyweight;}

ConcreteFlyweight UnsharedConcreteFlyweight

Operation(extrinsicState) Operation(extrinsicState)

intrinsicState alState

90

‘ Flyweight Pattern '

aClient

7]

- flyweight
- pool

aClient

-

(aFlyweightFactory : aConcreteFlyweight

aConcreteFlyweight]

t flyweights ® intrinsicState

intrinsicState

91

Proxy (Surrogate) Pattern'

e Intent: provide a surrogate or placeholder
for another object to control access to it.

Motivation: Often expensive (heavy)

objects are involved in applications (such as a
large raster image in a document editor)
which are best created only on demand

Key Idea: Use a proxy object that acts as a
stand-in for the real object and invoke the

real object only when required

92

e Applicability: This is applicable whenever

there is a need for a more versatile or
sophisticated reference to an object than a

simple pointer. Some such situations:

— remote proxy provides a local representative
for an object in a different address space (als¢

called as ambassador)

— virtual proxy creates expensive objects on

demand
— protection proxy controls access to the
original object

smart reference is a replacement for a
pointer that performs that performs additiongl
actions when an object is accessed. Typical

uses include: counting number of references,

loading a persistent object on first reference,
etc.

93

e Participants:
— Proxy:
x maintains a reference that lets the proxy
access the real subject

provides an interface identical to Subject’s

so that a proxy can be substituted for the
real subject

controls access to the real subject and ma,
be responsible for creating and deleting it
other responsibilities based on the kind of

proxy
Subject: defines the common interface for
RealSubject and Proxy so that a Proxy can He

used anywhere a RealSubject is expected

RealSubject: defines the real object that the

proxy represents

94

e Collaborations: Proxy forwards requests to
RealSubject when appropriate, depending on
the kind of proxy

e Consequences:

— A remote proxy can hide the fact that an

object resides in a different address space

A virtual proxy can perform optimizations

such as creating an object on demand

Protection proxies and smart references allo
additional housekeeping tasks when an objec
is accessed

By using a proxy to postpone the copying
process, we ensure that we pay the price of
copying the object only if it is modified

e Related Patterns:

— Adapter: provides a different interface to thf

object it adopts

— Decorator: adds additional responsibilities o

a class

95

Motivational Example for Proxy Pattern'

DocumentEditor

- Graphic

Draw()
GetExtent()

Sore()
Load()

AN

Image

I magePr oxy

Draw()

GetExtent()

Store()
Load()

Draw() O -~

GetExtent() O- -

Store()
Load()

if(image==0) { NN

image = Loadlmage(fileName);

}

image -> Draw()

imagelmp
extent

fileName
extent

if (image==0) { NN
return extent;
} else {
return image -> GetExtent(); }

96

‘ Proxy Pattern '

. realSubject

Request() Request() - -

aClient

aProxy
subject ® { aReal Subj ect
realSubject ® '=L

97

Proxy pattern

aT extDocument

anl magePr oxy

fillName

image @ ={

in memory

98

Structural Patterns: Discussion

e Structural patterns often look alike since they
rely on a small set of mechanisms for
structuring classes and objects together
Adapter and Bridge look similar. However,

— Adapter makes things work after the
classes are designed
— Bridge plans up-front and makes the

classes work before they are designed

Composite and Decorator both use recursive
decomposition but have vastly different

intents

Decorator and Proxy look alike, however have
widely differing purposes
Patterns can be combined:

— A Proxy-Decorator can add functionality
to a proxy

— Decorator-Proxy can embellish remote objects

99

Behavioral Patterns I

Concerned with algorithms and the
assignment of responsibilities among objects

Describe both patterns of objects or classes

and patterns of communication between them

Characterize complex control flow that is

difficult to follow at run time

Bahavioral Class Patterns use inheritance
to distribute behavior between classes

— Template Method

— Interpreter

Behavioral Object Patterns
— use object composition

— encapsulate behavior in an object

— delegating requests to other objects

100

Strategy (Policy) Pattern'

e Intent:

— Define a family of algorithms, encapsulate
each one, and make them interchangeable

— Lets the algorithm vary independently of
the client
e Motivation:

— Availability of many alternative
algorithms for a given problem

— Different algorithms may be appropriate

for different contexts

— It is difficult to add new algorithms and

vary existing ones if the logic is an integral

part of the client

101

e Applicability: Use this pattern when

— many related classes differ only in their
behavior; strategies provide a way to configuge
a class with one of many behaviors

different variants of an algorithm are needed

an algorithm uses data that clients shouldn’t
know about; this pattern can be used to avoig
exposing complex, algorithm specific data
structures

a class defines many behaviors and these
appear as multiple conditional statements in
its operations

102

e Participants:

1. Strategy:

— declares an interface common to all
supported algorithms

— uses the interface to call the algorithm
defined by a ConcreteStrategy

2. ConcreteStrategy: implements the
algorithm using the Strategy interface

3. Context:
— is configured with a ConcreteStrategy objeft

— keeps a reference to a Strategy object
— may define an interface that lets Strategy
access its data

e Collaborations:

— Strategy and Context collaborate to
implement the chosen algorithm

— A Context forwards requests from its clients {o
its strategy

103

e Consequences:

elegantly implements families of related

algorithms or behaviors for contexts to reuse
effective alternative to subclassing

eliminate conditional statements

provides a choice of implementations

clients must be aware of different Strategies

communication overhead between Strategy
and Context

— increased number of objects

e Implementation:

— The Strategy and Context interfaces must giye
a ConcreteStrategy efficient access to any daff

it needs from a context, and vice-versa

— Strategy objects may often be made optional

104

‘ Motivational Example for Strategy'

Composition

Traverse()

Repair() o

Compositor

Compose()

JAN

compositor->Compose(

SimpleComposer

TexCompositor

ArrayCompositor

Compose()

Compose()

Compose()

105

‘ Structure of Strategy Pattern'

Context

strategy

ContexInterface()

Strategy

Algorithml nterface(

JAN

ConcreteStrategyA

ConcreteStrategyB

ConcreteStrategyC

Algorithminterface()

Algorithminterface()

Algorithminterface()

106

Command (Action, Transaction) Pattern'

e Intent: Encapsulate a request as an object,

thereby enabling to parameterize clients with

different requests, queue or log requests, and

support undoable operations

e Motivation:

— Often it is necessary to issue requests to
objects without knowing anything about
the operation being requested or the
receiver of the request. e.g.: buttons, or

menus 1n user interface toolkits

e Applicability: Use this pattern when

— there is a need to parameterize objects by

an action to perform

— it is required to specify, queue, and
execute requests at different times

— there is a need to support undo.

107

e Participants:

1.

Command: declares an interface for

executing an operation

. ConcreteCommand: defines a binding

between a Receiver object and an action and

implements Execute by invoking the

corresponding operation(s) on Receiver.

. Client: creates a ConcreteCommand object

and sets its receiver.

. Invoker: asks the command to carry out the

request.

. Receiver: knows how to perform the

operations associated with carrying out a

request

108

e Collaborations:

The client creates a ConcreteCommand objeq

and specifies its receiver

An Invoker object stores the

ConcreteCommand object,

The Invoker issues a request by calling

Execute on the command.

The ConcreteCommand object invokes
operations on its receiver to carry out the

request.

e Consequences:

I

Command decouples the object that invokes
the operation from the one that knows how tp

perform it

Commands, being objects, can be manipulatdd
and extended like any other object

Commands can be assembled into composite

commands

New Commands can be easily added

109

e Implementation:

1. A command can have a wide range of abilitie}:
from merely defining a binding between a
receiver and the actions to implementing

complex functionality

. To support undo and redo capabilities, a

ConcreteCommand object needs to store
additional information regarding the Receive
object, arguments to the operations, etc.

e Related Patterns:

— Composite can be used to implement

MacroCommands

— Memento can keep state the command

requires to undo its effect

— Prototype: A command that must be copied
before being placed on the history list acts as
a Prototype

110

‘ Motivational Example for Command '

Appllication Menu
Add(Document

Menultem

command

Add(Menultem Clicked() @

Document
Open()
Close()
Cut()

Copy()
Paste()

command->Execute()

111

| Illustration of Command Pattern'

Command

Execute()

Document

Open()
Close()
Cut()

Copy()
Paste()

document

PasteCommand

Execute()O-

document->Paste()

112

Usage of Command Pattern'

Application

Add(Document) ~

Command

Execute()

OpenCommand

appllication

Execute() ©
AskUser()

f

name = AskUser()

application->Add(doc)
doc->Open()

doc = new Document(name)

Y

113

Command and Macrocommand '

Command

Execute()

M acroCommand

commands

Execute() O

for all ¢ in commands k
¢ -> Execute()

114

| Structure of Command Pattern'

I nvoker

Recelver

Action()

Command

Execute()

ConcreteCommand

Execute() O ----

state

receiver->Action(

115

‘ A Sequence Diagram for Command '

aReceiver aClient aCommand anlnvoker

new Command(aReceiver)

StoreCommand(aCommand)
|

e

Action() |_

116

‘Iterator (Cursor) Pattern'

e Intent: Provide a way to access the elements
of an aggregate object sequentially without
exposing its underlying representation

e Motivation:

— It is often required to access the individual
elements of an aggregate object such as a
list without exposing its internal structure

— There is often a need to traverse these
elements in different ways at different

times

e Key Idea: Create a separate abstraction for

access and traversal and pull out these

responsibilities from the aggregate object

117

e Applicability: Use this pattern

— to access an aggregate object’s contents

without exposing its internal representation

— to support multiple traversals of aggregate
objects

— to provide a uniform interface for traversing

different aggregate structures (and thus

support polymorphic iteration)

e Participants:

1. Iterator: defines an interface for accessing

and traversing elements

. Concretelterator: implements the Iterator
interface and keeps track of the current
position in the traversal of the aggregate

. Aggregate: defines an interface for creating
an Iterator object

. ConcreteAggregate: implements the
Iterator creation to return an instance of the

proper Concretelterator

118

e Collaborations:

1. A Concretelterator keeps track of the current
object in the aggregate and can compute the
succeeding object in the traversal

e Consequences:

+ Iterators make it easy to change traversal
algorithms

+ Iterator’s interface simplifies the aggregate’s

interface

+ Since an iterator keeps track of its own
traversal state, one can have more than one

traversal in progress at a given time

e Implementation:

1. The iteration can be controlled by the client
(external iterator) or by the iterator (interna

iterator).

2. The traversal algorithm can be defined by th¢
aggregate or the iterator

119

3. Careful handling is required if the aggregate s

required to be modified during the traversal

4. Recursive aggregate structures are best

traversed using internal iterators

¢ Related Patterns:

— Composite: Iterators are often applied to

composite structures

— Memento: An iterator can use a memento tp
capture the state of an iteration. The Iterato

stores the memento internally.

— Factory Method: Polymorphic iterators rell
on factory methods to instantiate the

appropriate Iterator subclass

120

Motivational Example for Iterator'

List

list

Count()
A ppend(Element]

Remove(Element

121

Listlterator

First()

Next()
|sDone()
Currentitem()

Index

‘ Relationships in Iterator '

AbstractList Client | terator

First()

Next()
IsDone()
Currentltem()

i

SkipListlterator

Createlterator ()
Count()
Append(ltem)

Remove(Item)

Listlterator

122

| Structure of Iterator '

Aggregate | terator

Createlterator () First()

Next()
IsDone()
Currentltem()

/\

ConcreteAggregate
Createlterator() ¢,

Concretel terator

return new Concretel lterator(this)

123

‘ Visitor Pattern '

e Intent: Represent an operation to be
performed on the elements of an object
structure. Enable to define a new operation

without changing the classes of the elements

on which it operates

e Motivation:

— In compilers, different related operations
are carried out on syntax trees. Visitor
avoids the need to include related
operations as part of every subclass
definition

e Key Idea: Keep related operations together
by defining them in one class

124

e Applicability: Use this pattern when

— an object structure contains many classes of

objects with differing interfaces and it is
required to perform operations on these
objects that depend on their concrete classes

many distinct and unrelated operations need

to be performed on objects in an object
structure and we would like to avoid polluting

their classes with these operations

the classes defining the object structure rarel
change, but often it is required to define new
operations over the structure

e Participants:

1. Visitor: declares a Visit operation for each
class of ConcreteElement in the object

structure

2. ConcreteVisitor: implements each operatia
declared by Visitor

125

. Element: defines an Accept operation that

takes a visitor as an argument

. ConcreteElement: implements an Accept

operation that takes a visitor as an argument

. ObjectStructure: can enumerate its
elements and may provide a high-level
interface to allow the visitor to visit its

elements

e Collaborations:

1. A client that uses the Visitor pattern must
create a ConcreteVisitor object and then

traverse the object structure

2. When an element is visited, the appropriate

Visitor operation is called

126

e Consequences:

+ Visitor makes adding new operations on an

object structure easy

+ A visitor gathers related operations and

separates unrelated ones

A visitor can visit objects that don’t have a
common parent class thus enabling visiting

across object hierarchies

Adding new ConcreteElement classes is hard

To let visitors do their job, there may be a
need to access an element’s internal state,

compromising its encapsulation

e Related Patterns:

— Composite: Visitors can be used to apply a
operation over an object structure defined b
the Composite pattern

— Interpreter: Visitor may be applied to do

interpretation

127

Structure of Visitor '

Client

Visitor

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

1

ConcreteVisitorl

ConcreteVisitor 2

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ObjectStructure

Element

Accept(Visitor)

T

ConcreteElementA

Accept(Visitor v) @
OperationA() |

v->VisitConcreteElementA(this) k

128

|
ConcreteElementB

OperationB()

Accept(Visitor v) O

v->VisitConcreteElementB (this) k

|Interactions in Visitor Pattern '

anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor

! |
Accept(aVisitor)

VisitConcreteElementA (aConcreteElementA)

T

OperationA()

IAccept(aVisitor)

isitConcreteElementB(aConcreteElementB)

OperationB()

129

Motivational Example for Visitor '

Node

TypeCheck()
GenerateCode()
PrettyPrint()

/\

VariableRefNode

TypeCheck()
GenerateCode()
PrettyPrint()

130

AssignmentNode

TypeCheck()
GenerateCode()
PrettyPrint()

Class Hierarchy in Visitor '

NodeVisitor

VisitAssignment(AssignmentNode)
VisitVariableRef(VariableRefNode)

TypeCheckingVisitor CodeGeneratingVisitor

VisitAssignment(AssignmentNode) VisitAssignment(AssignmentNode)
VisitVariableRef (VariableRefNode) VisitVariableRef (VariableRefNode)

131

Structure of Visitor '

Program

Node

Accept(NodeVisitor)

/\

AssignmentNode

VariableRefNode

Accept(NodeVisitor v

Accept(NodeVisitor V)Q

v->VisitAssignment(this)

v->VisitVariableRef(this)

132

‘Chain of Responsibility'

e Intent:

— Avoid coupling the sender of a request to

its receiver by giving more than one object
a chance to handle the request

— Chain the receiving objects and pass the
request along the chain until an object
handles it

e Motivation:

— Context sensitive help facility for GUIs; a
help request is handled by one of several
user interface objects; the object that
provides the help is not known explicitly to
the object that initiates the help request.

e Key Idea: Decouple senders and receivers by
giving multiple objects a chance to handle a
request; the request gets passed along a chain
of objects until one of them handles it

133

e Applicability: Use this pattern when:

— more than one object may handle a request,
and the handler is not known apriori. The
handler should be ascertained automatically

— you wish to issue a request to one of several

objects without specifying the receiver

explicitly
— the set of objects that can handle a request
should be specified dynamically

e Participants:

— Handler: defines an interface for handling
requests and possibly implements the
successor link

— Client: initiates the request to a
ConcreteHandler object on the chain

— ConcreteHandler:

handles requests it is responsible for
can access its successor

if the ConcreteHandler can handle the
request, it does so; otherwise it forwards tHe

request to its successor

134

e (Collaborations:

— When a client issues a request, the request
propagates along the chain until a
ConcreteHandler object handles it

e Consequences:

— leads to reduced coupling and simplifies objeq

interconnections.

* An object in the chain only has to keep a

single reference to its successor
x Receiver and Sender have no explicit
knowledge of each other
— increased flexibility in assigning
responsibilities to objects

— receipt is not guaranteed

135

Motivational Example for COR'

TR
l

handler

- .q\(

aPrintDialog

handler
(aPrintButton W anApplication
|

handler
(anOK Button

e

specific

aPrintButton aPrintDialog anApplication

1

HandleHelp()

HandleHelp()

136

Chain of Responsibility '

HelpHandler

HandleHelp() ~ O- - handler->HandleHelp()

N\

Application

if can handle { k

Button ShowHelp()
} else {
HandleHelp() O- - Handler::HandleHelp()

}

ShowHelp()

137

Chain of Responsibility '

—

_ | Handler

Handler Request()

ConcreteHandler 1 ConcreteHandler2

HandleRequest() HandleRequest()

(aClient

(aConcreteHandler

t aHandler > (aConcreteHandler

_
|

t Successor L4

t Successor

138

‘Interpreter Pattern'

e Intent: Given the language, define a
representation for its grammar along with an
interpreter that uses the representation to
interpret sentences in the language

e Motivation:

— If a problem occurs often enough, it is
worthwhile to express instances of the
problem as sentences in a simple language.

— An example: searching for strings that

match a pattern (regular expressions)

e Applicability: Use this pattern when

— there is a language to interpret and you
can represent statements in the language
as abstract syntax trees

— The pattern works best when:

* the grammar is simple (class hierarchy
becomes unmanageable otherwise)
x efficiency is not a critical concern

139

e Participants:

1. Abstract Expression:

— declares an abstract Interpret operation tht
is common to all nodes in the abstract
syntax tree

2. Terminal Expression:

— implements an Interpret operation
associated with terminal symbols in the
grammar

— an instance is required for every terminal

symbol in a sentence

3. NonterminalExpression

— one such class is required for every rule:
R:=RiRy...R,

in the grammar

— maintains instance variables of type

AbstractExpresion for each of the symbols
R; through R,
— implements an Interpret operation for

nonterminal symbols in the grammar

140

4. Context contains information that is global

to the interpreter

5. Client
— builds (or is given) an abstract syntax tree
representing a particular sentence in the
language that the grammar defines

— invokes interpret operation

e Collaborations:

— The client builds (or is given) the sentence as

an abstract syntax tree of
NonterminalExpression and
TerminalExpression instances; the client
initializes the context and invokes the

Interpret operation

Each NonterminalExpression node defines
Interpret in terms of Interpret on each

subexpression

The Interpret operation of each
TerminalExpression defines the base case in

the recursion

141

e Consequences:

+ it is easy to change and extend the grammar

(using inheritance)

+ makes it easy to implement the grammar

+ makes it easier to evaluate an expression in a

new or different way
complex grammars are hard to manage and
maintain

e Related Patterns

— Composite: The abstract syntax tree is an

instance of the Composite pattern

Flyweight: shows how to share terminal
symbols within the abstract syntax tree

Visitor:can be used to maintain the behavio

in each node in the abstract syntax tree in oie

Iterator: can be used to traverse the structuge

142

‘ Motivational Example for Interpreter'

RegularExpression

Interpret()

/N

LiteralExpression

Interpret()

SequenceExpression

K>
expressionl

literal

Interpret()

>

repetition
—

RepetitionExpression

Interpret()

AlternationExpression

native 1
<>alter ative

expression2

Interpret()

native 2
<>alter ative

143

‘ Interpreter Pattern '

aSequenceExpression

expressionl @
expression2 g

L |

(alL iteralExpression W (aRepetitionExpression

L’raining’ J repest T

|

<
(anAlter nationExpression

dternationl @
aternation2 T

y

(alL iteralExpression (alL iteralExpression

L 'dogs L ‘cats

144

‘ Interpreter Pattern '

Context

AbstractExpression

Inter pret(Context)

Nonter minal Expression

TerminalExpression

Interpret(Context) Interpret(Context)

aListBox

(aClient

L

director

R
L , director

aFontDialogDir ector

aButton l
anEntryField

(
L director 1
J

—e director
.

145

Mediator Pattern'

e Intent:

— defines an object that encapsulates how a
set of objects interact.

— promotes loose coupling by keeping objects
from referring to each other explicitly

— consequently enables to vary interaction of
objects independently

— Motivation:

x Object oriented design works best when

there is distribution of responsibility
among objects, and fair but not too
much interaction among these objects

— Applicability: Use this pattern when
x a set of objects communicate in well
defined but complex ways
% reusing an object is difficult because it
refers to and communicates with many
other objects

146

x a behavior that is distributed between
several classes should be customizable

without a lot of subclassing

e Participants:

1. Mediator: defines an interface for
communicating with Colleague objects
2. Concrete Mediator:

— implements cooperative behavior by
coordinating Colleague objects

— knows and maintains its colleagues

3. Colleague classes

— each colleague class knows its mediator

object

— each colleague communicates with its
mediator whenever it would have
otherwise communicated with another

colleague

147

e (Collaborations:

— Colleagues send and receive requests from a
Mediator object

— Mediator implements the cooperative behaviq

by routing requests between the appropriate

colleague(s)

e Consequences:
+ It limits subclassing by localizing behavior
+ It decouples colleagues
+ It simplifies object protocols
+ It abstracts how objects cooperate
— It centralizes control and could become a
monolith that is hard to maintain
e Related Patterns

— Facade: abstracts a subsystem of objects to

provide a more convenient interface

— Observer: colleagues can communicate with

the mediator using the observer pattern

148

‘Motivational Example for Mediator '

Context

AbstractExpression

Inter pret(Context)

Nonter minal Expression

TerminalExpression

Interpret(Context) Interpret(Context)

(aL istBox
L o director

(aClient

L director

aFontDialogDir ector

director anEntryField 1
J

—e director
.

3
(" aButton l
L !

149

Mediator Pattern '

Mediator Colleagues
aClient aFontDialogDir ector aL istBox anEntryField

| \
ShowDialog() _

WidgetChanged()

GetSelection()

SetText()

150

Mediator Pattern '

DialogDirector % Widget

ShowDialog() Change() O- - director->WidgetChanged(this)
CreateWidgets() Zﬁ

WidgetChanged(Widget)

ListBox EntryField

FontDialogDirector GetSelection() ’_, SetText()

CreateWidgets()
WidgetChanged(Widget)

151

Mediator Pattern '

mediator

Mediator

N\

Colleague

T

ConcreteM ediator

ConcreteColleaguel ’—> ConcreteColleague2

[aColleague
L mediator @

[aColleague

mediator

p
aColleague

aConcr eteM ediator —e mediator

-

N

* o [}

J

| aColleague

| mediator g

J

A

(aColleague]
J

@ mediator

-

152

Mediator Pattern '

aL istBox

owner

al extPane

'

aViewM anager

@® textPane

@® listBox

owner @

aButton

.

@® button

owner

153

\ Memento Pattern I

e Intent: Without violating encapsulation,
capture and externalize an object’s internal
state so that the object can be restored to

this state later.

e Motivation:
— Often, it is necessary to record the
internal state of an object

x implementing checkpoints
x implementing undo mechanisms

*x 1mplement error recovery

e Applicability: Use this pattern when

— a snapshot of (some portion of) an

object’s state must be saved so that it can
be restored to that state later; and

— a direct interface to obtaining the state
would expose implementation details and
break the object’s encapsulation

154

e Participants:

1. Memento:
— stores internal state of the Originator
object; what the memento stores is at its

originator’s discretion

— protects against access by objects rather

than the originator;

x Caretaker sees a narrow interface to the
Memento; it can only pass the memento
to other objects

x Originator sees a wide interface to the
Memento

2. Originator:
— creates a memento containing a snapshot o
its current internal state
— uses the memento to restore its internal

state

3. Caretaker
— is responsible for the memento’s safekeepi
— never operates on or examines the contents

of a memento

155

e (Collaborations:

— A caretaker requests a memento from an

originator, holds it for a time, and passes it
back to the originator.

Sometimes the caretaker won’t pass the
memento back to the originator since the
originator might never need to revert to an

earlier state

Mementos are passive; only the originator thgt
created a memento will assign or retrieve its
state

e Consequences:
+ Preserves encapsulation boundaries
+ Simplifies Originator

— Using mementos might be expensive

— It may be difficult to ensure that only the

Originator can access the Memento’s state

156

e Related Patterns

— Command: Commands can use mementos tf

maintain state for undoable operations

— Iterator: Mementos can be used for iteration.

157

‘ Motivational Example for Memento '

158

Memento Pattern '

- t
Originator Memento BERLLLLLS N Caretaker

CreateMemento() O SetState()

state 0

State

SetMemento(Memento m) O GetState()
I
]
I
|
I
|
I
I
|

return new Memento(state% state = m->GetState() k

aCaretaker anOriginator

r eateM emento() »| | New Memento

SetM emento(aM emento)

GetState()

159

Observer (Publish-Subscribe) Pattern.

e Intent: Define a one-to-many dependency
between objects so that when one object
changes state, all its dependents are notified

and updated automatically

e Motivation:

— Often, when a system is partitioned into a
collection of cooperating classes, there is
need to maintain consistency between
related objects without making them

tightly coupled (which reduces their

reusability)

*x implementing checkpoints
* implementing undo mechanisms

*x 1mplement error recovery

160

e Applicability: Use this pattern in any of the

following situations:

— when an abstraction has two aspects, one
dependent on the other (encapsulating these

lets you vary and reuse them independently)

when a change to one object requires changi
others, and you do not know how many
objects need to be changed

when an object should be able to notify othe
objects without making assumptions about
who these objects are (i.e. you do not want

these objects tightly coupled)

161

e Participants:
1. Subject:

— knows its observers. Any number of

Observer objects may observe a subject.
— provides an interface for attaching and
detaching observer objects

2. Observer:

— defines an updating interface for objects thit
should be notified of changes in a subject

3. ConcreteSubject

— stores state of interest to ConcreteObserve
objects

— sends a notification to its observers when ifs
state changes

4. ConcreteObserver
— maintains a reference to a ConcreteSubject
object
— stores state that should stay consistent wit
the subject’s
— implements the Observer updating interfac
to keep its state consistent with the subjectfs

162

e (Collaborations:

— ConcreteSubject notifies its observers
whenever a change occurs that could make it§

observers’ state inconsistent with its own

— After being informed of a change in the

concrete subject, a ConcreteObserver object

may query the subject for information

— ConcreteObserver uses the above informatio
to reconcile its state with that of the subject
e Consequences:

+ Lets you vary subjects and observers

independently

+ All a subject needs to know is it has observerg;

1t does not need to know the concrete class o

any observer

— Unexpected and cascades of updates can occyr
because observers have no knowledge of each

other’s presence

163

e Related Patterns

— Mediator: By encapsulating complex updatg
semantics, the ChangeManager acts as a
mediator between subjects and observers

— Singleton: The ChangeManager may use th¢

Singleton pattern to make it unique and
globally accessible

164

Motivational Example for Observer

Subject

observers

Observer

Attach(Observer)
Detach(Observer)

Notify() O

ConcreteSubject

for all o in observersbk

? ->Update()

subject

Update()

ConcreteObserver

GetState() O----
SetState()

subjectState

return subjectState

165

update()

observerState

observerState =
subject -> GetState()

Observer Pattern '

aConcreteSubject aConcreteObserver another ConcreteObser ver

SetState()

Notify()

Update()

|

GetState()

Update()

GetState()

-t

166

Subj ect

Observer Pattern '

ChangeManager

Detach(Observer)
Notify()

Qgeex

subjects

chman->Notify()

Attach(Observer o) O
I
|
I
1
I
I
I
I
I
I
|
I
I
1

chman->Register(this,o)

Notify()

Register (Subject, Observer)
» Unregister (Subject, Observer)

Observer

bservers

Update(Subject)

Subject-Observer mapping

SimpleChangeM anager

DAGChangeM anager

Register(Subject, Observer)
Unregister(Subject, Observer)

Register(Subject, Observer)

Unregister(SubjeEPt, Observer)

Notify()

Notify() ®

forall s in subjects k

forall o in s.observers
o->Update(s)

mark all observers to update
undate all marked observers

167

‘ State Pattern .

e Intent: Allow an object to alter its behavior
when its internal state changes. The object

will appear to change its class

e Motivation:

— Often, an object is expected to behave
differently depending on which state it is

currently in

An Example: A TCP connection object
can be in three different states:
Established, Listening, and Closed. Its

response to object requests (such as an

Open request will depend on its current

state

168

e Applicability: Use this pattern in either of

the following cases:

— an object’s behavior depends on its state, anc
it must change its behavior at run-time

depending on that state

operations have large, multipart conditional

statements that depend on the object’s state

* the State pattern will put each branch of tlje
conditional in a separate class

x this lets you treat the object’s state as an
object in its own right that can vary
independently from other objects

169

e Participants:

1. Context:

— defines the interfaces of interest to clients
— maintains an instance of a ConcreteState
subclass that defines the current state

2. State:

— defines an interface for encapsulating the
behavior associated with a particular state
of the Context

3. ConcreteState subclasses

— each subclass implements a behavior

associated with a state of the Context

e Collaborations:

— Context delegates state-specific requests to tlje
ConcreteState object

— A context may pass itself as an argument to
the State object handling the request, letting

the State object access the Context if

necessary

170

— Context is the primary interface for the cliengs
and clients can configure a context with State
objects; once a context is configured, its clien}s
don’t have to deal with the State objects
directly

— HKither Context or the ConcreteState
subclasses can decide which state succeeds
another and under what circumstances

e Consequences:

+ Localizes state-specific behavior and partitiors
behavior for different states

+ It makes state transitions explicit (inconsistegt
internal states can be avoided)

+ State objects can be shared (flyweights)

e Related Patterns

— Flyweight: The Flyweight pattern explains
when and how State objects can be shared

— Singleton: State objects are often singletons

171

Motivational Example for State Pattern'

TCPConnection

églte

Open()
Close()
Acknowledge()

state -> Open()

TCPState

Open()

Close()
Acknowledge()

/\

TCPEstablished

TCPListen

TCPClosed

Open()
Close()
Acknowledge()

Open()
Close()
Acknowledge()

Open()
Close()
Acknowledge()

172

Context

Request() Q@

| State Pattern '

State

|
state -> Handle() k

Handlg()

/\

ConcreteStateA

ConcreteStateB

Handle()

Handle()

DrawingController

currentTool

Tool

<

MousePressed()
ProcessKeyboard()
Initialize()

HandleMousePress()
HandleMouseRel ease()

HandleCharacter()
GetCursor()

Activate()

/\

CreationTool

SelectionT ool

TextTool

173

Template Pattern I

e Intent:

— Define the skeleton of an algorithm in an
operation, deferring some steps to
subclasses.

— Lets subclasses redefine certain steps of an
algorithm without changing the
algorithm’s structure

e Motivation:

— Often, there is a need to define an
algorithm in terms of abstract operations
that subclasses override to provide
behavior

e Applicability: Use this pattern

— to implement the invariant parts of an
algorithm once and leave it up to
subclasses to implement the behavior that

can vary

174

— when common behavior among subclasses

should be factored and localized in a

common class to avoid code duplication (a

case of refactoring to generalize)

to control subclasses extensions; once can
define a template method that calls hook
operations at specific points, thereby

permitting extensions only at those points

e Participants:

1. AbstractClass:

— defines the abstract primitive
operations that concrete subclasses
define to implement steps of an
algorithm.

— implements a template method defining

the skeleton of an algorithm.

2. ConcreteClass:
— implements the primitive operations to
carry out subclass-specific steps of the

algorithm

175

e Collaborations:

— ConcreteClass relies on AbstractClass to

implement the invariant steps of the algorithj

e Consequences:

+ Template methods are a fundamental

technique for code reuse, particularly
important in class libraries (because they help

factor out common behavior in library classeq).

+ Leads to an inverted control structure wherelfy
a parent class calls the operations of a subclafs
and not the other way round.

e Related Patterns

— Factory Method: Template methods often
call factory methods

— Strategy: Template methods use inheritance

to vary part of an algorithm while Strategies

use delegation to vary the entire algorithm

176

Template Pattern I

Qoo * docs o
Document << Application

Save() AddDocument()

Open() OpenDocument()

Close() DoCreateDocument()
DoRead() CanOpenDocument()
AboutToOpenDocument()

1

MyApplication

MyDocument

DoRead|() DoCreateDocument? =7 return new MyDocument

CanOpenDocument
AboutToOpenDocument()

AbstractClass

TemplateMethod() O- - -
PrimitiveOperationl()
primitiveOperation2()

1

PrimitiveOperationl()
primitiveOperation2()

177

Common Themes in Behavioral Patterns.

e Encapsulating Variation:

— A Strategy object encapsulates an

algorithm

A State object encapsulates a
state-dependent behavior

A Mediator object encapsulates the

protocol between objects

An Iterator object encapsulates the way to
access and traverse the components of an
aggregate object

This theme is common to creational and
structural patterns also: Abstract Factory,
Builder, Prototype, Decorator, Bridge, etc.

178

e Objects as Arguments:

— A Visitor object is the argument to a
polymorphic Accept operation on the objects

1t visits

— Command and Memento define objects that
act as magic tokens passed around and invokdd
at a later time (the token represents a reques

in Command and internal state in Memento)

— Typically, clients are not aware of these tokeils

e Handling of Communication:

— Observer distributes communication by

introducing Observer and Subject objects

— Mediator object encapsulates the

communication between objects

— Typically, clients are not aware of these tokeils

179

e Decoupling Senders and Receivers:

— When collaborating objects refer to each othdr
directly, they become dependent on each
other, which will have an adverse impact on
layering and reusability

The following patterns decouple senders and
receivers: Command, Observer, Mediator, ang
Chain of Responsibility, all in different ways

Command supports decoupling by using a
Command object to define the binding

between a sender and receiver

Observer decouples subjects from observers by
defining an interface for signaling changes in

subjects

Mediator achieves decoupling by having the
refer to each other indirectly through a
Mediator object

Chain of Responsibility decouples the sender
from the receiver by passing the request along

a chain of potential receivers

180

Command and Observer'

anlnvoker aCommand aReceiver
(sender) (receiver)

Execute() . ‘

Action()

181

Mediator and Chain of Responsibility

aColleague aMediator aColleague aColleague
(sender/receiver) (sender/receiver) (sender/receiver)

aHandler aHandler aHandler
(receiver) (receiver) (receiver)

HandleHelp() J—

HandleHelp()

—‘ HandleHelp()

182

Impact of Design Patterns'

Enable best design practices to be used
commonly by less experienced software

engineers

Provide a common vocabulary for designers
to communicate, explore, and discuss design

alternatives

Provide a valuable documentation and
learning aid

Design patterns are invaluable in turning an

analysis model into an effective

design/implementation model, providing

guidance and justification for "why” of
designs

DPs help determine how to reorganize or

refactor a design in an effective way

183

‘ Case Study of an I

' Auction House'

‘ Y. NARAHARI'

Computer Science and Automation

Indian Institute of Science
Bangalore - 560 012

184

WHAT: Web Based House of Auction

Requirements Specification

e WHAT is a web server with auction logic and
a backend database, and can host a multitude
of parallel auctions. It supports:

— Single item open cry auction
— Multiple item open cry auction

— Dutch auctions (usually for multiple items)

e WHAT has facilities for:

1. Registration of buyers and sellers: This
will include some way of authenticating
the participants and profiling

. Setting up the auction event: this involves

describing the item(s) on auction and

setting up the auction rules:

185

type of auction

negotiable parameters in auction
start time of auction

auction closing rules

penalties for defaulting

. Conducting the bidding process by:

— collecting bids from buyers

— implementing bid control rules

. Evaluation of bids and determining

winner(s) of auction
. Electronic payment

. Initiating trade settlement

186

e WHAT should have support for:

defining of "new” auctioning mechanisms and

algorithms

deployment of agents

security of data and transactions
maintaining anonymity of buyers and sellers

notification mechanisms to indicate the statu}
and progress of auctions

participation in multiple auctions

searching through the ongoing auctions for
desired information (search engine)

an elegant and functional (but need not be

fancy) user interface

a functional, scalable database

187

‘Different Steps in the Process'

e Requirements analysis to come up with all
important use cases, their descriptions, and

and use-case diagrams.

Domain analysis to discover all important
abstractions for the problem domain (classes,

interfaces, collaborations, and relationships)

— Structural: Class and object diagrams

— Behavioral: sequence, collaboration,
activity, state charts

Architecture Design: Identify the major
subsystems and the connections and

interactions

188

e Detailed Design: This will involve
specifying a working solution that can be
transformed into programming code
Additional issues to be addressed here are:
GUI design (a functional and elegant GUI);
database design (a functional, scalable

database organization supporting persistency

and querying). Design patterns are useful

here.

Implementation and Testing: Some issues
to look for here are - web enabling,

concurrency of transactions, etc.

189

‘ Requirements Analysis I

e Actors: Buyers, Sellers, Auctioneers, System

Administrators

e Use cases:
— Search Auction
— Register Buyer
Register Seller
Select Auction
Place Bid
Cancel Bid
Withdraw from Auction
— Add Auction
— Delete Auction
— Validate User
— Cancel Registration
— Add New Auction Protocol
— Notify users

190

‘Navigation of Website'

e \Welcome
e Login

Personal
Auction
Gallery

{ \
Shipping
" Instructions

191

Use Case Diagram

USE CASE DIAGRAM FOR AUCTION

Modify auction

192

Use case Diagram

USE CASE DIAGRAM FOR MANAGE AUCTION HOUSE

Collect user statistics

Manage auction

Collect auction statistics

Auction Manager

193

Domain Analysis I

e Identify the classes from the specs and the

use CaseEs

e Domain classes:
— Auction House

Auction
Product
Search
Buyer
Seller
Termsofsale
Rules
Trade
Notification,
Participant

Price

194

A Class Diagram

Auction House

* Add trader
* Add auction
* Add product

i

0.*
Auction

State

* Start auction
* Close auction
* Accept auction

0.* 0.*

Rules Trade Message

Deal specifies Message type
* Bid validate Winners/Loserg

* Bid evaluate
* Bid update 0.*
* Notification
* method
* content

Participant

0.*

Notification

195

A Detailed Class Diagram

AUCTION HOUSE
{ Abstract}

T
o | o

AUCTION TRADER
DATA BASE {Abstract}

) ¢ A
CONTROLLER E Lo.x 0.

RULES
{Abstract} BID PARTICIPANT | BUYER || sELLER |
{Abstract}

Y

RULES open cry rules dutch rules

dutch bid open cry bid BID FACTORY
{Abstract}

= L

DUTCH OPENCRY OPEN CRY DUTCH
RULES RULES BID FACTORY BID FACTORY

FACTOR FACTORY

{Abstract}

FACTORY A
I
I

196

‘ Architecture Design I

e High level design where subsystems

(packages) are defined, including

dependencies and communication mechanisms

between between the packages

e A well-designed architecture is the foundation
for an extensible and changeable system
e Packages in the Auction System:

— User Interface Package: based on the Java
AWT package

— Business Objects Package: includes

domain classes

— Database Package: provides persistence to
business objects

— Utility Package: services that are used in
other packages

197

Architecture of Subsystems '

Ul Package

Utility
Package

198

‘ Detailed Design I

Describe the new technical classes; expand

and detail the descriptions of business object
classes; (through more detailed UML
diagrams)

Database Package:

— Persistent is a class that all classes that
need persistent objects must inherit

Utility Package:

— Objld is a class whose objects are used to
refer to any persistent object in the
system; used by all packages in the system

Business Objects Package:

— Class descriptions are detailed

— Diagrams are refined further taking into

account design-level details

User Interface Package

199

‘ Design Patterns I

Abstract Factory: for generating objects
for different auction protocols

Singleton: Auction House is a singleton

Builder: Separate construction of web pages
from representation (html pages, forms, other

ways of rendering, etc.)

Bridge:

— Avoid permanent binding between auction
type and effective price

— Determining winner in combinatorial

auctions

— Notification mechanisms

Composite: to represent bids with complex

structure

Decorator: decorate auction object with
multiple individual value added services

200

Facade: Auction house provides a unified
interface to the whole system

Iterator: To access database information

Proxy: To provide detailed description of

1tem

Observer: automatic generation of services,

notifications, etc.

Strategy: for different types of auction
protocols

Chain of Responsibility: consotium can

forward requests to a chain of auction houses

201

The Auction Process'

1. Registration of buyers and sellers

authentication of servers and clients (SSL)

authentication of trading parties
exchange of cryptography keys

may involve revealing credit card

information

information transmitted is substantial and

most of it is to be kept confidential

e trader profiling

2. Setting up an Auction Event

e describe the item: certification may be
required for the item being described

e set up auction rules: type of auction,
reserve price, negotiable parameters, start
time of auction, penalties on withdrawal,

auction closing rules

202

e Some items are not revealed (for example,

reserve price, number of items available)

e Auction may not be publicly accessible, so

access control may need to be enforced
e Digital signing of contracts under third
party supervision may be required for
non-repudiation
3. Scheduling and Advertising
e unauthorized postings are to be prevented
e unauthorized alterations are to be
prevented
4. Bidding process
collect bids from buyers
implement bid control rules

Unusual behavior needs to be monitored:
abnormal speculation, frequent

withdrawals, etc.

only a subset of bidding history is to be
made available to bidders

203

verfiable connection from every bid to its
bidder

access control is to be enforced
Denial of service attacks to be countered

prevent: tampering with a bid, spurious
bids, disclosing of bids to other bidders,
fraudulent activity by auctioneer, bidder

collusion
5. Evaluation of bids and determination of
winners:

e pricing issues: discriminative,

non-discriminative

e revenue maximization: combinatorial

auctions

. Electronic payment: payment protocols,

standards enter the fray here (for example,
SET)

. Trade settlement: Backend synchronization is
the key here

204

Technologies Required I

Object Technology: OOAD and UML, Design
Patterns and Analysis Patterns

Distributed Objects: RMI, CORBA, DCOM

Java Technology (Java, JavaBeans,
JavaScript, EJB)

Internet Technologies: XML, PERL, CGI

scripting, cookies

Agent Technology: Mobile Objects
Pervasive computing

Security services

Electronic payment mechanisms

205

